ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (31)
  • Published Data from GFZ  (31)
  • In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS  (16)
  • EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES  (15)
  • 2020-2024  (30)
  • 1980-1984  (1)
  • 1
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-02-14
    Description: Abstract
    Description: This database contains a compilation of published zircon geochronology, chemistry and isotope data. The database was created through automated web scraping of the Figshare data repository. Data included U-Pb and Pb-Pb dating, Lu-Hf isotopes, trace element and rare earth element chemistry and isotopes. Where available, metadata on the analytical method, lithology, sample description and sampling coordinates are included. All analyses include a citation and doi link to the original data hosted on Figshare. See metadata table for descriptions of table headers. See associated manuscript for web scraping code.
    Description: Other
    Description: The DIGIS geochemical data repository is a research data repository in the Earth Sciences domain with a specific focus on geochemical data. It is hosted at GFZ Data Services through a collaboration between the Digital Geochemical Data Infrastructure (DIGIS) for GEOROC 2.0 (https://digis.geo.uni-goettingen.de) and the GFZ German Research Centre for Geosciences. The repository archives, publishes and makes accessible user-contributed, peer-reviewed research data that fall within the scope of the GEOROC database. Compilations of previously published data are also made available on the GEOROC website (https://georoc.eu) as Expert Datasets.
    Keywords: data compilation ; zircon geochronology ; geochemistry data ; isotope data ; GEOROC Expert Dataset ; zircon ; magmatic ; detrital ; U-Pb age ; Pb-Pb age ; Lu-Hf isotopes ; trace elements ; rare earth elements ; adakite ; amphibolite ; andesite ; anorthosite ; aplite ; arenite ; ash ; basalt ; basaltic andesite ; basaltic trachyandesite ; bentonite ; biotitite ; charnockite ; conglomerate ; dacite ; diamictite ; diorite ; dolerite ; dunite ; gabbro ; granite ; granodiorite ; granulite ; greenschist ; greywacke ; hornblendite ; kersantite ; kimberlite ; lamprophyre ; leucogranite ; lherzolite ; limestone ; migmatite ; monzodiorite ; monzogranite ; monzonite ; norite ; orthogneiss ; paragneiss ; pegmatite ; pelite ; psammite ; pumice ; pyroxenite ; quartzite ; radiolarite ; rhyodacite ; rhyolite ; rodingite ; sandstone ; schist ; serpentinite ; shale ; siltstone ; spessartite ; syenite ; syenogranite ; tonalite ; trachyandesite ; trachydacite ; trachyte ; trondhjemite ; tuff ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPE MEASUREMENTS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPE RATIOS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPIC AGE ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 MINERALS 〉 MINERAL AGE DETERMINATIONS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-21
    Description: Abstract
    Description: To seismically monitor the GEOREAL hydraulic stimulation experiment, that took place during the period 6-15 November 2023, a station network was set up in the vicinity of the Kontinentale Tiefbohrung/ KTB deep crustal lab near Windischeschenbach, Germany. The network comprised both surface stations, shallow borehole (25-150 m deep) stations as well as a borehole chain at 2000 m depth in the main borehole, ca. 200m apart from the pilot borehole. First stations were installed in early 2022 and removed in mid-2024. A total of 600 m³ of water was injected into the 4 km deep pilot borehole (KTB-VB, 12° 7.16' E, 49° 48.98' N, 513.418 m above NN ). This volume was injected through a stuck packer in the cased borehole into the open borehole section a depth of 3.85-4 km. No induced seismicity was observed during the injection experiment. Waveform data is available from the GEOFON data centre, under network code 4R, and is fully open.
    Keywords: EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; MiniSEED ; Seismometers ; GIPP ; Local network
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-26
    Description: Abstract
    Description: A network of 210 continuously running, digital seismic stations equipped with short-period sensors (200 stations) and broadband sensors (10 stations) was deployed in an area of ~8 x ~6 km in the Irish Midlands (north of Collinstown) for a time period of ~6 weeks. The network was part of the EU project VECTOR (https://vectorproject.eu) aiming to investigate – among others – possible solutions for least invasive forms of exploration for mineral resources. In this context the collected data was mainly used to derive a 3D model of the subsurface (seismic shear wave velocity) using ambient noise tomography (down to ~1.5km depth). We thank all field crews for their excellent work rendered to the project. Waveform data is available from the GEOFON data centre, under network code 7W, and is embargoed until Feb 2025.
    Keywords: EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; Seismometers ; Geophone[g] ; Velocity ; MiniSEED ; Passive seismic ; GIPP ; MESI ; Raw[g] ; Local network ; Vertical component[g] ; Three-component[g] ; Land[g] ; Geophysics ; Natural
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-28
    Description: Abstract
    Description: From June to August 2021 the DEEPEN project deployed a dense seismic network across the Hengill geothermal area in southwest Iceland to image and characterize faults and high-temperature zones at high resolution. The nodal network comprised 498 geophone nodes spread across the northern Nesjavellir and southern Hverahlíð geothermal fields and was complemented by an existing permanent and temporary backbone seismic network of a total of 44 short-period and broadband stations. In addition, two fiber optic telecommunication cables near the Nesjavellir geothermal power plant were interrogated with commercial DAS-interrogators. The here published dataset contains a subset of the downsampled DAS-recordings from the western fiber optic array. The original data were downsampled from 2000Hz to 250 Hz using the das-convert tool (https://doi.org/10.5880/GFZ.2.1.2021.005). Note that there was a problem with the GNSS timing in the original recorded data which caused significant temporal drift. This has mostly been corrected in the downsampled data, but some residual timing error may exist. Waveform data is available from the GEOFON data centre, under network code 1D, and is fully open.
    Keywords: EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED ; DAS
    Type: Dataset , Seismic Network
    Format: 1700GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2023-04-25
    Description: Abstract
    Description: The META-WT project was designed to perform a 4-weeks seismic experiment in Germany with a dense seismic array of ~400 three-component geophones that covered (1) a 2.5km x 2.5km wind farm area in Brandenburg, Germany, with almost 200 wind turbines (WTs) and a well-studied subsurface structure and (2) a 20-km long radial line from the center of the wind farm with one geophone every half-kilometer. The objective was to capture the spatio-temporal seismic wave-field signature of the wind farm from continuous recordings of ambient noise. Due to the dense interstation distance and proposed geometry the experiment allowed for analyzing both small-scale wave field characteristics at an unprecedented spatial resolution and the longer distance radiation pattern of the wind farm. Waveform data is available from the GEOFON data centre, under network code XF, and is embargoed until Jan 2025.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~400G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-05-11
    Description: Abstract
    Description: The Illgraben is a 10 km² steep side valley located in Switzerland. This active debris flow catchment supplies 5-15% of the total sediment load of the Rhône River upstream of Lake Geneva. The 30-80° steep catchment slopes host frequent rock falls and slides. From 2012 to 2014, a network of up to ten Nanometrics Trillium Compact 120s broadband seismometers, sampled by Digos DataCube³ext loggers at 200 Hz (and later by centaur), was deployed in and around the catchment to monitor distributed geomorphic activity. Waveform data is available from the GEOFON data centre, under network code 9J, and is fully open.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~100G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-10-30
    Description: Abstract
    Description: This data set contains measurements of an underground hydraulic fracture experiment at Äspö Hard Rock Laboratory in May and June 2015. The experiment tested various injection schemes for rock fracture stimulation and monitored the resulting seismicity. The primary purpose of the experiment is to identify injection schemes that provide rock fracturing while reducing seismicity or at least mitigate larger seismic events. In total, six tests with three different injection schemes were performed in various igneous rock types. Both the injection process and the accompanied seismicity were monitored. For injection monitoring, the water flow and pressure are provided and additional tests for rock permeability. The seismicity was monitored in both triggered and continuous mode during the tests by high-resolution acoustic emission sensors, accelerometers and broadband seismometers. Both waveform data and seismicity catalogs are provided.
