ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (154,416)
  • Latest Papers from Table of Contents or Articles in Press  (154,416)
  • Molecular Diversity Preservation International  (57,933)
  • Wiley  (49,934)
  • Institute of Physics  (25,272)
  • Reed Business Information  (10,385)
  • American Geophysical Union
  • MDPI Publishing
  • 2015-2019  (75,867)
  • 2010-2014  (78,549)
  • 1995-1999
  • 1940-1944
  • 2019  (75,867)
  • 2014  (23,572)
  • 2013  (21,935)
  • 2012  (21,643)
  • 2010  (11,399)
  • Chemistry and Pharmacology  (82,745)
  • Geography  (50,516)
  • Natural Sciences in General  (17,734)
  • Computer Science  (4,404)
  • Information Science and Librarianship  (1,020)
Collection
  • Articles  (154,416)
Source
  • Latest Papers from Table of Contents or Articles in Press  (154,416)
Publisher
Years
  • 2015-2019  (75,867)
  • 2010-2014  (78,549)
  • 1995-1999
  • 1940-1944
Year
  • 101
    Publication Date: 2019
    Description: Abstract The impacts of aquatic vegetation on bed load transport rate and bedform characteristics were quantified using flume measurements with model emergent vegetation. First, a model for predicting the turbulent kinetic energy, kt, in vegetated channels from channel average velocity U and vegetation volume fraction ϕ was validated for mobile sediment beds. Second, using data from several studies, the predicted kt was shown to be a good predictor of bed load transport rate, Qs, allowing Qs to be predicted from U and ϕ for vegetated channels. The control of Qs by kt was explained by statistics of individual grain motion recorded by a camera, which showed that the number of sediment grains in motion per bed area was correlated with kt. Third, ripples were observed and characterized in channels with and without model vegetation. For low vegetation solid volume fraction (ϕ ≤ 0.012), the ripple wavelength was constrained by stem spacing. However, at higher vegetation solid volume fraction (ϕ=0.025), distinct ripples were not observed, suggesting a transition to sheet flow, which is sediment transport over a plane bed without the formation of bedforms. The fraction of the bed load flux carried by migrating ripples decreased with increasing ϕ, again suggesting that vegetation facilitated the formation of sheet flow.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    facet.materialart.
    Unknown
    Reed Business Information
    Publication Date: 2019
    Description: We haven’t found any moons around exoplanets, which may be because they are flung away and turn into “ploonets” - a fate that could one day befall our own moon
    Print ISSN: 0028-6664
    Electronic ISSN: 1364-8500
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    facet.materialart.
    Unknown
    Reed Business Information
    Publication Date: 2019
    Description: An analysis of cancer and heart diseases rates amongst people who have been to space has found no difference to the general population on Earth
    Print ISSN: 0028-6664
    Electronic ISSN: 1364-8500
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    facet.materialart.
    Unknown
    Reed Business Information
    Publication Date: 2019
    Description: Russian biologist Denis Rebrikov plans to help five couples who are deaf try CRISPR gene-editing to avoid having a child that inherits the condition
    Print ISSN: 0028-6664
    Electronic ISSN: 1364-8500
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2019
    Description: Abstract Aim Understanding biodiversity–ecosystem function (BEF) relationships in forest systems is crucial for effective forest management and restoration, yet testing these relationships is often limited by biased diversity patterns in forestry plantings (biased towards commercially valuable species) and uncontrollable diversity in mature natural forests. Multispecies reforestation plantings present a valuable opportunity to investigate BEF relationships in woody systems, especially across large environmental gradients. Location Reforestation plantings across the arable region of Australia. Time period 1951–2012. Major taxa studied Three hundred and sixty‐four woody plant species. Methods We examined relationships between productivity and diversity using inventory data from 977 plots in 386 multispecies reforestation plantings. Diversity was estimated using observed species richness and three functional diversity indices calculated from four functional traits: specific leaf area, wood density, seed mass and maximum attainable height. We modelled how plot‐level biomass accumulation (a productivity proxy) correlated with these diversity indices, as well as age since planting, plant density and three environmental variables: solar radiation, moisture availability and soil sand content. These models were fitted across Australia and, separately, within eight groups of plantings with similar environmental conditions. Results We found no correlation between diversity and productivity, regardless of the diversity metric or spatial scale used (continent‐wide or within environment groups). Instead, productivity was best explained by local environmental conditions and plant density. Main conclusions A positive relationship between diversity and productivity was not evident in planted forests across a wide range of Australian woodland and forest systems, at least in the first few decades of growth. Our findings suggest that the positive relationship between diversity and productivity commonly reported in experimental settings should not be assumed for all systems and conditions.
    Print ISSN: 1466-822X
    Electronic ISSN: 1466-8238
    Topics: Biology , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2019
    Description: Pinus sylvestris growth reversed its response to temperature between the non‐warming period (1958–1986) and the warming period (1987–2014). The shifting of the growing season to April during rapid warming, the presence of snow cover during early growing season, and a consequent alleviation of water‐limitation during the early growing season contribute to the reversed correlation between temperature and growth for April and May since 1987. Abstract Boreal forests are facing profound changes in their growth environment, including warming‐induced water deficits, extended growing seasons, accelerated snowmelt, and permafrost thaw. The influence of warming on trees varies regionally, but in most boreal forests studied to date, tree growth has been found to be negatively affected by increasing temperatures. Here, we used a network of Pinus sylvestris tree‐ring collections spanning a wide climate gradient the southern end of the boreal forest in Asia to assess their response to climate change for the period 1958–2014. Contrary to findings in other boreal regions, we found that previously negative effects of temperature on tree growth turned positive in the northern portion of the study network after the onset of rapid warming. Trees in the drier portion did not show this reversal in their climatic response during the period of rapid warming. Abundant water availability during the growing season, particularly in the early to mid‐growing season (May–July), is key to the reversal of tree sensitivity to climate. Advancement in the onset of growth appears to allow trees to take advantage of snowmelt water, such that tree growth increases with increasing temperatures during the rapidly warming period. The region's monsoonal climate delivers limited precipitation during the early growing season, and thus snowmelt likely covers the water deficit so trees are less stressed from the onset of earlier growth. Our results indicate that the growth response of P. sylvestris to increasing temperatures strongly related to increased early season water availability. Hence, boreal forests with sufficient water available during crucial parts of the growing season might be more able to withstand or even increase growth during periods of rising temperatures. We suspect that other regions of the boreal forest may be affected by similar dynamics.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2019
    Description: We conducted a global meta‐analysis to examine changes in soil organic carbon sequestration induced by three common climate‐smart agriculture (CSA) management practices (i.e., conservation tillage, cover crops, and biochar) and associated environmental controlling factors. Our results demonstrate that croplands could serve as an improved carbon sink and provide climate benefits by adopting these CSA practices. However, climate and soil conditions, as well as the combined effects of multiple management practices, should be proactively considered in scaling up these CSA practices to local and regional levels for achieving climate mitigation and adaptation while ensuring crop security and soil health. Abstract Climate‐smart agriculture (CSA) management practices (e.g., conservation tillage, cover crops, and biochar applications) have been widely adopted to enhance soil organic carbon (SOC) sequestration and to reduce greenhouse gas emissions while ensuring crop productivity. However, current measurements regarding the influences of CSA management practices on SOC sequestration diverge widely, making it difficult to derive conclusions about individual and combined CSA management effects and bringing large uncertainties in quantifying the potential of the agricultural sector to mitigate climate change. We conducted a meta‐analysis of 3,049 paired measurements from 417 peer‐reviewed articles to examine the effects of three common CSA management practices on SOC sequestration as well as the environmental controlling factors. We found that, on average, biochar applications represented the most effective approach for increasing SOC content (39%), followed by cover crops (6%) and conservation tillage (5%). Further analysis suggested that the effects of CSA management practices were more pronounced in areas with relatively warmer climates or lower nitrogen fertilizer inputs. Our meta‐analysis demonstrated that, through adopting CSA practices, cropland could be an improved carbon sink. We also highlight the importance of considering local environmental factors (e.g., climate and soil conditions and their combination with other management practices) in identifying appropriate CSA practices for mitigating greenhouse gas emissions while ensuring crop productivity.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2019
    Description: We demonstrate that foliar water uptake (FU) occurs in six common Amazonian tree genera. Using meteorological and canopy wetness data, coupled with empirically derived estimates of leaf conductance to FU, we estimate the contribution by FU to annual transpiration at this site has a median value of 8% (103 mm/year) and an interquartile range of 3%–15%. Our results indicate that FU is likely to be a common strategy in Amazonian rainforest and may have significant implications for the Amazon carbon budget and potentially also influence the drought tolerance of individual Amazonian trees and tree species. Abstract The absorption of atmospheric water directly into leaves enables plants to alleviate the water stress caused by low soil moisture, hydraulic resistance in the xylem and the effect of gravity on the water column, while enabling plants to scavenge small inputs of water from leaf‐wetting events. By increasing the availability of water, and supplying it from the top of the canopy (in a direction facilitated by gravity), foliar uptake (FU) may be a significant process in determining how forests interact with climate, and could alter our interpretation of current metrics for hydraulic stress and sensitivity. FU has not been reported for lowland tropical rainforests; we test whether FU occurs in six common Amazonian tree genera in lowland Amazônia, and make a first estimation of its contribution to canopy–atmosphere water exchange. We demonstrate that FU occurs in all six genera and that dew‐derived water may therefore be used to “pay” for some morning transpiration in the dry season. Using meteorological and canopy wetness data, coupled with empirically derived estimates of leaf conductance to FU (kfu), we estimate that the contribution by FU to annual transpiration at this site has a median value of 8.2% (103 mm/year) and an interquartile range of 3.4%–15.3%, with the biggest sources of uncertainty being kfu and the proportion of time the canopy is wet. Our results indicate that FU is likely to be a common strategy and may have significant implications for the Amazon carbon budget. The process of foliar water uptake may also have a profound impact on the drought tolerance of individual Amazonian trees and tree species, and on the cycling of water and carbon, regionally and globally.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2019
    Description: Increasing environmental temperatures have resulted in more frequent and more severe outbreaks of ranavirus disease in UK frogs. Future climate change could threaten larval recruitment and lead to greater impacts but the results of this study point to possible mitigation steps. Abstract The global trend of increasing environmental temperatures is often predicted to result in more severe disease epidemics. However, unambiguous evidence that temperature is a driver of epidemics is largely lacking, because it is demanding to demonstrate its role among the complex interactions between hosts, pathogens, and their shared environment. Here, we apply a three‐pronged approach to understand the effects of temperature on ranavirus epidemics in UK common frogs, combining in vitro, in vivo, and field studies. Each approach suggests that higher temperatures drive increasing severity of epidemics. In wild populations, ranavirosis incidents were more frequent and more severe at higher temperatures, and their frequency increased through a period of historic warming in the 1990s. Laboratory experiments using cell culture and whole animal models showed that higher temperature increased ranavirus propagation, disease incidence, and mortality rate. These results, combined with climate projections, predict severe ranavirosis outbreaks will occur over wider areas and an extended season, possibly affecting larval recruitment. Since ranaviruses affect a variety of ectothermic hosts (amphibians, reptiles, and fish), wider ecological damage could occur. Our three complementary lines of evidence present a clear case for direct environmental modulation of these epidemics and suggest management options to protect species from disease.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2019
    Description: We measured the response of three phytoplankton communities to multifactorial combinations of temperature, nutrient and grazing treatments. Nutrients elevated net growth rates and reduced carbon:nutrient and nitrogen:phosphorus ratios of all communities. Warming effects on growth and stoichiometry depended on lake productivity: warming enhanced growth in the most productive community and caused strongest stoichiometric responses in the least productive community. Grazing reduced C:P and N:P ratios in the least productive community, suggesting consumer‐driven nutrient recycling. Our experiments indicate that stoichiometric responses to warming, and interactions with nutrient supply and grazing, depend on lake productivity and cell size distribution. Abstract Global change involves shifts in multiple environmental factors that act in concert to shape ecological systems in ways that depend on local biotic and abiotic conditions. Little is known about the effects of combined global change stressors on phytoplankton communities, and particularly how these are mediated by distinct community properties such as productivity, grazing pressure and size distribution. Here, we tested for the effects of warming and eutrophication on phytoplankton net growth rate and C:N:P stoichiometry in two phytoplankton cell size fractions (〈30 µm and 〉30 µm) in the presence and absence of grazing in microcosm experiments. Because effects may also depend on lake productivity, we used phytoplankton communities from three Dutch lakes spanning a trophic gradient. We measured the response of each community to multifactorial combinations of temperature, nutrient, and grazing treatments and found that nutrients elevated net growth rates and reduced carbon:nutrient ratios of all three phytoplankton communities. Warming effects on growth and stoichiometry depended on nutrient supply and lake productivity, with enhanced growth in the most productive community dominated by cyanobacteria, and strongest stoichiometric responses in the most oligotrophic community at ambient nutrient levels. Grazing effects were also most evident in the most oligotrophic community, with reduced net growth rates and phytoplankton C:P stoichiometry that suggests consumer‐driven nutrient recycling. Our experiments indicate that stoichiometric responses to warming and interactions with nutrient addition and grazing are not universal but depend on lake productivity and cell size distribution.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2019
