ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (83)
  • Latest Papers from Table of Contents or Articles in Press  (83)
  • Protein Conformation  (56)
  • Binding Sites
  • American Association for the Advancement of Science (AAAS)  (83)
  • American Chemical Society
  • American Meteorological Society
  • Blackwell Publishing Ltd
  • International Union of Crystallography
  • Molecular Diversity Preservation International
  • Springer
  • Springer Nature
  • Wiley
  • Wiley-Blackwell
  • 2020-2022
  • 2010-2014  (83)
  • 2000-2004
  • 1990-1994
  • 1980-1984
  • 1975-1979
  • 1960-1964
  • 2010  (83)
  • Physics  (83)
  • Biology  (83)
  • Education
  • Technology
  • Process Engineering, Biotechnology, Nutrition Technology
Collection
  • Articles  (83)
Source
  • Latest Papers from Table of Contents or Articles in Press  (83)
Publisher
  • American Association for the Advancement of Science (AAAS)  (83)
  • American Chemical Society
  • American Meteorological Society
  • Blackwell Publishing Ltd
  • International Union of Crystallography
  • +
Years
  • 2020-2022
  • 2010-2014  (83)
  • 2000-2004
  • 1990-1994
  • 1980-1984
  • +
Year
Topic
  • 1
    Publication Date: 2010-01-02
    Description: Meiotic recombination events cluster into narrow segments of the genome, defined as hotspots. Here, we demonstrate that a major player for hotspot specification is the Prdm9 gene. First, two mouse strains that differ in hotspot usage are polymorphic for the zinc finger DNA binding array of PRDM9. Second, the human consensus PRDM9 allele is predicted to recognize the 13-mer motif enriched at human hotspots; this DNA binding specificity is verified by in vitro studies. Third, allelic variants of PRDM9 zinc fingers are significantly associated with variability in genome-wide hotspot usage among humans. Our results provide a molecular basis for the distribution of meiotic recombination in mammals, in which the binding of PRDM9 to specific DNA sequences targets the initiation of recombination at specific locations in the genome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295902/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295902/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baudat, F -- Buard, J -- Grey, C -- Fledel-Alon, A -- Ober, C -- Przeworski, M -- Coop, G -- de Massy, B -- 03S1/PHS HHS/ -- GM83098/GM/NIGMS NIH HHS/ -- HD21244/HD/NICHD NIH HHS/ -- HL085197/HL/NHLBI NIH HHS/ -- R01 GM083098/GM/NIGMS NIH HHS/ -- R01 HD021244/HD/NICHD NIH HHS/ -- R01 HL085197/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Feb 12;327(5967):836-40. doi: 10.1126/science.1183439. Epub 2009 Dec 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Genetique Humaine, UPR1142, CNRS, Montpellier, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20044539" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; DNA/chemistry/metabolism ; DNA Breaks, Double-Stranded ; DNA-Binding Proteins/chemistry/genetics/metabolism ; Genome ; Genome, Human ; Genotype ; Histone-Lysine N-Methyltransferase/chemistry/*genetics/*metabolism ; Humans ; Meiosis/*genetics ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Phenotype ; *Recombination, Genetic ; Zinc Fingers/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-10-23
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3771513/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3771513/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fiorin, Giacomo -- Carnevale, Vincenzo -- DeGrado, William F -- R37 GM054616/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Oct 22;330(6003):456-8. doi: 10.1126/science.1197748.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, PA 19122-6078, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20966238" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Electron Spin Resonance Spectroscopy ; Humans ; Influenza A virus/*chemistry/physiology ; Ion Channels/*chemistry ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Protein Conformation ; Protons ; Viral Matrix Proteins/*chemistry ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-10-23
    Description: CD4(+)Foxp3(+) regulatory T (T(reg)) cells are important for maintaining immune tolerance. Understanding the molecular mechanism that regulates T(reg) differentiation will facilitate the development of effective therapeutic strategies against autoimmune diseases. We report here that the SUMO E3 ligase PIAS1 restricts the differentiation of natural T(reg) cells by maintaining a repressive chromatin state of the Foxp3 promoter. PIAS1 acts by binding to the Foxp3 promoter to recruit DNA methyltransferases and heterochromatin protein 1 for epigenetic modifications. Pias1 deletion caused promoter demethylation, reduced histone H3 methylation at Lys(9), and enhanced promoter accessibility. Consistently, Pias1(-/-) mice displayed an increased natural T(reg) cell population and were resistant to the development of experimental autoimmune encephalomyelitis. Our studies have identified an epigenetic mechanism that negatively regulates the differentiation of natural T(reg) cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3043201/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3043201/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Bin -- Tahk, Samuel -- Yee, Kathleen M -- Fan, Guoping -- Shuai, Ke -- K01 AR52717-01/AR/NIAMS NIH HHS/ -- R01 AI063286/AI/NIAID NIH HHS/ -- R01 AI063286-05/AI/NIAID NIH HHS/ -- R01 GM085797/GM/NIGMS NIH HHS/ -- R01 GM085797-03/GM/NIGMS NIH HHS/ -- R01AI063286/AI/NIAID NIH HHS/ -- R01GM085797/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Oct 22;330(6003):521-5. doi: 10.1126/science.1193787.