    Keywords: hydraulic experiments ; broadband seismic data ; acoustic emissions ; Äspö Hard Rock Laboratory ; borehole images ; EARTH SCIENCE 〉 SOLID EARTH ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-11-13
    Description: Other
    Description: The DIGIS geochemical data repository is a research data repository in the Earth Sciences domain with a specific focus on geochemical data. The repository archives, publishes and makes accessible user-contributed, peer-reviewed research data in standardised form (EarthChem Team, 2022) that fall within the scope of the GEOROC database. All submissions of new data will be considered for inclusion in the GEOROC database. It is hosted at GFZ Data Services through a collaboration between the Digital Geochemical Data Infrastructure (DIGIS) for GEOROC 2.0 (http://digis.geo.uni-goettingen.de) and the GFZ German Research Centre for Geosciences.
    Description: Abstract
    Description: The periodic volcanic activity of Stromboli Volcano, Aeolian Islands, Italy, is interrupted by paroxysmal eruptions on a decadal interval. In 2019, two strong paroxysms on July 3rd and August 28th, ended a more than a decade long period of regular strombolian activity. During normal strombolian activity the volcano erupts highly porphyritic scoria and lava (HP) with a shoshonitic basalt composition. In paroxysmal eruptions the HP material is mingled with low porphyritic (LP) pumices. This dataset includes the first radiogenic isotope data on the bulk compositions of the LP and HP components erupted on July 3rd 2019, and a HP sample from the lava flow that followed the paroxysm, and a LP sample from the paroxysm on August 28th 2019. The analyzed radiogenic isotope ratios include Sr, Nd, Hf, and Pb. This dataset further includes in-situ EPMA and LA-ICP_MS measurements of major and trace elements in the glass, olivine, plagioclase and clinopyroxene phases.
    Keywords: Stromboli ; paroxysm ; shoshonitic basalt ; pumice ; scoria ; plagioclase ; clinopyroxene ; olivine ; glass ; whole rock ; EMPA ; LA-ICP-MS ; MC-ICP-MS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPE MEASUREMENTS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-12-20
    Description: Abstract
    Description: At valley glaciers, rockwall erosion supplies debris to glacier surfaces. Once deposited on the ice, rockwall debris is passively entrained and becomes part of the glacial system, e.g., forming medial moraines as downglacier transport continues. Where debris occurs supraglacial, it modifies ice ablation and, thus, changes in rockwall erosion and debris supply rates modify glacial debris cover and mass balance and may affect glacier retreat in response to climate change. Yet, estimates on rockwall erosion rates close to glacier surfaces are few and quantifying spatiotemporal supply patterns is not trivial. This data publication is supplementary to the study on rockwall erosion rates at five Swiss valley glaciers around Pigne d’Arolla, by Wetterauer & Scherler (2023). We temporally and spatially assess rockwall erosion by measuring in situ-produced cosmogenic 10Be concentrations ('[10Be]measured') in medial moraine debris, which we systematically sampled along downglacier-profiles, and by comparing records from various medial moraines, which are supplied by rockwalls differing in exposure and morphology. However, as '[10Be]measured' within supraglacial debris is the sum of '[10Be]rockwall', accumulated during rockwall erosion, and '[10Be]transport', accumulated during post-depositional downglacier transport, medial moraine '[10Be]measured' should be corrected for '[10Be]transport'. If glacier velocities through time are known, '[10Be]transport' can be estimated by downglacier debris trajectory modelling. Providing our 10Be dataset and ~40-year records of glacier surface velocities from four of the five valley glaciers (Glacier du Brenay, Glacier de Cheilon, Glacier de Pièce, Glacier de Tsijiore Nouve) is the main objective of this data publication. The dataset of the fifth glacier (Glacier d’Otemma) has already been published as case study by Wetterauer et al. (2022a,b).
    Description: Other
    Description: The data were collected as part of the project “COLD”, which investigates the Climate Sensitivity of Glacial Landscape Dynamics with a focus on the European Alps. This research receives funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program under grant agreement 759639.
    Keywords: Alpine glaciers ; medial moraines ; cosmogenic 10Be ; rockwall erosion rates ; supraglacial debris ; glacier surface velocities ; boulder tracking ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 EROSION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 CHEMICAL CONCENTRATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 GLACIAL LANDFORMS 〉 MORAINES 〉 MEDIAL MORAINE
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-01-25
    Description: Abstract
    Description: This dataset is a continuously growing collection of lead isotope reference data. Lead isotopes are an established method to reconstruct the raw material provenance of archaeological objects. They are typically applied to artefacts made of copper, lead, silver, and their alloys. However, also the raw ma- terial provenance of other materials such as glass, pigments and pottery was already investigated us- ing lead isotopes. To successfully reconstruct the origin of the raw material, lead isotope signatures from as many as possible suitable raw material occurrences must be known. In the past, large-scaled research projects were carried out to characterise ore deposits especially in the Mediterranean area and Western Eu- rope. However, many of these data are dispersed in the literature and were published in scientific articles or monographs. Consequently, each researcher or at least each research group had to build their own up-to-date database of reference data from the literature. To overcome these restrictions, to facilitate work with lead isotope reference data and particularly to make the data FAIR, i.e., finda- ble, accessible, interoperable and reusable (Wilkinson et al. 2016), these published data are compiled and transferred into a uniform layout. They are further enhanced with additional metadata to facili- tate their use in raw material provenance studies. Currently, the database is restricted to ores and minerals as these are the most relevant materials for provenance studies of ancient metals. Future updates will include hitherto uncovered regions but also additional data from countries already present. Slag and other metallurgical (by-) products from ancient sites in close vicinity to ore deposits generally are a genuine representation of the ores uti- lised in historic times. As such, they are highly relevant for provenance studies and an extension to these materials is therefore planned. GlobaLID is a representation of the collective work of researchers on Pb isotope studies. As such, the database is seen as a community engagement project that invites scientists all over the world to be- come active contributors of GlobaLID. The initiators of the database dedicate their effort to the con- tinuation and maintenance of the database but only the support of the whole community will allow a rapid and successful growth of GlobaLID.
    Keywords: raw material provenance ; chemical 〉 isotope ; chemical element 〉 element of group IV 〉 lead ; chemical element 〉 transition element 〉 copper ; chemical element 〉 transition element 〉 silver ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPE RATIOS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 METALS ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 METALS 〉 METALS AGE DETERMINATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 METALS 〉 METALS VERTICAL/GEOGRAPHIC DISTRIBUTION ; In Situ/Laboratory Instruments 〉 Spectrometers/Radiometers 〉 ICP-MS ; In Situ/Laboratory Instruments 〉 Spectrometers/Radiometers 〉 MC-ICP-MS ; industrial process 〉 metal working 〉 metal smelting ; industry 〉 metallurgical industry 〉 non-ferrous metal industry ; lithosphere 〉 mineral 〉 metallic mineral 〉 non-ferrous metal ; resource utilisation ; resource utilisation 〉 extraction ; resource utilisation 〉 extraction 〉 mining
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2024-02-23
    Description: Abstract
    Description: Deployment of 10 seismometers for monitoring the induced seismicity of the Lacq gas field, France. This project focus on the analysis of the seismicity induced by anthropogenic activities (gas extraction and wastewater injection) related to the gas field, located in Lacq, France. We aim to answer the following questions: which part of the Lacq induced seismicity is generated by wastewater injection? by the mechanical evolution of the reservoir depletion? Is the seismicity confined to the (minor) faults of the reservoir or can regional tectonic faults be activated, generating large earthquakes? What scenarios of ground shaking and damages could be expected in case of a major event in the area? What is the associated seismic hazard and risk?