    Description: In Europe, we explored latitudinal community shifts for nematodes—abundant soil organisms that include root herbivores—in the rhizospheres of climate change‐driven range‐expanding plant species. We sampled nematode communities of several range‐expanding plant species along their expansion trajectory and compared these nematode communities with those of related plant species that are native along the entire expansion gradient. We show that nematode communities change with latitude, but that the strength of nematode community shifts strongly depends on range‐expanding plant species. Abstract Current climate change has led to latitudinal and altitudinal range expansions of numerous species. During such range expansions, plant species are expected to experience changes in interactions with other organisms, especially with belowground biota that have a limited dispersal capacity. Nematodes form a key component of the belowground food web as they include bacterivores, fungivores, omnivores and root herbivores. However, their community composition under climate change‐driven intracontinental range‐expanding plants has been studied almost exclusively under controlled conditions, whereas little is known about actual patterns in the field. Here, we use novel molecular sequencing techniques combined with morphological quantification in order to examine nematode communities in the rhizospheres of four range‐expanding and four congeneric native species along a 2,000 km latitudinal transect from South‐Eastern to North‐Western Europe. We tested the hypotheses that latitudinal shifts in nematode community composition are stronger in range‐expanding plant species than in congeneric natives and that in their new range, range‐expanding plant species accumulate fewest root‐feeding nematodes. Our results show latitudinal variation in nematode community composition of both range expanders and native plant species, while operational taxonomic unit richness remained the same across ranges. Therefore, range‐expanding plant species face different nematode communities at higher latitudes, but this is also the case for widespread native plant species. Only one of the four range‐expanding plant species showed a stronger shift in nematode community composition than its congeneric native and accumulated fewer root‐feeding nematodes in its new range. We conclude that variation in nematode community composition with increasing latitude occurs for both range‐expanding and native plant species and that some range‐expanding plant species may become released from root‐feeding nematodes in the new range.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2019
    Description: Large‐diameter, tall‐stature and big‐crown trees are the main stand structures of forests, generally contributing a large fraction of aboveground biomass, and hence, play an important role in climate change mitigation strategies. We show that the “big‐sized trees effect” overrides the effects of remaining trees attributes and species richness on aboveground biomass in tropical forests. This study also indicates that big‐sized trees may be more susceptible to atmospheric drought. We argue that the effects of big‐sized trees on species richness and aboveground biomass should be tested for better understanding of the ecological mechanisms underlying forest functioning. Abstract Large‐diameter, tall‐stature, and big‐crown trees are the main stand structures of forests, generally contributing a large fraction of aboveground biomass, and hence play an important role in climate change mitigation strategies. Here, we hypothesized that the effects of large‐diameter, tall‐stature, and big‐crown trees overrule the effects of species richness and remaining trees attributes on aboveground biomass in tropical forests (i.e., we term the “big‐sized trees hypothesis”). Specifically, we assessed the importance of: (a) the “top 1% big‐sized trees effect” relative to species richness; (b) the “99% remaining trees effect” relative to species richness; and (c) the “top 1% big‐sized trees effect” relative to the “99% remaining trees effect” and species richness on aboveground biomass. Using environmental factor and forest inventory datasets from 712 tropical forest plots in Hainan Island of southern China, we tested several structural equation models for disentangling the relative effects of big‐sized trees, remaining trees attributes, and species richness on aboveground biomass, while considering for the full (indirect effects only) and partial (direct and indirect effects) mediation effects of climatic and soil conditions, as well as interactions between species richness and trees attributes. We found that top 1% big‐sized trees attributes strongly increased aboveground biomass (i.e., explained 55%–70% of the accounted variation) compared to species richness (2%–18%) and 99% remaining trees attributes (6%–10%). In addition, species richness increased aboveground biomass indirectly via increasing big‐sized trees but via decreasing remaining trees. Hence, we show that the “big‐sized trees effect” overrides the effects of remaining trees attributes and species richness on aboveground biomass in tropical forests. This study also indicates that big‐sized trees may be more susceptible to atmospheric drought. We argue that the effects of big‐sized trees on species richness and aboveground biomass should be tested for better understanding of the ecological mechanisms underlying forest functioning.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    facet.materialart.
    Unknown
    Wiley
    Publication Date: 2019
    Description: Global Change Biology, Volume 25, Issue 8, Page i-ii, August 2019.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2019
    Description: Soil fauna is a key component of terrestrial ecosystems, although its response to climate change and its consequences to ecosystem functioning deserve more attention. In a climate manipulation experiment replicated across Europe, we found that the abundance and the taxonomic, phylogenetic, and functional richness of springtails decreased within 4 years of drought. This richness decline led to phylogenetically more clustered communities sharing evolutionary conserved traits. Additionally, despite the climatic differences among our study sites, we found that taxonomic, phylogenetic, and functional richness of springtail communities were able to explain up to 30% of the variation in annual litter decomposition rates. Abstract Soil fauna play a fundamental role on key ecosystem functions like organic matter decomposition, although how local assemblages are responding to climate change and whether these changes may have consequences to ecosystem functioning is less clear. Previous studies have revealed that a continued environmental stress may result in poorer communities by filtering out the most sensitive species. However, these experiments have rarely been applied to climate change factors combining multiyear and multisite standardized field treatments across climatically contrasting regions, which has limited drawing general conclusions. Moreover, other facets of biodiversity, such as functional and phylogenetic diversity, potentially more closely linked to ecosystem functioning, have been largely neglected. Here, we report that the abundance, species richness, phylogenetic diversity, and functional richness of springtails (Subclass Collembola), a major group of fungivores and detritivores, decreased within 4 years of experimental drought across six European shrublands. The loss of phylogenetic and functional richness was higher than expected by the loss of species richness, leading to communities of phylogenetically similar species sharing evolutionary conserved traits. Additionally, despite the great climatic differences among study sites, we found that taxonomic, phylogenetic, and functional richness of springtail communities alone were able to explain up to 30% of the variation in annual decomposition rates. Altogether, our results suggest that the forecasted reductions in precipitation associated with climate change may erode springtail communities and likely other drought‐sensitive soil invertebrates, thereby retarding litter decomposition and nutrient cycling in ecosystems.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2019
    Description: Worldwide, China is home to the fourth largest combined area of natural wetlands. A recent study provided a synthesis of its carbon budget. However, based on our experience of observing and simulating CH4 emissions from natural wetlands, as well as evidence in the literature, we suggest the results to be an overestimation of the CH4 release from China's marshlands, and here are the two reasons why: an overestimation of the extent of China's marshlands and an overestimation of the CH4 emission rates from the Tibetan Plateau
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2019
    Description: The figure displays the effects (red = negative; blue = positive) of explanatory variables on tree sensitivity to climate, and the resulting 1970–2005 growth trends. Old‐growth boreal black spruce stands exhibited a more negative response to previous summer temperature, identified as the primary climatic driver of growth trajectories for this species. This finding suggests an exacerbated effect of heat‐induced stresses, which resulted in more negative long‐term growth trends for old‐growth stands, especially when combined with late‐frost damage. Other explanatory variables, such as regional climate, competition, and soil conditions, modified tree sensitivity to climate. Abstract Currently, there is no consensus regarding the way that changes in climate will affect boreal forest growth, where warming is occurring faster than in other biomes. Some studies suggest negative effects due to drought‐induced stresses, while others provide evidence of increased growth rates due to a longer growing season. Studies focusing on the effects of environmental conditions on growth–climate relationships are usually limited to small sampling areas that do not encompass the full range of environmental conditions; therefore, they only provide a limited understanding of the processes at play. Here, we studied how environmental conditions and ontogeny modulated growth trends and growth–climate relationships of black spruce (Picea mariana) and jack pine (Pinus banksiana) using an extensive dataset from a forest inventory network. We quantified the long‐term growth trends at the stand scale, based on analysis of the absolutely dated ring‐width measurements of 2,266 trees. We assessed the relationship between annual growth rates and seasonal climate variables and evaluated the effects of various explanatory variables on long‐term growth trends and growth–climate relationships. Both growth trends and growth–climate relationships were species‐specific and spatially heterogeneous. While the growth of jack pine barely increased during the study period, we observed a growth decline for black spruce which was more pronounced for older stands. This decline was likely due to a negative balance between direct growth gains induced by improved photosynthesis during hotter‐than‐average growing conditions in early summers and the loss of growth occurring the following year due to the indirect effects of late‐summer heat waves on accumulation of carbon reserves. For stands at the high end of our elevational gradient, frost damage during milder‐than‐average springs could act as an additional growth stressor. Competition and soil conditions also modified climate sensitivity, which suggests that effects of climate change will be highly heterogeneous across the boreal biome.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2019
    Description: Invasive species threaten global biodiversity, agriculture, food security and ecosystem function. Pest risk analysis is key to biosecurity efforts, but is hampered by incomplete knowledge of invasive species distributions. We use statistical species distribution models to estimate presence probabilities for 1,739 crop pests and pathogens globally, and test model predictions for unobserved occurrences in China against observations abstracted from the Chinese literature. We show that large numbers of currently unobserved invasive species of agriculture are probably already present around the world, particularly in China, India and the former USSR. Abstract Invasive species threaten global biodiversity, food security and ecosystem function. Such incursions present challenges to agriculture where invasive species cause significant crop damage and require major economic investment to control production losses. Pest risk analysis (PRA) is key to prioritize agricultural biosecurity efforts, but is hampered by incomplete knowledge of current crop pest and pathogen distributions. Here, we develop predictive models of current pest distributions and test these models using new observations at subnational resolution. We apply generalized linear models (GLM) to estimate presence probabilities for 1,739 crop pests in the CABI pest distribution database. We test model predictions for 100 unobserved pest occurrences in the People's Republic of China (PRC), against observations of these pests abstracted from the Chinese literature. This resource has hitherto been omitted from databases on global pest distributions. Finally, we predict occurrences of all unobserved pests globally. Presence probability increases with host presence, presence in neighbouring regions, per capita GDP and global prevalence. Presence probability decreases with mean distance from coast and known host number per pest. The models are good predictors of pest presence in provinces of the PRC, with area under the ROC curve (AUC) values of 0.75–0.76. Large numbers of currently unobserved, but probably present pests (defined here as unreported pests with a predicted presence probability 〉0.75), are predicted in China, India, southern Brazil and some countries of the former USSR. We show that GLMs can predict presences of pseudoabsent pests at subnational resolution. The Chinese literature has been largely inaccessible to Western academia but contains important information that can support PRA. Prior studies have often assumed that unreported pests in a global distribution database represent a true absence. Our analysis provides a method for quantifying pseudoabsences to enable improved PRA and species distribution modelling.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2019
    Description: Abstract Aim Understanding how spatial scale of study affects observed dispersal patterns can provide insights to spatiotemporal population dynamics, particularly in systems with significant long‐distance dispersal (LDD). We aimed to investigate the dispersal gradients of two rusts of wheat with spores of similar size, mass and shape, over multiple spatial scales. We hypothesized that a single dispersal kernel could fit the dispersal from all spatial scales well, and that it would be possible to obtain similar results in spatiotemporal increase of disease when modelling based on differing scales. Location Central Oregon and St. Croix Island. Taxa Puccinia striiformis f. sp. tritici, Puccinia graminis f. sp. tritici, Triticum aestivum. Methods We compared empirically derived primary disease gradients of cereal rust across three spatial scales: local (inoculum source and sampling unit = 0.0254 m, spatial extent = 1.52 m) field‐wide (inoculum source = 1.52 m, sampling unit = 0.305 m and spatial extent = 91.4 m) and regional (inoculum source and sampling unit = 152 m, spatial extent = 10.5 km). We then examined whether disease spread in spatially explicit simulations depended upon the scale at which data were collected by constructing a compartmental time‐step model. Results The three data sets could be fit well by a single power law dispersal kernel. Simulating epidemic spread at different spatial resolutions resulted in similar patterns of spatiotemporal spread. Dispersal kernel data obtained at one spatial scale can be used to represent spatiotemporal disease spread at a larger spatial scale. Main Conclusions Organisms spread by aerially dispersed small propagules that exhibit LDD may follow similar dispersal patterns over a several hundred‐ or thousand‐fold expanse of spatial scale. Given that the primary mechanisms driving aerial dispersal remains constant, it may be possible to extrapolate across scales when empirical data are unavailable at a scale of interest.