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematology-Oncology, Department of Medicine, 11-934 Factor Building, 10833 Le Conte Avenue, University of California, Los Angeles, Los Angeles, CA 90095, USA. bliu@ucla.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20966256" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; CD4-Positive T-Lymphocytes/cytology ; Chromatin/metabolism ; DNA (Cytosine-5-)-Methyltransferase/metabolism ; DNA Methylation ; Encephalomyelitis, Autoimmune, Experimental/immunology ; *Epigenesis, Genetic ; Female ; Forkhead Transcription Factors/genetics ; Histones/metabolism ; Lymphopoiesis/*genetics ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Inbred Strains ; Promoter Regions, Genetic ; Protein Inhibitors of Activated STAT/*physiology ; Repressor Proteins/*physiology ; T-Lymphocytes, Regulatory/*cytology/immunology ; Ubiquitin-Protein Ligases/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-04-10
    Description: Arsenic, an ancient drug used in traditional Chinese medicine, has attracted worldwide interest because it shows substantial anticancer activity in patients with acute promyelocytic leukemia (APL). Arsenic trioxide (As2O3) exerts its therapeutic effect by promoting degradation of an oncogenic protein that drives the growth of APL cells, PML-RARalpha (a fusion protein containing sequences from the PML zinc finger protein and retinoic acid receptor alpha). PML and PML-RARalpha degradation is triggered by their SUMOylation, but the mechanism by which As2O3 induces this posttranslational modification is unclear. Here we show that arsenic binds directly to cysteine residues in zinc fingers located within the RBCC domain of PML-RARalpha and PML. Arsenic binding induces PML oligomerization, which increases its interaction with the small ubiquitin-like protein modifier (SUMO)-conjugating enzyme UBC9, resulting in enhanced SUMOylation and degradation. The identification of PML as a direct target of As2O3 provides new insights into the drug's mechanism of action and its specificity for APL.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Xiao-Wei -- Yan, Xiao-Jing -- Zhou, Zi-Ren -- Yang, Fei-Fei -- Wu, Zi-Yu -- Sun, Hong-Bin -- Liang, Wen-Xue -- Song, Ai-Xin -- Lallemand-Breitenbach, Valerie -- Jeanne, Marion -- Zhang, Qun-Ye -- Yang, Huai-Yu -- Huang, Qiu-Hua -- Zhou, Guang-Biao -- Tong, Jian-Hua -- Zhang, Yan -- Wu, Ji-Hui -- Hu, Hong-Yu -- de The, Hugues -- Chen, Sai-Juan -- Chen, Zhu -- New York, N.Y. -- Science. 2010 Apr 9;328(5975):240-3. doi: 10.1126/science.1183424.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai 200025, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20378816" target="_blank"〉PubMed〈/a〉
    Keywords: Arsenic/*metabolism ; Arsenicals/*metabolism/*pharmacology ; Cell Line ; Humans ; Leukemia, Promyelocytic, Acute/drug therapy/genetics ; Mutant Proteins/chemistry/metabolism ; Mutation ; Nuclear Proteins/chemistry/genetics/*metabolism ; Oncogene Proteins, Fusion/chemistry/genetics/*metabolism ; Oxazines/metabolism ; Oxides/*metabolism/*pharmacology ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Retinoic Acid/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Small Ubiquitin-Related Modifier Proteins/metabolism ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Transcription Factors/chemistry/genetics/*metabolism ; Tumor Suppressor Proteins/chemistry/genetics/*metabolism ; Ubiquitination ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-05-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levy, Emmanuel D -- Landry, Christian R -- Michnick, Stephen W -- New York, N.Y. -- Science. 2010 May 21;328(5981):983-4. doi: 10.1126/science.1190993.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departement de Biochimie, Universite de Montreal, Montreal, Quebec, Canada H3T 1J4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20489011" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Mass Spectrometry ; Metabolic Networks and Pathways ; Models, Biological ; Phosphoprotein Phosphatases/*metabolism ; Phosphorylation ; Protein Interaction Mapping ; Protein Kinases/*metabolism ; Saccharomyces cerevisiae/enzymology/*metabolism ; Saccharomyces cerevisiae Proteins/*metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-11-27