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; induced seismicity ; Lacq gas field ; waste water injection ; temporary seismological network ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The network consists of a vertical borehole array equipped with 3C sensors (geophones) for the analysis of swarm earthquakes in the Western Bohemia / Vogtland area located in the German/Czech border region. A surface array is completing the 3D observation of the wave field with 3C sensors (geophones). Waveform data is available from the GEOFON data centre, under network code 6A, and is embargoed until FEB 2035.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Germany ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~15T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The PESO array provides two weeks of local seismological observation in the vicinity of the IPOC (Plate Boundary Observatory Network Northern Chile) station Patache (CX.PATCX) to investigate the subsurface structure and the ambient seismic field. Waveform data is available from the GEOFON data centre, under network code 7F, and is fully open.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~100G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-04-11
    Description: Abstract
    Description: The Eifel Large-N Seismic Network is a concentric network of about 80km aperture around the Laacher See. Instrumentation consists of broad band seismometers, short period instruments (1Hz eigenfrequency) and 4.5Hz geophones. While the broadband and short period stations cover the area rather homogeneously for about 12 month, the geophone stations were moved after 6 month from a layout focussed on the closer vicinity of the Laacher See onto a line crossing the network from south-west to north-east with a dense station spacing. The goal of the experiment is the structural investigation of the feeding system of the East Eifel and a detailed study of the tectonic and volcanic seismic activity in this area. Waveform data is available from the GEOFON data centre, under network code 6E.
    Keywords: EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; Passive seismic ; Local network ; Temporary ; Large-N ; Volcano ; Velocity ; Seismometers ; MiniSEED
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-05-21
    Description: Abstract
    Description: 15 station seismological network spanning the North Anatolian Fault Zone (NAFZ) toward the east of Ismetpasa to detect possible microseismicity and slow slip events in the creeping section of the NAFZ. The network consists of 10 three component 4.5 Hz geophone sensors in combination with DATACUBE3 recorders and five Trillium Horizon 120 broadband seismometers connected to Centaur data loggers. Geophone stations are buried at shallow depths while two of the broadband seismometers are installed in-house at basement level. The other three Trillium sensors are posthole installations in the field. The seismic network spans the same part of the NAFZ that is also monitored by a GNSS network installed by École Normale Supérieure (ENS) with two broadband seismometers being co-located with GNSS sensors. In addition, a set of creepmeters is installed close to Ismetpasa at the western end of the seismological network. The aim of the seismological study is twofold: a) Finding possible seismological expressions of the slow slip transients visible in the GNSS data and b) detecting microseismicity that is not listed in the regional Turkish earthquake catalogs based on seismological networks with much larger station spacing in the study area. The obtained results will hopefully give new insights into the seismological characteristics of a segment of a major continental transform fault capable of hosting M7 events but showing at the same time transient slow slip events and seismic creep.
    Keywords: EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED ; GIPP ; MESI
    Type: Dataset , Seismic Network
    Format: ~307GB(still growing)
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2023-02-08
    Description: Abstract
    Description: This data publication is supplementary to the study on headwall erosion rates at Glacier d'Otemma in Switzerland, by Wetterauer et al. (2022). Debris on glacier surfaces stems from steep bedrock hillslopes that tower above the ice, so-called headwalls. Recently, rock walls in high-alpine glacial environments experience increased destabilization due to climate warming. Since supraglacial debris alters the melt behaviour of the ice underneath, increased headwall erosion and debris delivery to glacier surfaces will modify glacial mass balances. Therefore, we expect that the response of glaciers to climate change is likely linked to how headwall erosion responds to climate change. As headwall debris is deposited on the ice surface of valley glaciers it is passively transported downglacier, both supra- and englacially. Where two glaciers join, debris along their margins is merged to form medial moraines. Since medial moraine debris tends to be older downglacier, systematic downglacier-sampling of medial moraine debris and the measurement of in situ-produced cosmogenic 10Be concentrations ([10Be]) hold the potential to assess long-term (〉10^2-10^4 yrs) headwall erosion rates through time. However, to obtain the cosmogenic signals of headwall erosion, [10Be] within supraglacial debris need to be corrected for glacial transport time, as cosmogenic nuclides continue to accumulate during exposure and transport. This additional 10Be accumulation during debris transport can be accounted for by simple downglacier debris trajectory modelling. Providing our 10Be dataset together with detailed information on our 1-D modelling approach is the main objective of this data publication. The data is presented as one single xlsx-file with three different tables. A detailed description of the sample processing and the debris trajectory model are provided in the data description file of this data publication. For more information see our study Wetterauer et al. (2022).
    Description: Other
    Description: The data were collected as part of the project “COLD”, which investigates the Climate Sensitivity of Glacial Landscape Dynamics with a focus on the European Alps. This research receives funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program under grant agreement 759639.
    Keywords: Alpine glaciers ; medial moraines ; cosmogenic 10Be ; grain size ; headwall erosion rates ; supraglacial debris ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 EROSION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 CHEMICAL CONCENTRATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 GLACIAL LANDFORMS 〉 MORAINES 〉 MEDIAL MORAINE
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2023-02-09
    Description: Abstract
    Description: The main objective of the work package 2 of the REFLECT project is to characterise relevant fluid properties and their reactions for saline fluids (type C). One of the specific goals was to collect fluid samples from several saline fluids from geothermal sites across Europe, determine their properties, and thus contribute to the Fluid Atlas (WP3). Additionally, the REFLECT team will compare those field data with data from lab experiments performed at near natural conditions. Samples of type C fluids were taken from several sites in Germany, Austria, Belgium and the Netherlands. The samples were analysed for major and minor ions, dissolved gases and isotopes. At Neustadt-Glewe one thermal water sample was taken by GFZ on June 02, 2021 and sent to Hydroisotop for analysis of main cations, anions, heavy metals, DOC, gases and isotopes (18O, 2H, 18O-SO4, 2H, 13C-DIC, 13C-CO2, 13C-CH4, 13C-CxHy, 2H-CH4, 34S-SO4, 34S-H2S, 2H-CH4). There was too little H2S in sample 363469 to conduct the 34S-H2S measurement. The dataset contains analysis results associated with the research project REFLECT. It is a comma separated file (csv) containing the following columns: Location,Country,Description,Laboratory (Lab.),Lab. No.,Sampling date,Spec. electr. conductivity (25 degC) Lab.,pH value Lab.,Temperature Lab. (degC),Alkalinity (pH 4.3) Lab. (mmol/l),Sodium (mg/l),Potassium (mg/l),Calcium (mg/l),Magnesium (mg/l),Ammonium (mg/l),Hydrogen carbonate (mg/l),Chloride (mg/l),Sulphate (mg/l),Nitrate (mg/l),Antimony (mg/l),Barium (mg/l),Fluoride (mg/l),Iodide (mg/l),Lithium (mg/l),Silicon (mg/l),Strontium (mg/l),Aluminium (mg/l),Arsenic (mg/l),Lead (mg/l),Chromium total (mg/l),Iron total (mg/l),Copper (mg/l),Manganese total (mg/l),Nickel (mg/l),Uranium (mg/l),Zinc (mg/l),DOC (mg/l),Hydrogen (Nml/kg),Oxygen (Nml/kg),Nitrogen (Nml/kg),Carbon dioxide (Nml/kg),Methane (Nml/kg),Ethane (Nml/kg),Propane (Nml/kg),Butane (Nml/kg),Pentane (Nml/kg),Helium (Nml/kg),Argon (Nml/kg),Sum Gases (Nml/kg),Oxygen-18 d18O-H2O (per mille VSMOW),Deuterium d2H-H2O (per mille VSMOW),Deuterium-excess (per mille VSMOW),Carbon-13 d13C-DIC (per mille VPDB),Sulphur-34 d34S-SO4 (per mille V-CDT),Oxygen-18 d18O-SO4 (per mille VSMOW),Carbon-13 d13C-CO2 (per mille VPDB),Carbon-13 d13C-CH4 (per mille VPDB),Deuterium d2H-CH4 (per mille VSMPW),Carbon-13 d13C-C2H6 (per mille VPDB),Carbon-13 d13C-C3H8 (per mille VPDB),Carbon-13 d13C-i-C4H10 (per mille VPDB),Carbon-13 d13C-n-C4H10 (per mille VPDB) Methods are described in the accompanying deliverable Fluid data of geothermal sites (type C) .