    Print ISSN: 0305-0270
    Electronic ISSN: 1365-2699
    Topics: Biology , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2019
    Description: The response of coral‐reef communities to a major coral‐bleaching event depended on whether reefs were adjacent to islands with seabirds versus islands that lacked seabirds due to the presence of invasive rats. There was a post‐bleaching shift in benthic communities only around islands with seabirds, characterized by an increase in Halimeda and crustose coralline algae (CCA) (a). Overall fish community structure around both island types shifted following the bleaching event, characterized by a loss of planktivores and corallivores (b). However, biomass of key feeding groups, namely herbivores and piscivores, remained higher around islands with seabirds compared to islands with rats. Abstract Cross‐ecosystem nutrient subsidies play a key role in the structure and dynamics of recipient communities, but human activities are disrupting these links. Because nutrient subsidies may also enhance community stability, the effects of losing these inputs may be exacerbated in the face of increasing climate‐related disturbances. Nutrients from seabirds nesting on oceanic islands enhance the productivity and functioning of adjacent coral reefs, but it is unknown whether these subsidies affect the response of coral reefs to mass bleaching events or whether the benefits of these nutrients persist following bleaching. To answer these questions, we surveyed benthic organisms and fishes around islands with seabirds and nearby islands without seabirds due to the presence of invasive rats. Surveys were conducted in the Chagos Archipelago, Indian Ocean, immediately before the 2015–2016 mass bleaching event and, in 2018, two years following the bleaching event. Regardless of the presence of seabirds, relative coral cover declined by 32%. However, there was a post‐bleaching shift in benthic community structure around islands with seabirds, which did not occur around islands with invasive rats, characterized by increases in two types of calcareous algae (crustose coralline algae [CCA] and Halimeda spp.). All feeding groups of fishes were positively affected by seabirds, but only herbivores and piscivores were unaffected by the bleaching event and sustained the greatest difference in biomass between islands with seabirds versus those with invasive rats. By contrast, corallivores and planktivores, both of which are coral‐dependent, experienced the greatest losses following bleaching. Even though seabird nutrients did not enhance community‐wide resistance to bleaching, they may still promote recovery of these reefs through their positive influence on CCA and herbivorous fishes. More broadly, the maintenance of nutrient subsidies, via strategies including eradication of invasive predators, may be important in shaping the response of ecological communities to global climate change.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2019
    Description: Irrigated agriculture alters near‐surface temperature and humidity, which may mask global climate change at the regional scale. This is the first study to quantify irrigation‐induced climate change in the Midwest United States using a 60 km transect consisting of 28 meteorological sensors across the Wisconsin Central Sands region. Irrigated agriculture decreased the diurnal temperature range and vapor pressure deficit compared to rainfed agriculture and forests. These regional climate impacts must be considered together with increased greenhouse gas emissions, groundwater quality concerns, and surface water degradation when evaluating irrigation expansion in the Midwest United States. Abstract Irrigated agriculture alters near‐surface temperature and humidity, which may mask global climate change at the regional scale. However, observational studies of irrigation‐induced climate change are lacking in temperate, humid regions throughout North America and Europe. Despite unknown climate impacts, irrigated agriculture is expanding in the Midwest United States, where unconfined aquifers provide groundwater to support crop production on coarse soils. This is the first study in the Midwest United States to observe and quantify differences in regional climate associated with irrigated agricultural conversion from forests and rainfed agriculture. To this end, we established a 60 km transect consisting of 28 stations across varying land uses and monitored surface air temperature and relative humidity for 31 months in the Wisconsin Central Sands region. We used a novel approach to quantify irrigated land use in both space and time with a database containing monthly groundwater withdrawal estimates by parcel for the state of Wisconsin. Irrigated agriculture decreased maximum temperatures and increased minimum temperatures, thus shrinking the diurnal temperature range (DTR) by an average of 3°C. Irrigated agriculture also decreased the vapor pressure deficit (VPD) by an average of 0.10 kPa. Irrigated agriculture significantly decreased evaporative demand for 25% and 66% of study days compared to rainfed agriculture and forest, respectively. Differences in VPD across the land‐use gradient were highest (0.21 kPa) during the peak of the growing season, while differences in DTR were comparable year‐round. Interannual variability in temperature had greater impacts on differences in DTR and VPD across the land‐use gradient than interannual variability in precipitation. These regional climate changes must be considered together with increased greenhouse gas emissions, changes to groundwater quality, and surface water degradation when evaluating the costs and benefits of groundwater‐sourced irrigation expansion in the Midwest United States and similar regions around the world.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2019
    Description: We combined the use of a unique whole‐ecosystem warming approach coupled with microbial community analyses and functional assessments through two growth seasons. We found microbial diversity and nitrogen fixation decreased with warming treatment. Abstract Sphagnum‐dominated peatlands comprise a globally important pool of soil carbon (C) and are vulnerable to climate change. While peat mosses of the genus Sphagnum are known to harbor diverse microbial communities that mediate C and nitrogen (N) cycling in peatlands, the effects of climate change on Sphagnum microbiome composition and functioning are largely unknown. We investigated the impacts of experimental whole‐ecosystem warming on the Sphagnum moss microbiome, focusing on N2 fixing microorganisms (diazotrophs). To characterize the microbiome response to warming, we performed next‐generation sequencing of small subunit (SSU) rRNA and nitrogenase (nifH) gene amplicons and quantified rates of N2 fixation activity in Sphagnum fallax individuals sampled from experimental enclosures over 2 years in a northern Minnesota, USA bog. The taxonomic diversity of overall microbial communities and diazotroph communities, as well as N2 fixation rates, decreased with warming (p 〈 0.05). Following warming, diazotrophs shifted from a mixed community of Nostocales (Cyanobacteria) and Rhizobiales (Alphaproteobacteria) to predominance of Nostocales. Microbiome community composition differed between years, with some diazotroph populations persisting while others declined in relative abundance in warmed plots in the second year. Our results demonstrate that warming substantially alters the community composition, diversity, and N2 fixation activity of peat moss microbiomes, which may ultimately impact host fitness, ecosystem productivity, and C storage potential in peatlands.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2019
    Description: Six freshly isolated strains of the Arctic diatom Thalassiosira hyalina were incubated as mono‐ and multistrain cultures under different temperature and CO2 conditions. Although strains originated from the same water sample, monocultures showed large physiological diversity. When tested all together in multistrain cultures, selection dynamics as well as bulk physiology within these artificial populations differed fundamentally between the two treatments and diverged strongly from predictions based on monoculture traits. This suggests that cells change their phenotype depending on their biological surroundings and that such intraspecific interactions need to be better understood to predict future phytoplankton ecology from experimental data. Abstract Arctic phytoplankton and their response to future conditions shape one of the most rapidly changing ecosystems on the planet. We tested how much the phenotypic responses of strains from the same Arctic diatom population diverge and whether the physiology and intraspecific composition of multistrain populations differs from expectations based on single strain traits. To this end, we conducted incubation experiments with the diatom Thalassiosira hyalina under present‐day and future temperature and pCO2 treatments. Six fresh isolates from the same Svalbard population were incubated as mono‐ and multistrain cultures. For the first time, we were able to closely follow intraspecific selection within an artificial population using microsatellites and allele‐specific quantitative PCR. Our results showed not only that there is substantial variation in how strains of the same species cope with the tested environments but also that changes in genotype composition, production rates, and cellular quotas in the multistrain cultures are not predictable from monoculture performance. Nevertheless, the physiological responses as well as strain composition of the artificial populations were highly reproducible within each environment. Interestingly, we only detected significant strain sorting in those populations exposed to the future treatment. This study illustrates that the genetic composition of populations can change on very short timescales through selection from the intraspecific standing stock, indicating the potential for rapid population level adaptation to climate change. We further show that individuals adjust their phenotype not only in response to their physicochemical but also to their biological surroundings. Such intraspecific interactions need to be understood in order to realistically predict ecosystem responses to global change.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2019
    Description: We present a fine‐resolution assessment of the persistence of global plant biodiversity under land‐use and climate change scenarios, using generalized dissimilarity modelling and the species–area relationship. We estimate the number of species committed to extinction has increased by 60% globally during the 20th century; this value is projected to decrease slightly by 2050 under a sustainable land‐use scenario and to greatly increase under more intensive land‐use change scenarios. Alarmingly, the additional impact from climate change might largely surpass that of land use; sustainable land‐use planning might not be sufficient to prevent biodiversity loss, without a stabilization of climate to pre‐industrial times.  Abstract Nations have committed to ambitious conservation targets in response to accelerating rates of global biodiversity loss. Anticipating future impacts is essential to inform policy decisions for achieving these targets, but predictions need to be of sufficiently high spatial resolution to forecast the local effects of global change. As part of the intercomparison of biodiversity and ecosystem services models of the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services, we present a fine‐resolution assessment of trends in the persistence of global plant biodiversity. We coupled generalized dissimilarity models, fitted to 〉52 million records of 〉254 thousand plant species, with the species–area relationship, to estimate the effect of land‐use and climate change on global biodiversity persistence. We estimated that the number of plant species committed to extinction over the long term has increased by 60% globally between 1900 and 2015 (from ~10,000 to ~16,000). This number is projected to decrease slightly by 2050 under the most optimistic scenario of land‐use change and to substantially increase (to ~18,000) under the most pessimistic scenario. This means that, in the absence of climate change, scenarios of sustainable socio‐economic development can potentially bring extinction risk back to pre‐2000 levels. Alarmingly, under all scenarios, the additional impact from climate change might largely surpass that of land‐use change. In this case, the estimated number of species committed to extinction increases by 3.7–4.5 times compared to land‐use‐only projections. African regions (especially central and southern) are expected to suffer some of the highest impacts into the future, while biodiversity decline in Southeast Asia (which has previously been among the highest globally) is projected to slow down. Our results suggest that environmentally sustainable land‐use planning alone might not be sufficient to prevent potentially dramatic biodiversity loss, unless a stabilization of climate to pre‐industrial times is observed.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2019
    Description: We study how climate change may affect an important Neotropical ecosystem: the aquatic food webs inside bromeliad plants. To explore potential mechanisms, we combine common garden experiments and food web manipulations with space‐for‐time community transplants along an elevational gradient. Our study experimentally disentangles the multiple mechanisms by which climate change impacts ecosystems, and demonstrates how a single species can act as a biotic multiplier for climate change, drastically affecting the food web response. Abstract Predicting the biological effects of climate change presents major challenges due to the interplay of potential biotic and abiotic mechanisms. Climate change can create unexpected outcomes by altering species interactions, and uncertainty over the ability of species to develop in situ tolerance or track environmental change further hampers meaningful predictions. As multiple climatic variables shift in concert, their potential interactions further complicate ecosystem responses. Despite awareness of these complexities, we still lack controlled experiments that manipulate multiple climatic stressors, species interactions, and prior exposure of species to future climatic conditions. Particularly studies that address how changes in water availability interact with other climatic stressors to affect aquatic ecosystems are still rare. Using aquatic insect communities of Neotropical tank bromeliads, we combined controlled manipulations of drought length and species interactions with a space‐for‐time transplant (lower elevations represent future climate) and a common garden approach. Manipulating drought length and experiment elevation revealed that adverse effects of drought were amplified at the warmer location, highlighting the potential of climatic stressors to synergistically affect communities. Manipulating the presence of omnivorous tipulid larvae showed that negative interactions from tipulids, presumably from predation, arose under drought, and were stronger at the warmer location, stressing the importance of species interactions in mediating community responses to climate change. The common garden treatments revealed that prior community exposure to potential future climatic conditions did not affect the outcome. In this powerful experiment, we demonstrated how complexities arise from the interplay of biotic and abiotic mechanisms of climate change. We stress that single species can steer ecological outcomes, and suggest that focusing on such disproportionately influential species may improve attempts at making meaningful predictions of climate change impacts on food webs.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2019