    Description: Crystal structures of prokaryotic ribosomes have described in detail the universally conserved core of the translation mechanism. However, many facets of the translation process in eukaryotes are not shared with prokaryotes. The crystal structure of the yeast 80S ribosome determined at 4.15 angstrom resolution reveals the higher complexity of eukaryotic ribosomes, which are 40% larger than their bacterial counterparts. Our model shows how eukaryote-specific elements considerably expand the network of interactions within the ribosome and provides insights into eukaryote-specific features of protein synthesis. Our crystals capture the ribosome in the ratcheted state, which is essential for translocation of mRNA and transfer RNA (tRNA), and in which the small ribosomal subunit has rotated with respect to the large subunit. We describe the conformational changes in both ribosomal subunits that are involved in ratcheting and their implications in coordination between the two associated subunits and in mRNA and tRNA translocation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ben-Shem, Adam -- Jenner, Lasse -- Yusupova, Gulnara -- Yusupov, Marat -- New York, N.Y. -- Science. 2010 Nov 26;330(6008):1203-9. doi: 10.1126/science.1194294.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉IGBMC (Institut de Genetique et de Biologie Moleculaire et Cellulaire), 1 rue Laurent Fries, BP10142, Illkirch F-67400, France. adam@igbmc.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21109664" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallization ; Crystallography, X-Ray ; Models, Molecular ; Nucleic Acid Conformation ; Peptide Chain Initiation, Translational ; Protein Binding ; *Protein Biosynthesis ; Protein Conformation ; RNA, Fungal/analysis/chemistry/metabolism ; RNA, Messenger/analysis/chemistry/metabolism ; RNA, Ribosomal/analysis/*chemistry/metabolism ; RNA, Transfer/chemistry/metabolism ; Ribosomal Proteins/analysis/*chemistry/metabolism ; Ribosome Subunits, Large, Eukaryotic/chemistry/metabolism/ultrastructure ; Ribosome Subunits, Small, Eukaryotic/chemistry/metabolism/ultrastructure ; Ribosomes/*chemistry/metabolism/*ultrastructure ; Saccharomyces cerevisiae/chemistry/genetics/metabolism/*ultrastructure ; Saccharomyces cerevisiae Proteins/analysis/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-01-02
    Description: Prions are infectious proteins consisting mainly of PrP(Sc), a beta sheet-rich conformer of the normal host protein PrP(C), and occur in different strains. Strain identity is thought to be encoded by PrP(Sc) conformation. We found that biologically cloned prion populations gradually became heterogeneous by accumulating "mutants," and selective pressures resulted in the emergence of different mutants as major constituents of the evolving population. Thus, when transferred from brain to cultured cells, "cell-adapted" prions outcompeted their "brain-adapted" counterparts, and the opposite occurred when prions were returned from cells to brain. Similarly, the inhibitor swainsonine selected for a resistant substrain, whereas, in its absence, the susceptible substrain outgrew its resistant counterpart. Prions, albeit devoid of a nucleic acid genome, are thus subject to mutation and selective amplification.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848070/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848070/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Jiali -- Browning, Shawn -- Mahal, Sukhvir P -- Oelschlegel, Anja M -- Weissmann, Charles -- NS059543/NS/NINDS NIH HHS/ -- R01 NS059543/NS/NINDS NIH HHS/ -- R01 NS059543-01/NS/NINDS NIH HHS/ -- R01 NS059543-02/NS/NINDS NIH HHS/ -- R01 NS067214/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2010 Feb 12;327(5967):869-72. doi: 10.1126/science.1183218. Epub 2009 Dec 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Infectology, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20044542" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Brain Chemistry ; Cell Line ; Cell Line, Tumor ; Culture Media ; Culture Media, Conditioned ; *Evolution, Molecular ; Mice ; Mice, Inbred C57BL ; Mutation ; *PrPSc Proteins/chemistry/classification/pathogenicity ; Prion Diseases ; Prions/chemistry/classification/*pathogenicity/*physiology ; Protein Conformation ; Swainsonine/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-08-07
    Description: The class Ib ribonucleotide reductase of Escherichia coli can initiate reduction of nucleotides to deoxynucleotides with either a Mn(III)2-tyrosyl radical (Y*) or a Fe(III)2-Y* cofactor in the NrdF subunit. Whereas Fe(III)2-Y* can self-assemble from Fe(II)2-NrdF and O2, activation of Mn(II)2-NrdF requires a reduced flavoprotein, NrdI, proposed to form the oxidant for cofactor assembly by reduction of O2. The crystal structures reported here of E. coli Mn(II)2-NrdF and Fe(II)2-NrdF reveal different coordination environments, suggesting distinct initial binding sites for the oxidants during cofactor activation. In the structures of Mn(II)2-NrdF in complex with reduced and oxidized NrdI, a continuous channel connects the NrdI flavin cofactor to the NrdF Mn(II)2 active site. Crystallographic detection of a putative peroxide in this channel supports the proposed mechanism of Mn(III)2-Y* cofactor assembly.