    Description: Other
    Description: Project summary: The efficiency of geothermal utilisation largely depends on the behaviour of fluids that transfer heat between the geosphere and the engineered components of a power plant. The Horizon 2020 funded project REFLECT aims to avoid problems related to fluid chemistry rather than treat them. Fluid physical and chemical properties are often poorly defined, as in situ sampling and measurements at extreme conditions have proved difficult to date. Therefore, large uncertainties in current model predictions prevail, which are being tackled in REFLECT by collecting new, high-quality data in critical areas. The data is being implemented in a European geothermal fluid atlas and in predictive models to allow recommendations on how to best operate geothermal sites sustainably and to enhance geothermal technology development. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement nº 850626. Project website: https://www.reflect-h2020.eu/ Cordis website: https://cordis.europa.eu/project/id/850626
    Keywords: geothermal ; hydrothermal ; REFLECT ; Redefining geothermal fluid properties at extreme conditions to optimize future geothermal energy extraction ; EARTH SCIENCE 〉 SOLID EARTH 〉 EARTH GASES/LIQUIDS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 CHEMICAL CONCENTRATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL ENERGY ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 GROUND WATER 〉 GROUNDWATER CHEMISTRY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2023-02-09
    Description: Abstract
    Description: The main objective of the work package 2 of the REFLECT project is to characterise relevant fluid properties and their reactions for saline fluids (type C). One of the specific goals was to collect fluid samples from several saline fluids from geothermal sites across Europe, determine their properties, and thus contribute to the Fluid Atlas (WP3). Additionally, the REFLECT team will compare those field data with data from lab experiments performed at near natural conditions. Samples of type C fluids were taken from several sites in Germany, Austria, Belgium and the Netherlands. The samples were analysed for major and minor ions, dissolved gases and isotopes. In order to gain information about the increased methane content (about 65 vol-%) in the gas samples of the Groß Schönebeck production well (GrSk05/05) collected in February 2021 as compared to previous samples in 2010-2018 (10-14 vol-%), three gas samples were sampled by GFZ on 02 March 2021 at the valve at the wellhead when releasing the pressure from the wellhead. Main gas composition was measured by GFZ indicating again predominantly CH4 (63,9-64,2 Vol-%) followed by N2 (30,9 – 31,2 vol.-%) with minor amounts of H2 (3,4 vol-%) and CO2 (0,01-0,04 vol-%). Potential reasons for the increased methane content could be either microbial activity or contribution of fluid / gas from a different source within the reservoir. To determine the origin of methane, therefore, isotope analyses were performed. The samples arrived at Hydroisotop on March 13th 2021 for the analysis of higher hydrocarbons (C2-C5) and their isotopic composition (13C-CO2, 13C -CH4, 13C-CxHy and 2H-CH4). Together with the measured high amounts of higher hydrocarbons (ethane, propane etc.) they indicate a rather thermogenic source of the hydrocarbons. To better clarify the question of the source of methane, additionally, two downhole water samples from two different depths (1500 and 4000 m) were taken by GFZ on 09th and 10th of June 2021 and sent to Hydroisotop for analysis of main cations and anions, heavy metals, trace elements and isotopes (13C-CH4) in July 2021. The water sample composition resembles those of earlier measurements of samples collected in Groß Schönebeck (e.g. Regenspurg et al., 2010). However, since the well had not been in operation for a while a depth differentiation between the sample from 4000 m and the one from 1500 m is obvious. This was already visible by the black precipitate observed in the 4000 m sample, whereas the sample at 1500 m showed da reddish precipitate of presumably iron oxides. It should be noted that the nitrate content of the water samples is unusually high since reducing conditions are expected. This could have been caused by air contact of the sample and subsequent oxidation. Furthermore, a reduced silicon content shows in sample 365871 compared to sample 365870. Given the high temperature of the well, the higher silicon content is more plausible. The dataset contains analysis results associated with the research project REFLECT. It is a comma separated file (csv) containing the following columns: Location,Country,Description,Laboratory (Lab.),Lab. No.,Sampling date,Sodium (mg/l),Potassium (mg/l),Calcium (mg/l),Magnesium (mg/l),Chloride (mg/l),Sulphate (mg/l),Nitrate (mg/l),Antimony (mg/l),Barium (mg/l),Bromide (mg/l),Fluoride (mg/l),Iodide (mg/l),Lithium (mg/l),Silicon (mg/l),Strontium (mg/l),Aluminium (mg/l),Arsenic (mg/l),Lead (mg/l),Copper (mg/l),Manganese total (mg/l),Nickel (mg/l),Uranium (mg/l),Zinc (mg/l),Ethane (vpm),Propane (vpm),i-Butane (vpm),n-Butane (vpm),i-Pentane (vpm),n-Pentane (vpm),Ethene (vpm),Propene (vpm),1-Butene (vpm),Carbon-13 d13C-CO2 (per mille VPDB),Carbon-13 d13C-CH4 (per mille VPDB),Deuterium d2H-CH4 (per mille VPDB),Carbon-13 d13C-C2H6 (per mille VPDB),Carbon-13 d13C-C3H8 (per mille VPDB),Carbon-13 d13C-i-C4H10 (per mille VPDB),Carbon-13 d13C-n-C4H10 (per mille VPDB) Methods are described in the accompanying deliverable Fluid data of geothermal sites (type C).
    Description: Other
    Description: Project summary: The efficiency of geothermal utilisation largely depends on the behaviour of fluids that transfer heat between the geosphere and the engineered components of a power plant. The Horizon 2020 funded project REFLECT aims to avoid problems related to fluid chemistry rather than treat them. Fluid physical and chemical properties are often poorly defined, as in situ sampling and measurements at extreme conditions have proved difficult to date. Therefore, large uncertainties in current model predictions prevail, which are being tackled in REFLECT by collecting new, high-quality data in critical areas. The data is being implemented in a European geothermal fluid atlas and in predictive models to allow recommendations on how to best operate geothermal sites sustainably and to enhance geothermal technology development. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement nº 850626. Project website: https://www.reflect-h2020.eu/ Cordis website: https://cordis.europa.eu/project/id/850626
    Keywords: geothermal ; hydrothermal ; REFLECT ; Redefining geothermal fluid properties at extreme conditions to optimize future geothermal energy extraction ; EARTH SCIENCE 〉 SOLID EARTH 〉 EARTH GASES/LIQUIDS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 CHEMICAL CONCENTRATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL ENERGY ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 GROUND WATER 〉 GROUNDWATER CHEMISTRY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2023-02-09
    Description: Abstract
    Description: The main objective of the work package 2 of the REFLECT project is to characterise relevant fluid properties and their reactions for saline fluids (type C). One of the specific goals was to collect fluid samples from several saline fluids from geothermal sites across Europe, determine their properties, and thus contribute to the Fluid Atlas (WP3). Additionally, the REFLECT team will compare those field data with data from lab experiments performed at near natural conditions. Samples of type C fluids were taken from several sites in Germany, Austria, Belgium and the Netherlands. The samples were analysed for major and minor ions, dissolved gases and isotopes. On 10th of May 2021, two thermal water samples were taken by TNO before and after the heat exchanger at the geothermal site Heemskerk in the Netherlands. The samples sent to Hydroisotop were analysed for their hydrochemical composition, heavy metal and dissolved organic carbon (DOC) content and stable isotopes (18O, 2H, 13C-DIC). It should be noted that the pH measured in the laboratory diverges from previously observed pH values which in the past have not been reported below 5,4. Concentrations of major ions had initially been reported too low but re-measurement of the samples yielded values in ranges that had previously been recorded. However, the concentraton of Lithium is much higher than expected. In order to resolve these uncertainties, the site Heemskerk will be sampled again. The dataset contains analysis results associated with the research project REFLECT. It is a comma separated file (csv) containing the following columns: Location,Country,Description,Laboratory (Lab.),Lab. No.,Sampling date,Spec. electr. conductivity (25 degC) Lab. (muS/cm),pH value Lab.,Temperature Lab. (degC),Alkalinity (pH 4.3) Lab. (mmol/l),Sodium (mg/l),Potassium (mg/l),Calcium (mg/l),Magnesium (mg/l),Ammonium (mg/l),Hydrogen carbonate (mg/l),Chloride (mg/l),Sulphate (mg/l),Nitrate (mg/l),Antimony (mg/l),Barium (mg/l),Fluoride (mg/l),Iodide (mg/l),Lithium (mg/l),Silicon (mg/l),Strontium (mg/l),Aluminium (mg/l),Arsenic (mg/l),Lead (mg/l),Iron total (mg/l),Copper (mg/l),Manganese total (mg/l),Nickel (mg/l),Uranium (mg/l),Zinc (mg/l),DOC (mg/l),Oxygen-18 d18O-H2O (per mille VSMOW),Deuterium d2H-H2O (per mille VSMOW),Deuterium-excess (per mille VSMOW),Carbon-13 d13C-DIC (per mille VPDB). Methods are described in the accompanying deliverable Fluid data of geothermal sites (type C)