    Description: Since 1990, the IPCC has produced five Assessment Reports (ARs) including agriculture. Using a database of the ca. 2,100 cited experiments and simulations in the five ARs, our conclusions are that crop yields decline but with large statistical variation. Livestock effects have almost been quantitatively absent. Mitigation assessments need better to link emissions and their mitigation with food production and security; agriculture has been dealt with inconsistently between the IPCC five ARs. IPCC needs to examine interactions between crop resource use efficiencies and include production and nonproduction aspects of food security. Abstract Since 1990, the Intergovernmental Panel on Climate Change (IPCC) has produced five Assessment Reports (ARs), in which agriculture as the production of food for humans via crops and livestock have featured in one form or another. A constructed database of the ca. 2,100 cited experiments and simulations in the five ARs was analyzed with respect to impacts on yields via crop type, region, and whether adaptation was included. Quantitative data on impacts and adaptation in livestock farming have been extremely scarce in the ARs. The main conclusions from impact and adaptation are that crop yields will decline, but that responses have large statistical variation. Mitigation assessments in the ARs have used both bottom‐up and top‐down methods but need better to link emissions and their mitigation with food production and security. Relevant policy options have become broader in later ARs and included more of the social and nonproduction aspects of food security. Our overall conclusion is that agriculture and food security, which are two of the most central, critical, and imminent issues in climate change, have been dealt with an unfocussed and inconsistent manner between the IPCC five ARs. This is partly a result of not only agriculture spanning two IPCC working groups but also the very strong focus on projections from computer crop simulation modeling. For the future, we suggest a need to examine interactions between themes such as crop resource use efficiencies and to include all production and nonproduction aspects of food security in future roles for integrated assessment models.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2019
    Description: We provide a description of regime shifts of forest carbon sinks in Mediterranean forests (Pinus halepensis Mill.) over 1950–2012. We demonstrate that non‐stationary effects of ocean surface temperature determine the onset of regime shifts of forest carbon uptake. ENSO effects regulated by ocean multidecadal variability (AMO–AMOC) are key in the emergence of multidecadal changes in forest carbon sink activity. The reported negative effects of ocean surface temperature (SST) trends on forest carbon uptake for the last decades are unprecedented over the last 150 years. Abstract The mechanisms translating global circulation changes into rapid abrupt shifts in forest carbon capture in semi‐arid biomes remain poorly understood. Here, we report unprecedented multidecadal shifts in forest carbon uptake in semi‐arid Mediterranean pine forests in Spain over 1950–2012. The averaged carbon sink reduction varies between 31% and 37%, and reaches values in the range of 50% in the most affected forest stands. Regime shifts in forest carbon uptake are associated with climatic early warning signals, decreased forest regional synchrony and reduced long‐term carbon sink resilience. We identify the mechanisms linked to ocean multidecadal variability that shape regime shifts in carbon capture. First, we show that low‐frequency variations of the surface temperature of the Atlantic Ocean induce shifts in the non‐stationary effects of El Niño Southern Oscillation (ENSO) on regional forest carbon capture. Modelling evidence supports that the non‐stationary effects of ENSO can be propagated from tropical areas to semi‐arid Mediterranean biomes through atmospheric wave trains. Second, decadal changes in the Atlantic Multidecadal Oscillation (AMO) significantly alter sea–air heat exchanges, modifying in turn ocean vapour transport over land and land surface temperatures, and promoting sustained drought conditions in spring and summer that reduce forest carbon uptake. Third, we show that lagged effects of AMO on the winter North Atlantic Oscillation also contribute to the maintenance of long‐term droughts. Finally, we show that the reported strong, negative effects of ocean surface temperature (AMO) on forest carbon uptake in the last decades are unprecedented over the last 150 years. Our results provide new, unreported explanations for carbon uptake shifts in these drought‐prone forests and review the expected impacts of global warming on the profiled mechanisms.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2019
    Description: Coral bleaching and mortality following marine heatwaves are transforming coral reefs, but the long‐term effects of habitat turnover for coral reef fishes remain unclear. Using a 23‐year time series spanning a severe marine heatwave, we show that reef fish communities persisted in altered compositions 〉15 years after mass coral mortality. After bleaching, herbivore dominance was typical of all reefs, and new macroalgal habitats were most dissimilar to their historic compositions. Frequent and severe bleaching events caused by ocean warming will prevent reef fish communities from recovering to their prebleaching state. Abstract Ecological communities are reorganizing in response to warming temperatures. For continuous ocean habitats this reorganization is characterized by large‐scale species redistribution, but for tropical discontinuous habitats such as coral reefs, spatial isolation coupled with strong habitat dependence of fish species imply that turnover and local extinctions are more significant mechanisms. In these systems, transient marine heatwaves are causing coral bleaching and profoundly altering habitat structure, yet despite severe bleaching events becoming more frequent and projections indicating annual severe bleaching by the 2050s at most reefs, long‐term effects on the diversity and structure of fish assemblages remain unclear. Using a 23‐year time series spanning a thermal stress event, we describe and model structural changes and recovery trajectories of fish communities after mass bleaching. Communities changed fundamentally, with the new emergent communities dominated by herbivores and persisting for 〉15 years, a period exceeding realized and projected intervals between thermal stress events on coral reefs. Reefs which shifted to macroalgal states had the lowest species richness and highest compositional dissimilarity, whereas reefs where live coral recovered exceeded prebleaching fish richness, but remained dissimilar to prebleaching compositions. Given realized and projected frequencies of bleaching events, our results show that fish communities historically associated with coral reefs will not re‐establish, requiring substantial adaptation by managers and resource users.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2019
    Description: Many populations face large changes in seasonal climate, yet the demographic mechanisms that mediate the impact of these changes on population dynamics remain largely unknown. We demonstrate a widely applicable method to facilitate better understanding of the mechanisms through which climatic variables drive population responses. In a well‐studied mammal population we found that a single axis accounts for most of the (co)variation in survival and reproduction and when we attribute seasonal impacts of climatic variables to this axis we find that the direction and magnitude of their effects changes over the course of a year. Abstract Predicting how species will be affected by future climatic change requires the underlying environmental drivers to be identified. As vital rates vary over the lifecycle, structured population models derived from statistical environment–demography relationships are often used to inform such predictions. Environmental drivers are typically identified independently for different vital rates and demographic classes. However, these rates often exhibit positive temporal covariance, suggesting that vital rates respond to common environmental drivers. Additionally, models often only incorporate average weather conditions during a single, a priori chosen time window (e.g. monthly means). Mismatches between these windows and the period when the vital rates are sensitive to variation in climate decrease the predictive performance of such approaches. We used a demographic structural equation model (SEM) to demonstrate that a single axis of environmental variation drives the majority of the (co)variation in survival, reproduction, and twinning across six age–sex classes in a Soay sheep population. This axis provides a simple target for the complex task of identifying the drivers of vital rate variation. We used functional linear models (FLMs) to determine the critical windows of three local climatic drivers, allowing the magnitude and direction of the climate effects to differ over time. Previously unidentified lagged climatic effects were detected in this well‐studied population. The FLMs had a better predictive performance than selecting a critical window a priori, but not than a large‐scale climate index. Positive covariance amongst vital rates and temporal variation in the effects of environmental drivers are common, suggesting our SEM–FLM approach is a widely applicable tool for exploring the joint responses of vital rates to environmental change.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2019
    Description: Elevated pCO2 and warming may promote algal growth and toxin production, and thereby possibly support the proliferation and toxicity of HABs. Using a meta‐analytic approach we found that elevated pCO2 increased growth rates of dinoflagellate HAB species, while this was not the case for non‐HAB phytoplankton species. Warming also led to higher growth rates, but mainly for species isolated at higher latitudes. These results warn for a greater potential of dinoflagellate HAB development in future coastal waters, particularly in temperate regions. Abstract Elevated pCO2 and warming may promote algal growth and toxin production, and thereby possibly support the proliferation and toxicity of harmful algal blooms (HABs). Here, we tested whether empirical data support this hypothesis using a meta‐analytic approach and investigated the responses of growth rate and toxin content or toxicity of numerous marine and estuarine HAB species to elevated pCO2 and warming. Most of the available data on HAB responses towards the two tested climate change variables concern dinoflagellates, as many members of this phytoplankton group are known to cause HAB outbreaks. Toxin content and toxicity did not reveal a consistent response towards both tested climate change variables, while growth rate increased consistently with elevated pCO2. Warming also led to higher growth rates, but only for species isolated at higher latitudes. The observed gradient in temperature growth responses shows the potential for enhanced development of HABs at higher latitudes. Increases in growth rates with more CO2 may present an additional competitive advantage for HAB species, particularly as CO2 was not shown to enhance growth rate of other non‐HAB phytoplankton species. However, this may also be related to the difference in representation of dinoflagellate and diatom species in the respective HAB and non‐HAB phytoplankton groups. Since the proliferation of HAB species may strongly depend on their growth rates, our results warn for a greater potential of dinoflagellate HAB development in future coastal waters, particularly in temperate regions.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2019
    Description: This study addresses how nutrient addition regulates biological nitrogen (N) fixation (BNF) in terrestrial ecosystems and uncovers the latitude patterns and drivers of BNF in response to nutrient enrichment. We found a negative effect of N addition, a positive effect of Micro addition, and an inconsistent effect of P addition on terrestrial BNF and also observed a less sensitivity of BNF to nutrient addition in low‐latitude biomes than in mid‐/high‐latitude biomes. Our findings indicate that certain types of global change (warming, elevated precipitation and N deposition) may reduce the nutrient constraints of BNF in mid‐/high‐latitude biomes. Abstract Biological nitrogen (N) fixation (BNF), an important source of N in terrestrial ecosystems, plays a critical role in terrestrial nutrient cycling and net primary productivity. Currently, large uncertainty exists regarding how nutrient availability regulates terrestrial BNF and the drivers responsible for this process. We conducted a global meta‐analysis of terrestrial BNF in response to N, phosphorus (P), and micronutrient (Micro) addition across different biomes (i.e, tropical/subtropical forest, savanna, temperate forest, grassland, boreal forest, and tundra) and explored whether the BNF responses were affected by fertilization regimes (nutrient‐addition rates, duration, and total load) and environmental factors (mean annual temperature [MAT], mean annual precipitation [MAP], and N deposition). The results showed that N addition inhibited terrestrial BNF (by 19.0% (95% confidence interval [CI]: 17.7%‒20.3%); hereafter), Micro addition stimulated terrestrial BNF (30.4% [25.7%‒35.3%]), and P addition had an inconsistent effect on terrestrial BNF, i.e., inhibiting free‐living N fixation (7.5% [4.4%‒10.6%]) and stimulating symbiotic N fixation (85.5% [25.8%‒158.7%]). Furthermore, the response ratios (i.e., effect sizes) of BNF to nutrient addition were smaller in low‐latitude (〈30°) biomes (8.5%‒36.9%) than in mid‐/high‐latitude (≥30°) biomes (32.9%‒61.3%), and the sensitivity (defined as the absolute value of response ratios) of BNF to nutrients in mid‐/high‐latitude biomes decreased with decreasing latitude (p ≤ 0.009; linear/logarithmic regression models). Fertilization regimes did not affect this phenomenon (p 〉 0.05), but environmental factors did affect it (p 〈 0.001) because MAT, MAP, and N deposition accounted for 5%‒14%, 10%‒32%, and 7%‒18% of the variance in the BNF response ratios in cold (MAT 〈 15°C), low‐rainfall (MAP 〈 2,500 mm), and low‐N‐deposition (〈7 kg ha−1 year−1) biomes, respectively. Overall, our meta‐analysis depicts a global pattern of nutrient impacts on terrestrial BNF and indicates that certain types of global change (i.e., warming, elevated precipitation and N deposition) may reduce the sensitivity of BNF in response to nutrient enrichment in mid‐/high‐latitude biomes.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2019