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3020666/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3020666/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boal, Amie K -- Cotruvo, Joseph A Jr -- Stubbe, JoAnne -- Rosenzweig, Amy C -- GM58518/GM/NIGMS NIH HHS/ -- GM81393/GM/NIGMS NIH HHS/ -- R01 GM058518/GM/NIGMS NIH HHS/ -- R01 GM058518-13/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Sep 17;329(5998):1526-30. doi: 10.1126/science.1190187. Epub 2010 Aug 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20688982" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalytic Domain ; Coenzymes/chemistry/metabolism ; Crystallography, X-Ray ; Enzyme Activation ; Escherichia coli/*enzymology ; Escherichia coli Proteins/*chemistry/*metabolism ; Ferrous Compounds/chemistry/metabolism ; Flavin Mononucleotide/chemistry/metabolism ; Flavodoxin/*chemistry/metabolism ; Hydrogen Bonding ; Ligands ; Manganese/*chemistry/metabolism ; Models, Molecular ; Oxidants/chemistry/metabolism ; Oxidation-Reduction ; Oxygen/chemistry/metabolism ; Peroxides/chemistry/metabolism ; Protein Folding ; Protein Multimerization ; Protein Subunits/chemistry/metabolism ; Ribonucleotide Reductases/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-02-06
    Description: Vesicular stomatitis virus (VSV) is a bullet-shaped rhabdovirus and a model system of negative-strand RNA viruses. Through direct visualization by means of cryo-electron microscopy, we show that each virion contains two nested, left-handed helices: an outer helix of matrix protein M and an inner helix of nucleoprotein N and RNA. M has a hub domain with four contact sites that link to neighboring M and N subunits, providing rigidity by clamping adjacent turns of the nucleocapsid. Side-by-side interactions between neighboring N subunits are critical for the nucleocapsid to form a bullet shape, and structure-based mutagenesis results support this description. Together, our data suggest a mechanism of VSV assembly in which the nucleocapsid spirals from the tip to become the helical trunk, both subsequently framed and rigidified by the M layer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892700/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2892700/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ge, Peng -- Tsao, Jun -- Schein, Stan -- Green, Todd J -- Luo, Ming -- Zhou, Z Hong -- AI050066/AI/NIAID NIH HHS/ -- AI069015/AI/NIAID NIH HHS/ -- GM071940/GM/NIGMS NIH HHS/ -- R01 AI050066/AI/NIAID NIH HHS/ -- R01 AI050066-08/AI/NIAID NIH HHS/ -- R01 AI069015/AI/NIAID NIH HHS/ -- R01 GM071940/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Feb 5;327(5966):689-93. doi: 10.1126/science.1181766.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles (UCLA), Los Angeles, CA 90095-7364, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20133572" target="_blank"〉PubMed〈/a〉
    Keywords: Cryoelectron Microscopy ; Crystallography, X-Ray ; Image Processing, Computer-Assisted ; Lipid Bilayers ; Models, Molecular ; Mutagenesis ; Nucleocapsid Proteins/*chemistry/genetics/ultrastructure ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; RNA, Viral/*chemistry/ultrastructure ; Vesiculovirus/*chemistry/physiology/*ultrastructure ; Viral Matrix Proteins/*chemistry/ultrastructure ; Virion/chemistry/ultrastructure ; Virus Assembly
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-02-27
    Description: Transcriptional positive-feedback loops are widely associated with bistability, characterized by two stable expression states that allow cells to respond to analog signals in a digital manner. Using a synthetic system in budding yeast, we show that positive feedback involving a promoter with multiple transcription factor (TF) binding sites can induce a steady-state bimodal response without cooperative binding of the TF. Deterministic models of this system do not predict bistability. Rather, the bimodal response requires a short-lived TF and stochastic fluctuations in the TF's expression. Multiple binding sites provide these fluctuations. Because many promoters possess multiple binding sites and many TFs are unstable, positive-feedback loops in gene regulatory networks may exhibit bimodal responses, but not necessarily because of deterministic bistability, as is commonly thought.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉To, Tsz-Leung -- Maheshri, Narendra -- New York, N.Y. -- Science. 2010 Feb 26;327(5969):1142-5. doi: 10.1126/science.1178962.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20185727" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Binding Sites ; Cell Nucleus/metabolism ; Doxycycline/metabolism ; Feedback, Physiological ; *Gene Expression Regulation, Fungal ; *Gene Regulatory Networks ; Models, Genetic ; Models, Statistical ; Promoter Regions, Genetic ; Protein Stability ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/metabolism ; Stochastic Processes ; Transcription Factors/chemistry/genetics/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...