    Description: Other
    Description: Project summary: The efficiency of geothermal utilisation largely depends on the behaviour of fluids that transfer heat between the geosphere and the engineered components of a power plant. The Horizon 2020 funded project REFLECT aims to avoid problems related to fluid chemistry rather than treat them. Fluid physical and chemical properties are often poorly defined, as in situ sampling and measurements at extreme conditions have proved difficult to date. Therefore, large uncertainties in current model predictions prevail, which are being tackled in REFLECT by collecting new, high-quality data in critical areas. The data is being implemented in a European geothermal fluid atlas and in predictive models to allow recommendations on how to best operate geothermal sites sustainably and to enhance geothermal technology development. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement nº 850626. Project website: https://www.reflect-h2020.eu/ Cordis website: https://cordis.europa.eu/project/id/850626
    Keywords: geothermal ; hydrothermal ; REFLECT ; Redefining geothermal fluid properties at extreme conditions to optimize future geothermal energy extraction ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 CHEMICAL CONCENTRATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL ENERGY ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 GROUND WATER 〉 GROUNDWATER CHEMISTRY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2023-02-09
    Description: Abstract
    Description: The main objective of the work package 2 of the REFLECT project is to characterise relevant fluid properties and their reactions for saline fluids (type C). One of the specific goals was to collect fluid samples from several saline fluids from geothermal sites across Europe, determine their properties, and thus contribute to the Fluid Atlas (WP3). Additionally, the REFLECT team will compare those field data with data from lab experiments performed at near natural conditions. Samples of type C fluids were taken from several sites in Germany, Austria, Belgium and the Netherlands. The samples were analysed for major and minor ions, dissolved gases and isotopes. At the geothermal site Blumau in Austria five thermal water samples were taken by Hydroisotop at the production and injection well, as well as after the heat exchanger on 29th of June 2020. Besides the hydrochemical composition, dissolved gases, the heavy metal content, DOC and stable isotopes (18O, 2H, 13C-DIC) were analysed. Additionally, three thermal water samples were taken by the operator on 09th of March 2021 and sent to Hydroisotop for DOC measurements. The dataset contains analysis results associated with the research project reflect. It is a comma separated file (csv) containing the following columns: Location,Country,Description,Laboratory,Lab No.,Sampling date,Temperature at sampling (degC),Spec. electr. conductivity (25 degC) at sampling,Spec. electr. conductivity (25 degC) Lab. (muS/cm),pH value at sampling,pH value Lab.,Temperature Lab. (degC),Dissolved oxygen content (mg/l),Redox potential (mV),Alkalinity (pH 4.3) Lab. (mmol/l),Sodium (mg/l),Potassium (mg/l),Calcium (mg/l),Magnesium (mg/l),Ammonium (mg/l),Hydrogen carbonate (mg/l),Chloride (mg/l),Sulphate (mg/l),Nitrate (mg/l),Nitrite (mg/l),Antimony (mg/l),Barium (mg/l),Boron (mg/l),Bromide (mg/l),Fluoride (mg/l),Iodide (mg/l),Molybdenum (mg/l),Ortho-phosphate (mg/l),Selenium (mg/l),Strontium (mg/l),Sulphide total (mg/l),Aluminium (mg/l),Arsenic (mg/l),Lead (mg/l),Cadmium (mg/l),Chromium total (mg/l),Cobalt (mg/l),Iron total (mg/l),Copper (mg/l),Nickel (mg/l),Mercury (mg/l),Zinc (mg/l),Tin (mg/l),DOC (mg/l),Hydrogen (Nml/kg),Oxygen (Nml/kg),Nitrogen (Nml/kg),Carbon dioxide (Nml/kg),Methane (Nml/kg),Ethane (Nml/kg),Propane (Nml/kg),Butane (Nml/kg),Pentane (Nml/kg),Ethene (Nml/kg),Propene (Nml/kg),Helium (Nml/kg),Argon (Nml/kg),Sum Gases (Nml/kg),Oxygen-18 d18O-H2O (per mille VSMOW),Deuterium d2H-H2O (per mille VSMOW),Deuterium-excess (per mille VSMOW),Carbon-13 d13C-DIC (per mille VPDB) Methods are described in the accompanying deliverable Fluid data of geothermal sites (type C).
    Description: Other
    Description: Project summary: The efficiency of geothermal utilisation largely depends on the behaviour of fluids that transfer heat between the geosphere and the engineered components of a power plant. The Horizon 2020 funded project REFLECT aims to avoid problems related to fluid chemistry rather than treat them. Fluid physical and chemical properties are often poorly defined, as in situ sampling and measurements at extreme conditions have proved difficult to date. Therefore, large uncertainties in current model predictions prevail, which are being tackled in REFLECT by collecting new, high-quality data in critical areas. The data is being implemented in a European geothermal fluid atlas and in predictive models to allow recommendations on how to best operate geothermal sites sustainably and to enhance geothermal technology development. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement nº 850626. Project website: https://www.reflect-h2020.eu/ Cordis website: https://cordis.europa.eu/project/id/850626
    Keywords: geothermal ; hydrothermal ; REFLECT ; Redefining geothermal fluid properties at extreme conditions to optimize future geothermal energy extraction ; EARTH SCIENCE 〉 SOLID EARTH 〉 EARTH GASES/LIQUIDS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 CHEMICAL CONCENTRATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL ENERGY ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 GROUND WATER 〉 GROUNDWATER CHEMISTRY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2023-02-09
    Description: Abstract
    Description: The main objective of the work package 2 of the REFLECT project is to characterise relevant fluid properties and their reactions for saline fluids (type C). One of the specific goals was to collect fluid samples from several saline fluids from geothermal sites across Europe, determine their properties, and thus contribute to the Fluid Atlas (WP3). Additionally, the REFLECT team will compare those field data with data from lab experiments performed at near natural conditions. Samples of type C fluids were taken from several sites in Germany, Austria, Belgium and the Netherlands. The samples were analysed for major and minor ions, dissolved gases and isotopes. Two thermal water samples were taken by Hydroisotop at the production and injection wells in Insheim on 18th of June 2020. The samples were analysed for their hydrochemical composition, heavy metal and dissolved organic carbon (DOC) content, dissolved gases and stable isotopes of water and gas components (18O, 2H, 34S-H2S, 34S-SO4, 18O-SO4, 13C-DIC, 13C-CO2, 13C-CH4, 2H-CH4). Nitrate and a positive redox potential is present in both water samples when reducing conditions would be expected in a deep geothermal well. On-site measurements showed no oxygen present. It is however possible that air contamination during sampling caused some ammonium to oxidize to nitrate. The dataset contains analysis results associated with the research project REFLECT. It is a comma separated file (csv) containing the following columns: Location,Country,Description,Laboratory (Lab.),Lab. No.,Sampling date,Temperature at sampling (degC),Spec. electr. conductivity (25 degC) at sampling (muS/cm),Spec. electr. conductivity (25 degC) Lab. (muS/cm),pH value at sampling,pH value Lab.,Dissolved oxygen content (mg/l),Redox potential (mV),Base capacity (pH 8.2) (mmol/l),Alkalinity (pH 4.3) on site (mmol/l),Alkalinity (pH 4.3) Lab. (mmol/l),Sodium (mg/l),Potassium (mg/l),Calcium (mg/l),Magnesium (mg/l),Ammonium (mg/l),Hydrogen carbonate (mg/l),Chloride (mg/l),Sulphate (mg/l),Nitrate (mg/l),Antimony (mg/l),Barium (mg/l),Bromide (mg/l),Fluoride (mg/l),Iodide (mg/l),Lithium (mg/l),Molybdenum (mg/l),Total phosphate (mg/l),Ortho-phosphate (mg/l),Silicon (mg/l),Strontium (mg/l),Sulphide total (mg/l),Aluminium (mg/l),Arsenic (mg/l),Lead (mg/l),Iron total (mg/l),Copper (mg/l),Manganese total (mg/l),Nickel (mg/l),Uranium (mg/l),Zinc (mg/l),DOC (mg/l),Hydrogen (Nml/kg),Oxygen (Nml/kg),Nitrogen (Nml/kg),Carbon dioxide (Nml/kg),Methane (Nml/kg),Ethane (Nml/kg),Propane (Nml/kg),Butane (Nml/kg),Pentane (Nml/kg),Helium (Nml/kg),Argon (Nml/kg),Sum Gases (Nml/kg),Oxygen-18 d18O-H2O (per mille VSMOW),Deuterium d2H-H2O (per mille VSMOW),Deuterium-excess (per mille VSMOW),Carbon-13 d13C-DIC (per mille VPDB),Sulphur-34 d34S-SO4 (per mille V-CDT),Sulphur-34 d34S-H2S (per mille V-CDT),Oxygen-18 d18O-SO4 (per mille VSMOW),Carbon-13 d13C-CO2 (per mille VPDB),Carbon-13 d13C-CH4 (per mille VPDB),Deuterium d2H-CH4 (per mille VPDB). Methods are described in the accompanying deliverable Fluid data of geothermal sites (type C)