    Description: Exposure of a temperate heath/grassland to elevated CO2 (eCO2), warming, and drought, in all combinations for 8 years resulted in a progressive increase in soil carbon stocks under eCO2. The response to eCO2 was not affected by simultaneous exposure to warming and drought. The robust increase in soil C under eCO2 suggests that there is continued and strong potential for enhanced soil carbon sequestration in some ecosystems to mitigate increasing atmospheric CO2 concentrations under future climate conditions Abstract Elevated atmospheric CO2 concentration and climate change may substantially alter soil carbon (C) dynamics, which in turn may impact future climate through feedback cycles. However, only very few field experiments worldwide have combined elevated CO2 (eCO2) with both warming and changes in precipitation in order to study the potential combined effects of changes in these fundamental drivers of C cycling in ecosystems. We exposed a temperate heath/grassland to eCO2, warming, and drought, in all combinations for 8 years. At the end of the study, soil C stocks were on average 0.927 kg C/m2 higher across all treatment combinations with eCO2 compared to ambient CO2 treatments (equal to an increase of 0.120 ± 0.043 kg C m−2 year−1), and showed no sign of slowed accumulation over time. However, if observed pretreatment differences in soil C are taken into account, the annual rate of increase caused by eCO2 may be as high as 0.177 ± 0.070 kg C m−2 year−1. Furthermore, the response to eCO2 was not affected by simultaneous exposure to warming and drought. The robust increase in soil C under eCO2 observed here, even when combined with other climate change factors, suggests that there is continued and strong potential for enhanced soil carbon sequestration in some ecosystems to mitigate increasing atmospheric CO2 concentrations under future climate conditions. The feedback between land C and climate remains one of the largest sources of uncertainty in future climate projections, yet experimental data under simulated future climate, and especially including combined changes, are still scarce. Globally coordinated and distributed experiments with long‐term measurements of changes in soil C in response to the three major climate change‐related global changes, eCO2, warming, and changes in precipitation patterns, are, therefore, urgently needed.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2019
    Description: In this study, we analysed the relationship between changes in mean precipitation, precipitation variability, farming practices and grazing cattle using a system dynamics approach for a semi‐arid Australian rangeland system. Forage production and animal stocking rates were significantly affected by drought events as well as by long‐term climate trends. Decreases in the annual precipitation means or increases in the interannual (year‐to‐year) and intra‐annual (month‐to‐month) precipitation variability, all reduced herd sizes. Climate contributed the most to the variance in stocking rates, followed by forage productivity levels and feeding supplementation practices (with or without urea and molasses). While intensification strategies and favourable climates increased long‐term herd sizes, they also resulted in larger reductions in animal numbers during droughts and raised total enteric methane emissions. Abstract Grazing livestock are an important source of food and income for millions of people worldwide. Changes in mean climate and increasing climate variability are affecting grasslands' carrying capacity, thus threatening the livelihood of millions of people as well as the health of grassland ecosystems. Compared with cropping systems, relatively little is known about the impact of such climatic changes on grasslands and livestock productivity and the adaptation responses available to farmers. In this study, we analysed the relationship between changes in mean precipitation, precipitation variability, farming practices and grazing cattle using a system dynamics approach for a semi‐arid Australian rangeland system. We found that forage production and animal stocking rates were significantly affected by drought intensities and durations as well as by long‐term climate trends. After a drought event, herd size recovery times ranged from years to decades in the absence of proactive restocking through animal purchases. Decreases in the annual precipitation means or increases in the interannual (year‐to‐year) and intra‐annual (month‐to‐month) precipitation variability, all reduced herd sizes. The contribution of farming practices versus climate effect on herd dynamics varied depending on the herd characteristics considered. Climate contributed the most to the variance in stocking rates, followed by forage productivity levels and feeding supplementation practices (with or without urea and molasses). While intensification strategies and favourable climates increased long‐term herd sizes, they also resulted in larger reductions in animal numbers during droughts and raised total enteric methane emissions. In the face of future climate trends, the grazing sector will need to increase its adaptability. Understanding which farming strategies can be beneficial, where, and when, as well as the enabling mechanisms required to implement them, will be critical for effectively improving rangelands and the livelihoods of pastoralists worldwide.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2019
    Description: Cover crops significantly (p 〈 0.001) decreased N leaching and significantly (p 〈 0.001) increased soil organic carbon sequestration without having significant (p 〉 0.05) effects on direct N2O emissions. Cover crops could mitigate net greenhouse gas balance by 2.06 ± 2.10 Mg CO2‐eq ha−1 year−1. One of the potential disadvantages of the cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting legume–non‐legume mixed cover crops. However, cover crop management need to be adapted to specific soil, management and regional climatic conditions. Abstract Cover crops play an increasingly important role in improving soil quality, reducing agricultural inputs and improving environmental sustainability. The main objectives of this critical global review and systematic analysis were to assess cover crop practices in the context of their impacts on nitrogen leaching, net greenhouse gas balances (NGHGB) and crop productivity. Only studies that investigated the impacts of cover crops and measured one or a combination of nitrogen leaching, soil organic carbon (SOC), nitrous oxide (N2O), grain yield and nitrogen in grain of primary crop, and had a control treatment were included in the analysis. Long‐term studies were uncommon, with most data coming from studies lasting 2–3 years. The literature search resulted in 106 studies carried out at 372 sites and covering different countries, climatic zones and management. Our analysis demonstrates that cover crops significantly (p 〈 0.001) decreased N leaching and significantly (p 〈 0.001) increased SOC sequestration without having significant (p 〉 0.05) effects on direct N2O emissions. Cover crops could mitigate the NGHGB by 2.06 ± 2.10 Mg CO2‐eq ha−1 year−1. One of the potential disadvantages of cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting mixed cover crops with a range of legumes and non‐legumes, which increased the yield by ≈13%. These advantages of cover crops justify their widespread adoption. However, management practices in relation to cover crops will need to be adapted to specific soil, management and regional climatic conditions.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2019
    Description: We manipulated the rate and frequency of nitrogen inputs for six consecutive years in a temperate grassland in northern China and measured aboveground net primary productivity (ANPP) and belowground net primary productivity (BNPP) from 2012 to 2014. We found that in the low range of N addition rates, BNPP showed the greatest negative response and ANPP showed the greatest positive responses with increases in N addition. As N addition increased beyond 10 g N m−2 year−1, increases in ANPP dampened and decreases in BNPP ceased altogether. Abstract Nitrogen (N) enrichment often increases aboveground net primary productivity (ANPP) of the ecosystem, but it is unclear if belowground net primary productivity (BNPP) track responses of ANPP. Moreover, the frequency of N inputs may affect primary productivity but is rarely studied. To assess the response patterns of above‐ and belowground productivity to rates of N addition under different addition frequencies, we manipulated the rate (0–50 g N m−2 year−1) and frequency (twice vs. monthly additions per year) of NH4NO3 inputs for six consecutive years in a temperate grassland in northern China and measured ANPP and BNPP from 2012 to 2014. In the low range of N addition rates, BNPP showed the greatest negative response and ANPP showed the greatest positive responses with increases in N addition (〈10 g N m−2 year−1). As N addition increased beyond 10 g N m−2 year−1, increases in ANPP dampened and decreases in BNPP ceased altogether. The response pattern of net primary productivity (combined above‐ and belowground; NPP) corresponded more closely to ANPP than to BNPP. The N effects on BNPP and BNPP/NPP (fBNPP) were not dependent on N addition frequency in the range of N additions typically associated with N deposition. BNPP was more sensitive to N addition frequency than ANPP, especially at low rates of N addition. Our findings provide new insights into how plants regulate carbon allocation to different organs with increasing N rates and changing addition frequencies. These root response patterns, if incorporated into Earth system models, may improve the predictive power of C dynamics in dryland ecosystems in the face of global atmospheric N deposition.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    facet.materialart.
    Unknown
    Reed Business Information
    Publication Date: 2019
    Description: A complete map of all the neurons and their connections in both sexes of an animal – a tiny worm – has been described for the first time
    Print ISSN: 0028-6664
    Electronic ISSN: 1364-8500
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    facet.materialart.
    Unknown
    Reed Business Information
    Publication Date: 2019
    Description: Dozens of wildfires are burning across the Arctic circle and have released as much CO2 in just one month as Sweden’s total annual emissions
    Print ISSN: 0028-6664
    Electronic ISSN: 1364-8500
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    facet.materialart.
    Unknown
    Reed Business Information
    Publication Date: 2019
    Description: Shops that let you bring your own containers aim to tackle the plastic packaging scourge, but they may not be the perfect solution
    Print ISSN: 0028-6664
    Electronic ISSN: 1364-8500
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    facet.materialart.
    Unknown
    Reed Business Information
    Publication Date: 2019
    Description: Seals and sea lions can repeat their last action on command, as long as they are asked to do so within 18 seconds , hinting at a degree of self-awareness
    Print ISSN: 0028-6664
    Electronic ISSN: 1364-8500
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    facet.materialart.
    Unknown
    Reed Business Information
    Publication Date: 2019
    Description: We all feel the passing of time, but nothing in physics suggests it is a fundamental property of the universe. So where does our sense of time’s flow come from?
    Print ISSN: 0028-6664
    Electronic ISSN: 1364-8500
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2019
    Description: Abstract Aim To identify the effect of multiple, temporally close, forcing events (i.e. climate‐driven habitat fragmentations/homogenizations) in shaping current patterns of biodiversity in alpine areas. Given their spatial configuration, alpine areas have been traditionally seen as islands surrounded by an “ocean” of unsuitable lands. A quantitative assessment of the effects of Holocene climate fluctuations on islands area and inter‐island connectivity is crucial to finely reconstruct past biodiversity dynamics and forecast species responses to future changes. Location Italy. Taxa Carabidae (Ground beetles), Chrysomelidae (Leaf beetles), Elateridae (Click beetles), Orthoptera (Grasshoppers and Crickets) and Papilionoidea (Butterflies and Skippers). Methods A total of 1,077 species for 128,093 records were analysed and a classification based on their functional traits allowed identifying groups of good and poor dispersers within each taxon. A dynamic discrete model of ecosystem evolution provided the spatio‐temporal context to test two competing (transient equilibria vs. nonequilibrium) dynamics based on different colonization capabilities. In the transient equilibria dynamic the species are able to respond to island evolution through successful dispersal and colonization events, whereas in the nonequilibrium dynamic ineffective immigration constrains the current species richness to that generated by the strongest island contraction. Results With the exception of Elateridae, good dispersers (Chrysomelidae and Papilionoidea) responded to environmental changes by establishing a series of transient equilibria. In contrast, the nonequilibrium dynamic better described patterns of species richness in poor dispersers (Carabidae and Orthoptera). Main conclusions Our approach could be used as the basis for the development of spatially and temporally explicit models of island evolution and could be a valuable tool for quantifying the sensitivity of single taxa to climate‐driven habitat changes. It also represents a further step towards the forecasting of future responses to climate change and the accompanying development of conservation strategies that more effectively respond to the detrimental impacts of climate change on biodiversity.
    Print ISSN: 0305-0270
    Electronic ISSN: 1365-2699
    Topics: Biology , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    facet.materialart.
    Unknown
    Reed Business Information
    Publication Date: 2019
    Description: The decision by Japan to resume commercial whaling should be condemned – if not for its uncertain effect on whales, then for its contempt for international agreements
    Print ISSN: 0028-6664
    Electronic ISSN: 1364-8500
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    facet.materialart.
    Unknown
    Reed Business Information
    Publication Date: 2019
    Description: A tiny jellyfish-like robot could be used to deliver drugs in the body. It is only 3 millimeters across and is controlled by magnetic fields
    Print ISSN: 0028-6664
    Electronic ISSN: 1364-8500
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    facet.materialart.
    Unknown
    Reed Business Information
    Publication Date: 2019
    Description: Some mice receiving a therapy that includes CRISPR gene editing appear to have been cured of HIV, but safety concerns must be overcome before human trials
    Print ISSN: 0028-6664
    Electronic ISSN: 1364-8500
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    facet.materialart.
    Unknown
    Reed Business Information
    Publication Date: 2019
    Description: Climate change attribution researchers have shown that record-breaking heat in France was made at least five times more likely by global warming
    Print ISSN: 0028-6664
    Electronic ISSN: 1364-8500
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    facet.materialart.
    Unknown
    Reed Business Information
    Publication Date: 2019
    Description: AIs don't think like children, but if they made a common assumption that children use whilst learning a language they would become better faster
    Print ISSN: 0028-6664
    Electronic ISSN: 1364-8500
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    facet.materialart.
    Unknown
    Reed Business Information
    Publication Date: 2019
    Description: Astro-ecologist Claire Burke uses her astrophysics knowledge to protect endangered species and stop poaching, and she loves to watch orangutans in Borneo
    Print ISSN: 0028-6664
    Electronic ISSN: 1364-8500
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2019
    Description: A schematic illustration of the assimilation windows employed by the ECMWF Long Window Data Assimilation (LWDA) system. Black dots represent observations distributed quasi‐randomly in time throughout the window. This study quantifies the extent to which the ECMWF 4D‐Var displays differential (heightened) sensitivity to observations located near the end of the 12‐hr assimilation time window compared to observations located near the start of the window. Using dedicated satellite data denial experiments, it is shown that the lattermost 3 hr of observations are significantly more influential on the quality of the assimilation and forecasting system than the first 3 hr of data. Furthermore, it is found that the last 3 hr of data even outperforms the 6 hr of data (i.e. twice the number of observations) located in the first half of the window. The heightened importance of late window data is discussed in terms of these measurements being our most up‐to‐date information on the atmosphere, but also their ability to provide additional dynamical information to the assimilation system via feature advection wind tracing. The implications of this sensitivity are discussed. Firstly, it leads to the existence of influential (late window) satellite orbits, the location of which can have a strong bearing on the impact of observations from different satellites in different regions. Secondly, this sensitivity reinforces the need for data providers to minimize dissemination delays to ensure that crucial late window data reach users in time to be assimilated. Finally, numerical weather prediction (NWP) centres (who run 4D systems) must ensure that these lattermost observations are being captured and used effectively. Some suggestions for this are proposed.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2019
    Description: The Netherlands is characterized by highly variable land use within a small area, and a strong influence of the North Sea on national climate. Devoid of significant topography, it is an excellent location for assessing the relative influence of various factors on fog occurrence in the absence of terrain effects. Using observations from a dense network of weather stations throughout the country, the climatology of fog in the Netherlands is assessed over a period of 45 years. On a national scale, inter‐annual variability is linked to changes in synoptic pressure‐gradient forcing. Within the country, a comprehensive in‐depth analysis of regional differences between fog occurrence is made, together with an assessment of local physical factors that could bias fog formation in one location over another. Regional variability is shown to be strongly related to the mesoscale influences of urbanization and the North Sea. In fact, some locations experience over twice as much fog as others. From this finding, a simple index is presented, which combines the water and urban fraction surrounding a station. This “Regionally Weighted Index” (RWI) is able to accurately sort the stations according to their relative fogginess. Its practical use is encouraged for assessing a given site's climatological favourability, even when in situ meteorological observations are unavailable. This article is protected by copyright. All rights reserved.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    facet.materialart.
    Unknown
    Reed Business Information
    Publication Date: 2019
    Description: Anti-vaccination views are often spread on YouTube, but new research suggests the site has begun to get a handle on its vaccine disinformation problem
    Print ISSN: 0028-6664
    Electronic ISSN: 1364-8500
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    facet.materialart.
    Unknown
    Reed Business Information
    Publication Date: 2019
    Description: Despite all the talk and target setting, emissions from existing and planned fossil fuel energy infrastructure will take the world well past the 1.5°C mark, unless we shut them down
    Print ISSN: 0028-6664
    Electronic ISSN: 1364-8500
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    facet.materialart.
    Unknown
    Reed Business Information
    Publication Date: 2019
    Description: The Mexican city of Guadalajara was hit by an unusual storm that left cars buried beneath 2 metres of hail – but we can’t say that climate change is responsible
    Print ISSN: 0028-6664
    Electronic ISSN: 1364-8500
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    facet.materialart.
    Unknown
    Reed Business Information
    Publication Date: 2019
    Description: After the interstellar asteroid ‘Oumuamua flew through our solar system in 2017, some researchers speculated it might be an alien ship - it’s very likely not
    Print ISSN: 0028-6664
    Electronic ISSN: 1364-8500
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2019
    Description: Abstract Reliable estimation of the volume and timing of snowmelt runoff is vital for water supply and flood forecasting in snow‐dominated regions. Snowmelt is often simulated using temperature‐index (TI) models due to their applicability in data‐sparse environments. Previous research has shown that a modified‐TI model, which uses a radiation‐derived proxy temperature instead of air temperature as its surrogate for available energy, can produce more accurate snow covered area (SCA) maps than a traditional TI model. However, it is unclear whether the improved SCA maps are associated with improved snow water equivalent (SWE) estimation across the watershed or improved snowmelt‐derived streamflow simulation. This paper evaluates whether a modified‐TI model produces better streamflow estimates than a TI model when they are used within a fully‐distributed hydrologic model. It further evaluates the performance of the two models when they are calibrated using either point SWE measurements or SCA maps. The Senator Beck Basin in Colorado is used as the study site because its surface is largely bedrock, which reduces the role of infiltration and emphasizes the role of the SWE pattern on streamflow generation. Streamflow is simulated using both models for six years. The modified‐TI model produces more accurate streamflow estimates (including flow volume and peak flow rate) than the TI model, likely because the modified‐TI model better reproduces the SWE pattern across the watershed. Both models also produce better performance when calibrated with SCA maps instead of point SWE data, likely because the SCA maps better constrain the space‐time pattern of SWE.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2019
    Description: Abstract The development of glacier karst at the margins of melting ice sheets produces complex glaciofluvial sediment‐landform assemblages that provide information on ice sheet downwasting processes. We present the first combined geomorphological, sedimentological and geophysical investigation of the Brampton Kame Belt, an important glaciofluvial depositional zone at the centre of the last British‐Irish Ice Sheet. Ground‐penetrating radar (GPR) data allow the broad scale internal architecture of ridges (eskers) and flat‐topped hills (ice‐walled lake plains) to be determined at four sites. In combination with sediment exposures, these provide information on lateral and vertical variations in accretion styles, depositional boundaries, and grain size changes. Building on existing work on the subject, we propose a refined model for the formation of ice‐walled lake plains resulting from the evolution and collapse of major drainage axes into lakes as stable glacier karst develops during deglaciation. The internal structure of esker ridges demonstrates variations in sedimentation that can be linked to differences in ridge morphologies across the kame belt. This includes low energy flow conditions and multiple accretion phases identified within large S‐N oriented esker ridges; and fluctuating water pressures, hyperconcentrated flows, and significant deformation within a fragmented SW‐NE oriented esker ridge. In combination with updated geomorphological mapping, this work allows us to identify two main styles of drainage within the kame belt: (1) major drainage axes aligned broadly S‐N that extend through the entire kame belt and collapsed into a chain of ice‐walled lakes; and (2) a series of smaller, fragmented SW‐NE aligned esker ridges that represent ice‐marginal drainage as the ice sheet receded south‐eastwards up the Vale of Eden. Our study demonstrates the importance of integrated geomorphological, sedimentological and geophysical investigations in order to understand complex and polyphase glaciofluvial sediment‐landform assemblages.
    Print ISSN: 0360-1269
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2019
    Description: Abstract Aims Phylogenetic endemism describes the extent to which unique phylogenetic lineages are constrained to restricted geographic areas. Previous studies indicate that species endemism is related to both past and modern climate, but studies of phylogenetic endemism are relatively rare and mainly focused on smaller regions. Here, we provide the first assessment of the patterns of species and phylogenetic endemism in angiosperm trees across the Northern Hemisphere as well as the relative importance of modern climate and glacial–interglacial climate change as drivers of these patterns. Location Northern Hemisphere. Major taxa Angiosperm trees. Methods Using tree assemblages at the scale of 100 km × 100 km grid cells and simultaneous autoregressive (SAR) models, we assessed the relationships between species endemism, phylogenetic endemism and modern climate variables, Last Glacial Maximum (LGM) to present temperature velocity. Results Species and phylogenetic endemism were associated with both modern climate and glacial–interglacial climate change, with higher values in areas with stable historical climate and warmer and wetter modern conditions. Notably, the multivariate SAR analyses showed that the combinations of variables with highest Akaike’s information criterion (AIC) weight always included both LGM–present climate instability and modern climate, that is, modern precipitation and temperature. Main conclusions Our results show that high phylogenetic endemism is partially dependent on long‐term climate stability, highlighting the threat posed by future climate changes to the preservation of rare, phylogenetically distinct lineages of trees.
    Print ISSN: 1466-822X
    Electronic ISSN: 1466-8238
    Topics: Biology , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2019
    Description: Abstract Oxygen deficient zones (ODZs) in the tropical ocean exert a profound influence on global biogeochemical cycles, but the factors that regulate their long‐term structure and sensitivity to oceanic change remain poorly understood. We analyzed hydrographic observations and a high‐resolution physical/biogeochemical model to diagnose the primary pathways that ventilate the tropical Pacific ODZs. Historical and recent autonomous observations reveal pronounced and widespread O2 peaks, termed secondary oxygen maxima (SOMs), within the depths of the broader O2 minimum layer, especially at the equatorward edge of both northern and southern ODZs. In the northern ODZ, Lagrangian particle tracking in an eddy‐permitting numerical model simulation attributes these features to intrusions of the Northern Subsurface Countercurrent along the equatorial edge of the ODZ. Zonal subsurface jets also ventilate the poleward edge of the northern ODZ but induce a smaller O2 flux and do not yield detectable SOMs. Along the ODZ's eastern boundary, oxygenation is achieved by the seasonal cycle of upwelling of low‐O2 water onto the continental shelf, followed by downwelling of O2‐replenished near‐surface waters back into the ODZ. Waters entering the northern Pacific ODZ originate from the extratropics in both hemispheres, but two thirds are from the Southern Hemisphere and arrive later and with a wider range of transit times. These results suggest that predicting future changes in the large Pacific ODZs will require a better understanding of the climate sensitivity of the narrow zonal jets and seasonal dynamics of coastal upwelling that supply their O2.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2019
    Description: Severe winter windstorms have become an increasingly common occurrence over recent decades in northwestern Europe. Although there exists considerable uncertainty, storminess is projected to increase in the future. On centennial to millennial time scales in particular, the mechanisms forcing storminess remain unsettled. We contribute to available palaeostorm records by reconstructing changes over the last 6670 years using a coastal peat sequence retrieved from the ombrotrophic Laphroaig bog on Islay, southwestern Scotland. We use a combination of ash content, grain size and elemental chemistry to identify periods of greater storminess, which are dated to 6605, 6290–6225, 5315–5085, 4505, 3900–3635, 3310–3130, 2920–2380, 2275–2190, 2005–1860, 1305–1090, 805–435 and 275 cal. a BP. Storm signals in the first half of the record up to ~3000 cal. a BP are mainly apparent in the grain‐size changes. Samples from this time period also have a different elemental signature than those later in the record. We speculate that this is due to receding sea levels and the consequent establishment of a new sand source in the form of dunes, which are still present today. The most significant events and strongest winds are found during the Iron Ages Cold Epoch (2645 cal. a BP), the transition into, and in the middle of, the Roman Ages Warm Period (2235 and 1965 cal. a BP) and early in the Little Ice Age (545 cal. a BP). The Laphroaig record generally agrees with regionally relevant peat palaeostorm records from Wales and the Outer Hebrides, although the relative importance of the different storm periods is not the same. In general, stormier periods are coeval with cold periods in the region as evidenced by parallels with increased ice‐rafted debris in the North Atlantic, highlighting that sea‐ice conditions could impact future storminess and storm track position.