    Description: Other
    Description: Project summary: The efficiency of geothermal utilisation largely depends on the behaviour of fluids that transfer heat between the geosphere and the engineered components of a power plant. The Horizon 2020 funded project REFLECT aims to avoid problems related to fluid chemistry rather than treat them. Fluid physical and chemical properties are often poorly defined, as in situ sampling and measurements at extreme conditions have proved difficult to date. Therefore, large uncertainties in current model predictions prevail, which are being tackled in REFLECT by collecting new, high-quality data in critical areas. The data is being implemented in a European geothermal fluid atlas and in predictive models to allow recommendations on how to best operate geothermal sites sustainably and to enhance geothermal technology development. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement nº 850626. Project website: https://www.reflect-h2020.eu/ Cordis website: https://cordis.europa.eu/project/id/850626/de
    Keywords: geothermal ; hydrothermal ; REFLECT ; Redefining geothermal fluid properties at extreme conditions to optimize future geothermal energy extraction ; EARTH SCIENCE 〉 SOLID EARTH 〉 EARTH GASES/LIQUIDS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 CHEMICAL CONCENTRATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL ENERGY ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 GROUND WATER 〉 GROUNDWATER CHEMISTRY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2024-02-02
    Description: Abstract
    Description: A compilation of 90,688 published radiometric dates for sedimentary rocks from the South American Andes and adjacent parts of South America have been tabulated for access by researchers via GEOROC Expert Datasets. The compilation exists as a spreadsheet for access via MS Excel, Google Sheets, and other spreadsheet applications. Initial igneous compilations were utilized in two publications by the author, Pilger (1981, 1984). The compilations have been added to in subsequent years with the metamorphic and sedimentary compilations separated in the last few years. Locations in latitude and longitude are largely taken from the original source, if provided, with UTM locations maintained and converted; in some cases, sample locations were digitized from electronic maps if coordinates were otherwise not available. Analytical results are not included to prevent the files from becoming too large. The existing compilation incorporates compilations by other workers in smaller regions of the Andes. References to original and compilation sources are included. While I am updating reconstructions of the South American and Nazca/Farallon plates, incorporating recent studies in the three oceans, for comparison with the igneous dates for the past 80 m. y., it is hoped that the spreadsheets will be of value to other workers. Reliability: In most cases the data have been copy/pasted from published or appendix tables. In a few cases, the location has been digitized from published maps; the (equatorial equidistant) maps were copied into Google Earth and positioned according to indicated coordinates, with locations digitized and copied/pasted into the spreadsheet. (It is possible that published maps are conventional Mercator-based, even if not so identified, rather than either equatorial equidistant or Universal Transverse Mercator; this can be a source of error in location. For UTMs, the errors should be minor.) Duplicates are largely recognized by equivalent IDs, dates, and uncertainties. Where primary sources have been accessed, duplicate data points in compilations are deleted. (Analytic data are NOT included.) This compilation is part of a series. Companion compilations of radiometric dates from igneous and metamorphic rocks are available at https://doi.org/10.5880/digis.e.2023.005 and https://doi.org/10.5880/digis.e.2023.007, respectively.
    Description: Other
    Description: The DIGIS geochemical data repository is a research data repository in the Earth Sciences domain with a specific focus on geochemical data. It is hosted at GFZ Data Services through a collaboration between the Digital Geochemical Data Infrastructure (DIGIS) for GEOROC 2.0 (https://digis.geo.uni-goettingen.de) and the GFZ German Research Centre for Geosciences. The repository archives, publishes and makes accessible user-contributed, peer-reviewed research data that fall within the scope of the GEOROC database. Compilations of previously published data are also made available on the GEOROC website (https://georoc.eu) as Expert Datasets.
    Keywords: Earth and Environmental Sciences ; GEOROC Expert Dataset ; radiometric dates ; sedimentary rocks ; South America ; Argentina ; Bolivia ; Brazil ; Chile ; Colombia ; Peru ; carbonate ; charcoal ; enamel ; bone ; microfossils ; mollusc ; organic material ; peat ; whole rock ; wood ; adularia ; alunite ; amphibole ; apatite ; biotite ; plagioclase ; sanidine ; zircon ; Ar40_Ar39 ; C14 ; Fission track counting ; He ; K-Ar ; Pb206_U238 ; Pb207_Pb206 ; Pb207_U235 ; Sr-Sr ; U-Pb ; U-Th-He ; U-Th-Sm-He ; compound material 〉 rock 〉 sedimentary rock ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 CHEMICAL CONCENTRATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPIC AGE
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2024-02-02
    Description: Abstract
    Description: A compilation of 29,574 published radiometric dates for metamorphic rocks from the South American Andes and adjacent parts of South America have been tabulated for access by researchers via GEOROC Expert Datasets. The compilation exists as a spreadsheet for access via MS Excel, Google Sheets, and other spreadsheet applications. Initial igneous compilations were utilized in two publications by the author, Pilger (1981, 1984). The compilations have been added to in subsequent years with the metamorphic and sedimentary compilations separated in the last few years. Locations in latitude and longitude are largely taken from the original source, if provided, with UTM locations maintained and converted; in some cases, sample locations were digitized from electronic maps if coordinates were otherwise not available. Analytical results are not included to prevent the files from becoming too large. The existing compilation incorporates compilations by other workers in smaller regions of the Andes. References to original and compilation sources are included. While I am updating reconstructions of the South American and Nazca/Farallon plates, incorporating recent studies in the three oceans, for comparison with the igneous dates for the past 80 m. y., it is hoped that the spreadsheets will be of value to other workers. Reliability: In most cases the data have been copy/pasted from published or appendix tables. In a few cases, the location has been digitized from published maps; the (equatorial equidistant) maps were copied into Google Earth and positioned according to indicated coordinates, with locations digitized and copied/pasted into the spreadsheet. (It is possible that published maps are conventional Mercator-based, even if not so identified, rather than either equatorial equidistant or Universal Transverse Mercator; this can be a source of error in location. For UTMs, the errors should be minor.) Duplicates are largely recognized by equivalent IDs, dates, and uncertainties. Where primary sources have been accessed, duplicate data points in compilations are deleted. (Analytic data are NOT included.) This compilation is part of a series. Companion compilations of radiometric dates from igneous and sedimentary rocks are available at https://doi.org/10.5880/digis.e.2023.005 and https://doi.org/10.5880/digis.e.2023.006, respectively.