    Print ISSN: 0300-9483
    Electronic ISSN: 1502-3885
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2019
    Description: Abstract This study aims at proposing novel approaches for integrating qualitative flow observations in a lumped hydrologic routing model and assessing their usefulness for improving flood estimation. Routing is based on a three‐parameter Muskingum model used to propagate streamflow in five different rivers in the United States. Qualitative flow observations, synthetically generated from observed flow, are converted into fuzzy observations using flow characteristic for defining fuzzy classes. A model states updating method and a model output correction technique are implemented. An innovative application of Interacting Multiple Models, which use was previously demonstrated on tracking in ballistic missile applications, is proposed as state updating method, together with the traditional Kalman filter. The output corrector approach is based on the fuzzy error corrector, which was previously used for robots navigation. This study demonstrates the usefulness of integrating qualitative flow observations for improving flood estimation. In particular, state updating methods outperform the output correction approach in terms of average improvement of model performances, while the latter is found to be less sensitive to biased observations and to the definition of fuzzy sets used to represent qualitative observations.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2019
    Description: Abstract The Sustainable Development Goals (SDGs) of the United Nations Agenda 2030 represent an ambitious blueprint to reduce inequalities globally and achieve a sustainable future for all mankind. Meeting the SDGs for water requires an integrated approach to managing and allocating water resources, by involving all actors and stakeholders, and considering how water resources link different sectors of society. To date, water management practice is dominated by technocratic, scenario‐based approaches that may work well in the short‐term, but can result in unintended consequences in the long‐term due to limited accounting of dynamic feedbacks between the natural, technical and social dimensions of human‐water systems. The discipline of socio‐hydrology has an important role to play in informing policy by developing a generalizable understanding of phenomena that arise from interactions between water and human systems. To explain these phenomena, socio‐hydrology must address several scientific challenges to strengthen the field and broaden its scope. These include engagement with social scientists to accommodate social heterogeneity, power relations, trust, cultural beliefs, and cognitive biases, which strongly influence the way in which people alter, and adapt to, changing hydrological regimes. It also requires development of new methods to formulate and test alternative hypotheses for the explanation of emergent phenomena generated by feedbacks between water and society. Advancing socio‐hydrology in these ways therefore represents a major contribution towards meeting the targets set by the SDGs, the societal grand challenge of our time.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2019
    Description: Abstract Field data of topography, water levels, and peat hydraulic conductivity collected over a 28‐year period have revealed the impacts of marginal drainage on uncut raised bog ecohydrology and its peat properties. Drainage of the regional groundwater body has induced changes in the hydraulic properties of deep peat, with peat compression decreasing hydraulic conductivity and storativity while simultaneously introducing localized secondary porosity and effective storage. Where peat has increased in hydraulic conductivity, there is a corresponding decline in vertical hydraulic gradients and significant localized increases in recharge to the underlying substrate. Repeated topographic surveys show intense localized areas of peat consolidation (〉5%) where it is underlain by highly permeable (〉10 m/day) glacial till deposits. More widely, continued subsidence (4–6 mm/year) of the bog surface has been measured over 900 m from the bog margin, resulting in the progressive loss of approximately 40% of actively growing raised bog since 1991. This loss has thus been shown to be attributable to changes in the underlying groundwater head due to deep‐cut drainage, rather than near‐surface peatland drainage. However, although reinstating regional hydrostatic pressures in order to restore this ombrotrophic peatland may control the rapid drainage through preferential flow pathways, this may not eliminate the ecological impacts resulting from changed surface morphology arising from subsidence. Hence, this longitudinal study provides new insights into the role that aquifer systems and groundwater bodies play in maintaining hydrogeological processes in ombrotrophic peatland systems, while highlighting the difficulty in ecological restoration where regional groundwater dependencies are significant.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2019
    Description: Abstract Crustal extension is commonly thought to be accommodated by faults that strike orthogonal and obliquely to the regional trend of the minimum compressive stress (σ3). Activation of oblique faults can, however, be conceptually problematic as under Andersonian faulting, it requires preexisting crustal weaknesses, high fluid pressures, and/or stress rotations. Furthermore, measurements of incremental fault displacements, which are typically used to identify oblique faulting, do not necessarily reflect regional stresses. Here, we assess oblique faulting by calculating the stress ratio (σ3/σ1, where σ1 is the maximum compressive stress), slip tendency, and effective coefficient of friction (μs′) required to reactivate variably striking normal faults under different trends of σ3. We apply this analysis to NW and NNE striking active faults at the southern end of the Malawi Rift, where NE‐SW, ENE‐WSW, E‐W, and SE‐NW σ3 trends have previously been proposed. A uniform σ3 trend is inferred for this region as recent joints sets do not rotate along the rift. With a NE‐SW trending σ3, NW‐striking faults are well oriented, however, NNE‐striking faults require μs′ 〈 0.6 to reactivate. This is inconsistent with a lack of frictionally weak phyllosilicates detected in the fault zone rocks. With an ENE‐WSW to E‐W trending σ3, all faults can reactivate at μs′ 〉 0.55. These σ3 trends are also comparable to a focal mechanism stress inversion, regional joint orientations, and previously reported geodetically derived extension directions. We therefore conclude that unlike typical models of oblique rifting, the southern Malawi Rift consists of faults that all strike slightly oblique to σ3.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2019
    Description: Abstract Ahyi seamount, a shallow submarine volcano in the Northern Mariana Islands, began erupting on 23 April 2014. Hydroacoustic eruption signals were observed on the regional Mariana seismic network and on distant hydrophones, and National Oceanic and Atmospheric Administration (NOAA) scuba divers working in the area soon after the eruption began heard and felt underwater explosion sounds. The NOAA crew observed yellow‐orange bubble mats along the shore of neighboring Farallon de Pájaros Island, but no other surface manifestations of the eruption were reported by the crew or observed in satellite data. Here, we detail the eruption chronology and its morphologic impacts through analysis of seismic and hydroacoustic recordings and repeat bathymetric mapping. Throughout the 2‐week‐long eruption, Ahyi produced several thousand short, impulsive hydroacoustic signals that we interpret as underwater explosions as well as tremor near the beginning and end of the sequence. The initial tremor, which occurred for 2 hr, is interpreted as small phreatomagmatic explosions. This tremor was followed by a 90‐min pause before the characteristic impulsive signals began. Occasional tremor (lasting up to a few minutes) during the last 1.5 days of the eruption is interpreted as more sustained eruptive activity. Bathymetric changes show that a new crater, about 150 m deep, formed near the former summit and a large landslide chute formed on the southeastern flank. Comparing to other geophysically detected submarine eruptions, we find that the signals from the 2014 Ahyi eruption were more similar to those from other shallow or at‐surface submarine eruptions than those at deep (〉500 m) eruptions.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2019
    Description: Abstract Seismic anisotropy records past and present tectonic deformations and provides important constraints for understanding the structure and dynamics of the Earth's interior. In this work, we use tremendous amounts of high‐quality P wave arrival times from local and regional earthquakes to determine a high‐resolution tomographic model of 3‐D P wave azimuthal anisotropy down to 1,000‐km depth beneath East Asia. Our results show that trench‐parallel fast‐velocity directions (FVDs) are visible in the shallow portion of the subducting Pacific slab (〈80 km), whereas the deeper portion of the Pacific slab mainly exhibits trench‐normal FVDs, except for the stagnant slab in the mantle transition zone (MTZ) where obvious NE‐SW FVDs are revealed. The FVDs in the subslab mantle change from a subduction‐parallel trend at depths of 80–400 km to a subduction‐normal trend in the MTZ. Large‐scale low‐velocity anomalies are revealed beneath the Philippine Sea plate where the FVD is NE‐SW. The FVDs along the Izu‐Bonin arc and in a slab gap exhibit a striking anticlockwise toroidal trend. All these features may reflect complex 3‐D flows in the mantle wedge due to tearing and dehydration processes of the subducting Pacific slab. The subducting Pacific slab is split at ~300‐km depth under the Bonin arc and then penetrates into the lower mantle, whereas under East Asia the Pacific slab becomes stagnant in the MTZ and reaches the North‐South Gravity Lineament in China. The intraplate volcanoes in East Asia are caused by hot and wet upwelling flows in the big mantle wedge above the stagnant Pacific slab.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2019
    Description: Abstract We determine mass transport and structural properties of binary liquid iron alloys over a wide density (5.055–11.735 g·cm−3) and temperature range (2,500–6,500 K) using first‐principles molecular dynamics. Compositions consist of 96 at% Fe and 4 at% ϕ, where ϕ = H, C, N, O, Mg, Si, S, or Ni. Self‐diffusion coefficients (D) of Fe and ϕ range from 3.5·10−9 to 1.9·10−7 m2·s−1. Results show a relation between mean atomic radius and diffusivity ratio for the alloying element and iron: Si and Ni are “iron‐like” with similar atomic radii and D compared with those of Fe; H, C, N, O, and S are “small non‐iron‐like” with smaller atomic radii and larger D; and Mg transitions from “large non‐iron‐like” with a larger atomic radius and smaller D at low density to iron‐like under conditions of the Earth's core. The effect of pressure on D for C, N, and O is negligible for densities below ~8 g·cm−3, accompanied by an increase in average coordination numbers to ~6, and an increase in mean atomic radii. For densities above ~8 g·cm−3, diffusivities and atomic radii of these elements decrease monotonically with pressure, which is typical for the iron‐like alloying elements as well as for H, Mg, and S over the whole compression range. While atomic radius ratios move toward unity with compression, diffusivity ratios for the alloying element relative to iron tend to increase for the “non‐iron‐like” elements with density.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2019
    Description: Atmospheric angular momentum (AAM) is a quantity related to the global distributions of surface pressure and zonal wind. We found that the AAM has increased in the 20th century, mainly due its zonal wind component. However, the AAM budget in the ERA‐20C reanalysis is not well‐closed, which can be largely attributed to the analysis increments. It is well known that global warming in the 20th century has influenced the global circulation of the atmosphere. Atmospheric angular momentum (AAM), a measure of the rotation of the atmosphere around the Earth's axis, is a useful quantity to investigate changes in the global atmospheric circulation. In this study, 20th century trends in the AAM budget are determined using the ERA‐20C reanalysis data of the European Centre for Medium‐Range Weather Forecasts (ECMWF). In addition, the closure of the AAM budget is determined to assess the ability of ERA‐20C to conserve angular momentum. The total AAM has increased in the 20th century, associated mainly with an increasing relative (zonal wind) AAM in most of the stratosphere and the tropical upper troposphere, and a poleward redistribution in the midlatitudes. These trends can be related to the warming in the troposphere and cooling in the lower stratosphere found in this study, likely caused by increasing atmospheric CO2 concentrations. The Ω‐AAM, representing the rotation of the atmosphere along with the Earth, shows no clear trend, but a spurious peak around 1920. This peak is caused by a global increase in surface pressure and is considered an artefact of changes in the amount of assimilated observations. It is also found that the AAM budget is not well closed in ERA‐20C, which is mainly the result of the assimilation of observations during production of the reanalysis. The trends in the AAM budget in ERA‐20C are likely affected by changes in the number of assimilated observations and should be validated with other reanalyses in further research.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2019
    Description: (a) Radar at [0800 UTC‐1100 UTC] on 30 October, (b) neighbourhood ensemble probability (NEP) of accumulated rainfall 0800‐1100 UTC on 30 October to exceed rain amounts of 6 mm over the 3 h for EC‐SINGV, and (c) UM‐SINGV. The simulations are initialized at 1500 UTC 29 October. A convective‐scale ensemble system was developed to predict the occurrence of heavy convective rainfall around Singapore with a focus on the prediction of high‐impact events. The new ensemble SINGV‐EPS has been nested within two global ensembles, MOGREPS‐G (UK Met Office) and EC‐ENS (ECMWF). Predicting the occurrence of convective rainfall in an area such as Singapore is challenging and this article discusses the use of the convection‐permitting ensemble to characterize the uncertainties in the prediction of such localized heavy rainfall. First, verification of wind, temperature, and precipitation is performed for a month‐long period to assess the relative performance of each ensemble. This reveals differences, but no robust signal to say one is better than the other. The results are not statistically significant and not all variables are consistently better with one ensemble or the other. Secondly, the precipitation characteristics of SINGV‐EPS are analysed from probabilities of precipitation and variability among the ensemble members. SINGV‐EPS is sensitive to the choice of the global ensemble providing the initial conditions and boundaries. The results suggest there is benefit, in some cases, from combining the two ensembles. Thirdly, the spread of the ensemble precipitation is analysed using the dispersion Fractions Skill Score (dFSS). We compare the impact of the initial perturbations and the perturbations in lateral boundary conditions in both nesting options. The initial perturbations dominate in the beginning of the forecasts, with influence up to T+24 h, and are associated with an upscale growth of the uncertainties. The impact of the parent ensemble and lateral boundary conditions dominate at the end of the forecast and tend to influence larger scales more.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2019