    Description: Other
    Description: The DIGIS geochemical data repository is a research data repository in the Earth Sciences domain with a specific focus on geochemical data. It is hosted at GFZ Data Services through a collaboration between the Digital Geochemical Data Infrastructure (DIGIS) for GEOROC 2.0 (https://digis.geo.uni-goettingen.de) and the GFZ German Research Centre for Geosciences. The repository archives, publishes and makes accessible user-contributed, peer-reviewed research data that fall within the scope of the GEOROC database. Compilations of previously published data are also made available on the GEOROC website (https://georoc.eu) as Expert Datasets.
    Keywords: Earth and Environmental Sciences ; GEOROC Expert Dataset ; radiometric dates ; metamorphic rocks ; South America ; Argentina ; Bolivia ; Brazil ; Chile ; Colombia ; Ecuador ; Peru ; bentonite ; granite ; tonalite ; tuff ; whole rock ; actinolite ; adularia ; albite ; allanite ; alunite ; amphibole ; apatite ; biotite ; chlorite ; cryptomelane ; cummingtonite ; feldspar ; fuchsite ; glaucophane ; hornblende ; illite ; jarosite ; K feldspar ; kaolinite ; manganese oxide ; mica ; microcline ; molybdenite ; monazite ; muscovite ; natroalunite ; orthoclase ; phengite ; phlogopite ; plagioclase ; pyrophyllite ; quartz ; rutile ; sericite ; titanite ; tremolite ; xenotime ; zircon ; Ar40_Ar39 ; C14 ; Electron spin resonance age analysis ; Fission track counting ; He ; K-Ar ; Ne21 ; Pb206_U238 ; Pb207_Pb206 ; Rb-Sr ; Re-Os ; Sm-Nd ; Th-Pb ; U-Pb ; U-Th-He ; U-Th-Sm-He ; compound material 〉 rock 〉 composite genesis rock 〉 metamorphic rock ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 CHEMICAL CONCENTRATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPE MEASUREMENTS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPIC AGE
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2024-02-02
    Description: Abstract
    Description: A compilation of 39,070 published radiometric dates for igneous rocks from the South American Andes and adjacent parts of South America have been tabulated for access by researchers via GEOROC Expert Datasets. The compilation exists as a spreadsheet for access via MS Excel, Google Sheets, and other spreadsheet applications. Initial igneous compilations were utilized in two publications by the author, Pilger (1981, 1984). The compilations have been added to in subsequent years with the metamorphic and sedimentary compilations separated in the last few years. Locations in latitude and longitude are largely taken from the original source, if provided, with UTM locations maintained and converted; in some cases, sample locations were digitized from electronic maps if coordinates were otherwise not available. Analytical results are not included to prevent the files from becoming too large. The existing compilation incorporates compilations by other workers in smaller regions of the Andes. References to original and compilation sources are included. While I am updating reconstructions of the South American and Nazca/Farallon plates, incorporating recent studies in the three oceans, for comparison with the igneous dates for the past 80 m. y., it is hoped that the spreadsheets will be of value to other workers. Reliability: In most cases the data have been copy/pasted from published or appendix tables. In a few cases, the location has been digitized from published maps; the (equatorial equidistant) maps were copied into Google Earth and positioned according to indicated coordinates, with locations digitized and copied/pasted into the spreadsheet. (It is possible that published maps are conventional Mercator-based, even if not so identified, rather than either equatorial equidistant or Universal Transverse Mercator; this can be a source of error in location. For UTMs, the errors should be minor.) Duplicates are largely recognized by equivalent IDs, dates, and uncertainties. Where primary sources have been accessed, duplicate data points in compilations are deleted. (Analytic data are NOT included.) This compilation is part of a series. Companion compilations of radiometric dates from sedimentary and metamorphic rocks are available at https://doi.org/10.5880/digis.e.2023.006 and https://doi.org/10.5880/digis.e.2023.007, respectively.
    Description: Other
    Description: The DIGIS geochemical data repository is a research data repository in the Earth Sciences domain with a specific focus on geochemical data. It is hosted at GFZ Data Services through a collaboration between the Digital Geochemical Data Infrastructure (DIGIS) for GEOROC 2.0 (https://digis.geo.uni-goettingen.de) and the GFZ German Research Centre for Geosciences. The repository archives, publishes and makes accessible user-contributed, peer-reviewed research data that fall within the scope of the GEOROC database. Compilations of previously published data are also made available on the GEOROC website (https://georoc.eu) as Expert Datasets.
    Keywords: Earth and Environmental Sciences ; GEOROC Expert Dataset ; radiometric dates ; igneous rocks ; South America ; Argentina ; Bolivia ; Brazil ; Chile ; Colombia ; Ecuador ; Peru ; ash ; charcoal ; pumice ; volcanic glass ; whole rock ; basalt ; diorite ; monzodiorite ; obsidian ; monzonite ; actinolite ; adularia ; alunite ; amphibole ; apatite ; biotite ; clinopyroxene ; hornblende ; illite ; K feldspar ; kaersutite ; mica ; molybdenite ; monazite ; muscovite ; natrojarosite ; nepheline ; olivine ; orthoclase ; phlogopite ; plagioclase ; pyroxene ; rutile ; sanidine ; sericite ; titanite ; zircon ; Ar40_Ar39 ; C14 ; Electron spin resonance age analysis ; Fission track counting ; He ; K-Ar ; Pb-Pb ; Pb206_U238 ; Pb207_Pb206 ; Pb207_U235 ; Rb-Sr ; Re-Os ; Sm-Nd ; U-Pb ; U-Th ; U-Th-He ; U-Th-Pb ; compound material 〉 rock 〉 igneous rock ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 CHEMICAL CONCENTRATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPIC AGE
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2024-02-22
    Description: Abstract
    Description: This field campaign aimed at densifying the station coverage on the Armutlu Peninsula in the eastern Sea of Marmara. The Armutlu peninsula is directly crossed by the Armutlu fault, located roughly ~50 km away from the Istanbul metropolitan region. The main objective of this experiment is to characterize the seismic and aseismic deformation of this region. Waveform data are available from the GEOFON data centre, under network code 9P.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~600G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2023-05-26
    Description: Abstract
    Description: This data set was taken within the Perturbations of Earth Surface Processes by Large Earthquakes PRESSurE Project (https://www.gfz-potsdam.de/en/section/geomorphology/projects/pressure/) of the GFZ Potsdam. This project aims to better understand the role of earthquakes on earth surface processes. Strong earthquakes cause transient perturbations of the near Earth’s surface system. These include the widespread landsliding and subsequent mass movement and the loading of rivers with sediments. In addition, rock mass is shattered during the event, forming cracks that affect rock strength and hydrological conductivity. Often overlooked in the immediate aftermath of an earthquake, these perturbations can represent a major part of the overall disaster with an impact that can last for years before restoring to background conditions. Thus, the relaxation phase is part of the seismically induced change by an earthquake and needs to be monitored in order to understand the full impact of earthquakes on the Earth system. Early June 2015, shortly after the April 2015 Mw7.9 Gorkha earthquake, 6 automatic compact weather station were installed in the upper Bhotekoshi catchment covering an area ~50km2. The weather station network is centered around the Kahule Khola catchment, a small headwater catchment and is part of a wider data acquisition strategy including hydrological monitoring, seismometers, geophones and high resolution optical (RapidEye) as well as radar imagery (TanDEM TerraSAR-X). https://www.gfz-potsdam.de/sektion/geomorphologie/projekte/pressure/
    Keywords: discharge ; river isotope chemistry ; Nepal ; Himalayas ; Gorkha Earthquake ; perturbations ; Bhotekoshi River ; PRESSurE ; Perturbations of Earth Surface Processes by Large Earthquakes ; EARTH SCIENCE 〉 CLIMATE INDICATORS 〉 ATMOSPHERIC/OCEAN INDICATORS 〉 FRESH WATER RIVER DISCHARGE ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPE MEASUREMENTS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 TECTONIC LANDFORMS 〉 MOUNTAINS ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 SURFACE WATER 〉 STAGE HEIGHT ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 SURFACE WATER 〉 SURFACE WATER CHEMISTRY ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 WATER QUALITY/WATER CHEMISTRY 〉 STABLE ISOTOPES ; hydrosphere 〉 hydrologic cycle 〉 water level ; In Situ/Laboratory Instruments 〉 Pressure/Height Meters 〉 PRESSURE GAUGES ; land 〉 world 〉 Asia 〉 Southern Asia
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2024-01-25
    Description: Abstract
    Description: This dataset is a continuously growing collection of lead isotope reference data. Lead isotopes are an established method to reconstruct the raw material provenance of archaeological objects. They are typically applied to artefacts made of copper, lead, silver, and their alloys. However, also the raw material provenance of other materials such as glass, pigments and pottery was already reconstructed with lead isotopes. To successfully reconstruct the origin of the raw material, lead isotope signatures from as many as possible suitable raw material occurrences must be known. In the past, large-scaled research projects were carried out to characterise ore deposits especially in the Mediterranean area and Western Europe. However, many of these data are dispersed in the literature and were published in scientific articles or monographies. Consequently, each researcher or at least each research group had to build their own up-to-date data base of reference data from the literature. To overcome these restrictions, to facilitate work with lead isotope reference data and particularly to make the data FAIR, i.e. findable, accessible, interoperable and reusable (Wilkinson et al., 2016), these published data are compiled and transferred into a uniform layout. They are further enhanced with additional metadata to facilitate their use in raw material provenance studies. Currently, the database is restricted to ores and minerals as these are the most relevant materials for provenance studies of ancient metals. Future updates will include hitherto uncovered regions but also additional data from countries already present. Slag and other metallurgical (by-) products from ancient sites in close vicinity to ore deposits generally are a genuine representation of the ores utilised in historic times. As such, they are highly relevant for provenance studies and an extension to these materials is therefore planned. GlobaLID is a representation of the collective work of researchers on Pb isotope studies. As such, the database is seen as a community engagement project that invites scientists all over the world to become active contributors of GlobaLID. The initiators of the database dedicate their effort to the continuation and maintenance of the database but only the support of the whole community will allow a rapid and successful growth of GlobaLID.
    Keywords: raw material provenance ; chemical 〉 isotope ; chemical element 〉 element of group IV 〉 lead ; chemical element 〉 transition element 〉 copper ; chemical element 〉 transition element 〉 silver ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPE RATIOS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 METALS ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 METALS 〉 METALS AGE DETERMINATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS 〉 METALS 〉 METALS VERTICAL/GEOGRAPHIC DISTRIBUTION ; In Situ/Laboratory Instruments 〉 Spectrometers/Radiometers 〉 ICP-MS ; In Situ/Laboratory Instruments 〉 Spectrometers/Radiometers 〉 MC-ICP-MS ; industrial process 〉 metal working 〉 metal smelting ; industry 〉 metallurgical industry 〉 non-ferrous metal industry ; lithosphere 〉 mineral 〉 metallic mineral 〉 non-ferrous metal ; resource utilisation ; resource utilisation 〉 extraction ; resource utilisation 〉 extraction 〉 mining
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The main aim of this project is to investigate the crustal and mantle structure beneath the Longmenshan fault zone in China, based on a very dense passive seismology profile. The Longmenshan fault zone hosted the Wenchuan earthquake of May 2008 with a magnitude (Mw) of 7.9 and the Lushan earthquake of June 2013 with a magnitude (Mw) of 6.6. It is planned to mainly use the receiver-function method, to investigate the crustal and mantle structure beneath the Longmenshan fault zone. Waveform data are available from the GEOFON data center, under network code 4O, and are embargoed until February 2024.
    Keywords: Broadband seismic waveforms ; Seismology ; temporary local seismic experiment ; Earthquake ; Receiver functions ; Crustal and mantle structure ; China ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2024-05-21
    Description: Abstract
    Description: Continuous passive seismic monitoring is carried out between September 2017 and December 2021 around the Theistareykir geothermal area located at the intersection between the active Northern Rift Zone and the active Tjörnes Fracture Zone in NE Iceland. This experiment, in addition to an extensive gravimetric monitoring survey, was conducted in the framework of the MicroGraviMoTiS project for a better understanding of the structures and behavior of the local geothermal system under exploitation and for further development of local and regional geothermal resources. 14 broadband stations (Trillium C-120s) recording at 200 Hz comprise the temporary network, that is installed to complement stations of the national seismological network of IMO and stations of Landsvirkjun, the National Power Company of Iceland. The stations were placed in and around the producing zone to primarily retrieve local natural and/or induced seismicity associated to the injection and production operations. The retrieved seismic data is also used for obtaining a representative 1D velocity model of the region, for computing a seismic ambient noise tomography, and for monitoring the system using coda wave interferometry techniques. Funding for this project is provided by the German Federal Ministry for Education and Research (MicroGraviMoTiS , BMBF, grant: 03G0858A), the Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences and Landsvirkjun. Waveform data are available from the GEOFON data center, under network code 3P, and are embargoed until December 2025.
    Keywords: Broadband seismic waveforms ; Seismology ; temporary local seismic experiment ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED ; GIPP ; MESI ; Volcano
    Type: Dataset , Seismic Network
    Format: 783GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2023-06-12
    Description: Abstract
    Description: During the 2018 “Mackenzie Delta Permafrost Field Campaign” (mCan2018), a test campaign within the “Modular Observation solutions for Earth Systems” (MOSES) program, ambient seismic noise recordings at the sea bottom were acquired along two 300 m long transects from the shoreline to shallow marine area close to Tuktoyaktuk Island (Canada). In total, 21 measurements were taken. Raw data is provided in proprietary “Cube” format and standard mseed format.
    Keywords: MOSES ; Modular Observation solutions for Earth Systems ; submarine permafrost ; ambient seismic noise ; H/V measurements ; Mackenzie Delta ; PASSIVE_SEISMIC 〉 STATIONS ; SENSOR 〉 OCEAN_BOTTOM_SEISMOMETER ; SENSOR 〉 3-C ; MARINE ; MINISEED_DATA_FORMAT ; SEISMIC_WAVEFORM_DATA ; EARTH SCIENCE 〉 CRYOSPHERE 〉 FROZEN GROUND 〉 PERMAFROST ; EARTH SCIENCE 〉 OCEANS 〉 MARINE GEOPHYSICS ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2023-05-12
    Description: Abstract
    Description: Sodankylä geophysical observatory (SGO) has operated in Sodankylä in northern Finland since 1913. SGO was originally founded by the Finnish Academy of Science and Letters. Now it takes care of national and international duties studying the space and geoenvironment as an independent research organisation in the University of Oulu. SGO performs long-term measurements, builds instruments, innovates and maintains domestic and international measurements, and performs research from these measurements. The seismic observations at SGO started in Sodankylä 1956. In 2005-2006 SGO seismic stations were updated to broadband instrumentation and connected to GEOFON data center. Today, the number of seismic stations has increased to 9. The stations have Streckeisen STS-2 or Nanometrics Trillium PA/PH broadband sensors. 3 of the stations are so called Posthole stations located in borehole 7-20 m below surface. The rest of the stations are located on the surface or in a more traditional type of vault. Data acquisition systems are either Earth Data PS6-24 digitisers and PC with Seiscomp or Nanometrics Centaurs. The continuous wave form data is collected at 100 Hz sampling frequency. The VH, LH and BH channel data is available from GEOFON data center and the 100Hz HH data from SGO by request. Further information about instrumentation can be found at the Institute’s web site (https://www.sgo.fi/). Waveform data are available from the GEOFON data centre, under network code FN, and arefully open.
    Keywords: geophysics ; seismology ; seismic noise ; earthquakes ; induced ; seismic hazard ; broad band ; velocity ; acceleration ; displacement ; Broadband seismic waveforms ; Seismic monitoring ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...