    Description: This study describes different processes leading to heat waves in Europe. Employing backward trajectories, three clusters with coherent thermodynamic characteristics and vertical motions are identified. In two of the three clusters, subsidence is of first‐order importance for high near‐surface temperatures, whereas the third cluster is primarily heated diabatically due to surface sensible heat fluxes. Western Russia, in particular, is largely affected by remote surface fluxes, whereas the British Isles are largely affected by subsidence and adiabatic warming. This study presents a comprehensive analysis of processes determining heat waves across different climates in Europe for the period 1979–2016. Heat waves are defined using a percentile‐based index and the main processes quantified along trajectories are adiabatic compression by subsidence and local and remote diabatic processes in the upper and lower troposphere. This Lagrangian analysis is complemented by an Eulerian calculation of horizontal temperature advection. During typical summers in Europe, one or two heat waves occur, with an average duration of five days. Whereas high near‐surface temperatures over Scandinavia are accompanied by omega‐like blocking structures at 500 hPa, heat waves over the Mediterranean are connected to comparably flat ridges. Tracing air masses backwards from the heat waves, we identify three trajectory clusters with coherent thermodynamic characteristics, vertical motions, and geographic origins. In all regions, horizontal temperature advection is almost negligible. In two of the three clusters, subsidence in the free atmosphere is very important in establishing high temperatures near the surface, while the air masses in the third cluster are warmed primarily due to diabatic heating near the surface. Large interregional differences occur between the British Isles and western Russia. Over the latter region, near‐surface transport and diabatic heating appear to be very important in determining the intensity of the heat waves, whereas subsidence and adiabatic warming are of first‐order importance for the British Isles. Although the large‐scale pattern is quasistationary during heat wave days, new air masses are entrained steadily into the lower troposphere during the life cycle of a heat wave. Overall, the results of the present study provide a guideline as to which processes and diagnostics weather and climate studies should focus on to understand the severity of heat waves.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2019
    Description: We investigate persistent low‐frequency variability of the stratospheric winter polar vortex in a rotating spherical shallow‐water model under the action of topographic wave‐forcing and radiative cooling to a simple time‐varying equilibrium state representative of the seasonal cycle in solar heating. A range of modes of variability is obtained, dependent on wave forcing amplitude and characterized by the distribution of quiescent and disturbed winters, defined as winters in which the vortex is either close to radiative equilibrium, with low planetary wave amplitude, or else strongly disturbed from equilibrium by the wave forcing. At low forcing amplitude the vortex is typically quiescent every year, while at higher amplitude it is typically disturbed; in both cases there is little year‐to‐year variation of the vortex state. For a range of intermediate forcing amplitudes, however, the vortex transitions between quiescent and disturbed states from one winter to the next with a persistent and well‐defined pattern of variability. To investigate the extent to which the low‐frequency variability found here may be explained in terms of a low‐latitude flywheel mechanism, we conduct additional experiments varying a linear drag on the zonal mean flow in the tropics and find that sufficiently strong drag can completely suppress the variability. The robustness of the variability is demonstrated by further experiments using a modified radiative equilibrium profile, associated with a tropical westerly flow: similar variability is obtained but the modified profile is less effective at constraining the tropical flow from a persistent easterly acceleration. This article is protected by copyright. All rights reserved.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2019
    Description: Two areas – one over the eastern part of the North Atlantic (a) and one over the Baltic Sea (b) – were identified as locations where blocking influences the occurrence of thunderstorms in parts of western and central Europe. Shown is the relative frequency of cases investigated in the study quantifying how often (a) blocking suppresses and (b) blocking supports thunderstorm days in Europe. A statistically significant link is presented between atmospheric blocking located over the eastern North Atlantic and northern Europe and warm‐season thunderstorm activity over western and central Europe. Lightning data from 2001 to 2014 were used to identify thunderstorm days and blocking events were extracted from the ERA‐Interim reanalysis using an objective identification algorithm. The statistical link between the two phenomena is established through odds ratio analysis. Two areas – one over the eastern part of the North Atlantic and one over the Baltic Sea – were identified as locations where blocking influences the occurrence of deep moist convection in parts of western and central Europe. Based on the mean ambient conditions on days with blocking in these two areas, well‐known dynamic and thermodynamic mechanisms supporting or suppressing the development of thunderstorms were confirmed. The anticyclonic circulation of a block over the eastern part of the North Atlantic leads to a northerly to northwesterly advection of dry and stable air masses into Europe on the eastern flank of the block. In addition, these environmental conditions are on average associated with large‐scale subsidence of air masses (convection‐inhibiting conditions). In contrast, the southerly to southwesterly advection of warm, moist and unstable air masses on the western flank of a block over the Baltic Sea results in convection‐favouring conditions over western and central Europe. Both blocking situations are on average associated with weak wind speeds at mid‐tropospheric levels and with weak wind shear. As a consequence, thunderstorms related to atmospheric blocking over the Baltic Sea tend to be on average less organised.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2019
    Description: Tropical convective systems are major sources of atmospheric gravity waves (GWs). These waves are a key driver of the global atmospheric circulation, especially in the middle and upper atmosphere. Tropical cyclones (TCs) such as hurricanes and typhoons are particularly dramatic examples of such systems, and are therefore potentially significant individual sources of GWs. To investigate this effect, I produce and analyse GW observations from three satellite limb‐sounders in the vicinity of TCs. By statistically combining 15 years of GW observations from 1 379 individual TCs represented in the International Best Track Archive for Climate Stewardship, I show that TCs are associated with a 15% increase over background GW amplitudes, and a 25% increase in measured momentum fluxes (MFs), primarily during the period immediately before the TC. I further show that this additional contribution is small relative to other GW‐generating processes, and thus that individual TCs do not have a large quantitative effect on the dynamics of the middle and upper atmosphere as a whole. Thus, I conclude that accurate modelling of TC‐generated short‐vertical‐wavelength GWs need not be a development priority for the next generation of weather and climate models. My results also demonstrate that stronger GW activity is associated with TCs which will later develop into hurricane‐intensity storms than those that will not, and thus that better space‐based monitoring of stratospheric GW activity could be a useful tool to help better forecast strong hurricane events in the presence of obscuring tropospheric cloud. Gravity waves, tropical cyclones, satellites, remote sensing, stratosphere, mesosphere This article is protected by copyright. All rights reserved.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2019
    Description: Abstract The mismatch between water demand and water availability in many megacities poses vexing water management challenges. Managers are forced to take remedial efforts to address these challenges, often with a heavy focus on infrastructure solutions such as building reservoirs or interbasin transfers to meet demand, which may in fact exacerbate the problem through unintended consequences that arise from neglect of social, economic, and environmental factors. Such a situation awaits Beijing, China, which faces major water management challenges in spite of the addition of a large interbasin transfer to meet increasing demand. In this study, a sociohydrologic model is developed for investigating Beijing's future water sustainability from a holistic and dynamic perspective. Using the model, we first explore the sociohydrologic mechanisms that contributed to Beijing's worsening water situation during 1988–2014. We then use the model to assess possible future impacts of the South to North Water Diversion Project on Beijing's water supply prospects for the 2015–2035 period. Alternative futures are explored by combining three different sustainable management strategies. The model results show that the source of Beijing's dominant water pressure experienced a transformation from productive to domestic water use over the last 30 years. They also indicate that the transfer water via South to North Water Diversion Project cannot fundamentally reverse Beijing's water shortage in the long term and that demand‐oriented management measures will be required for alleviating the city's water stress. These findings provide guidance not only for Beijing's water management but also for other less developed cities around the world.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2019
    Description: Abstract Nitrification is susceptible to changes in light and pH and, thus, could be influenced by recent sea ice reductions and acidification in the Arctic Ocean. We investigated the sensitivity of nitrification to light, pH, and substrate availability in a natural nitrifier community of the Arctic Ocean. Nitrification was active near the bottom of the shelf region (〈60 m) and in the halocline layer (50–200 m) of the Arctic basin, where ammonium was abundant, but was low in the ammonium‐depleted Atlantic layer (〉250 m). In pH control experiments, nitrification rates significantly declined when the pH was manipulated to be 0.22 lower than the controls. However, nitrification was relatively insensitive to changes in pH compared to changes in light. Light control experiments showed that nitrification was inhibited by a light intensity above 0.11 mol photons m−2 day−1, which was presumably the light threshold. A light intensity greater than the light threshold extended to the shelf bottom and upper halocline layer, limiting nitrification in these waters. Satellite data analyses indicated that the area where light levels inhibit nitrification has increased throughout the Arctic Ocean due to the recent sea ice reduction, which may lead to a declining trend in nitrification. Our results suggest that stronger light levels in the future Arctic Ocean could further suppress nitrification and alter the composition of inorganic nitrogen, with implications for the structure of ecosystems.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2019
    Description: Abstract The stable longitudinal dunes in the northern Simpson Desert, Australia, were observed in satellite imagery to become more active after vegetation cover was reduced by fire and drought. Subsequent rainfall events also resulted in significant vegetation regrowth and dune stabilisation. These switches between more active and stable conditions have not been previously described in the largely vegetated dune fields of central Australia. The observations, made on 12 dune sites, relied on high spatial resolution satellite imagery to observe dune crest activity, and seasonal Landsat fractional cover imagery to observe vegetation cover changes. The non‐photosynthetic vegetation (NPV) component of the fractional vegetation cover images revealed significant changes in hummock grass cover on the dunes between 1988‐2018, with a positive relationship with the 3‐year cumulative rainfall, disrupted by two periods of patchy burning. Only those sites that had burnt became active, and only after vegetation cover had remained low (NPV 〈 16%) during the ‘Millennium Drought’. There is no threshold in vegetation cover, below which dune crests become active, but active dune features require 4‐years of low NPV cover (〈16%) to develop. The large rainfall event that ended the drought increased NPV cover, stabilising the dunes. Similar hummock grass covered dunes are present across large areas of the arid zone, and are likely to respond in similar ways, given that fire and drought are common occurrences in Australia.
    Print ISSN: 0360-1269
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2019
    Description: Abstract The data assimilation scheme used in the Met Office's OSTIA (Operational Sea Surface Temperature and Ice Analysis) system has been updated from an OI‐type scheme to a variational assimilation scheme, NEMOVAR. The updated system includes a dual length scale background error correlation operator, and a flow‐dependent component to adjust the length scale combination in favour of the short scale in regions of high sea surface temperature (SST) variability. The NEMOVAR assimilation scheme improves both the analysis performance and the representation of SST features in the OSTIA analysis compared to the OI scheme of the original system. The results of spectral analysis, assessment of horizontal SST gradients and the response of an atmospheric model to the OSTIA SST analysis as a boundary condition indicate that the flow‐dependent formulation successfully contributes to improvements in the feature resolution capability of the analysis. Overall, using a short length scale of 15 km and including a flow‐dependent adjustment component produces the best results compared to using either 40 km or the first Rossby radius of deformation as the short length scale. The new system successfully captures realistic ocean variability without introducing noise into the analysis, allowing the feature resolution capability of the new system to out‐perform that of other comparable SST analysis products. This article is protected by copyright. All rights reserved.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2019
    Description: Abstract Thermal regime and thickness of the active layer respond rapidly to climate variations, and thus they are important measures of cryosphere changes in polar environments. We monitored air temperature and ground temperature at a depth of 5 cm and modeled active‐layer thickness using the Stefan and Kudryavtsev models at the Abernethy Flats site, James Ross Island, Eastern Antarctic Peninsula, in the period March 2006 to February 2016. The decadal average of air and ground temperature was −7.3 and −6.1°C, respectively, and the average modeled active‐layer thickness reached 60 cm. Mean annual air temperature increased by 0.10°C y−1 over the study period, while mean annual ground temperature showed the opposite tendency of −0.05°C y−1. The cooling took place mainly in summer and caused thawing season shortening and active‐layer thinning of 1.6 cm y−1. However, these trends need to be taken carefully because all were non‐significant at p 〈 0.05. The Stefan and Kudryavtsev models reproduced the active‐layer thickness with mean absolute errors of 2.6 cm (5.0%) and 3.4 cm (5.9%), respectively, which is better than in most previous studies, making them promising tools for active‐layer modeling over Antarctica.
    Print ISSN: 1045-6740
    Electronic ISSN: 1099-1530
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    facet.materialart.
    Unknown
    Reed Business Information
    Publication Date: 2019
    Description: Artist Olafur Eliasson, who brought the sun to Tate Modern's turbine hall in 2003, returns with In Real Life, a new exhibition featuring incredible installations. We quiz him on selfies, short-term thinking and the climate reckoning to come
    Print ISSN: 0028-6664
    Electronic ISSN: 1364-8500
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    facet.materialart.
    Unknown
    Reed Business Information
    Publication Date: 2019
    Description: Postmenopausal women with high social stress and poor relationships may be at higher risk of bone fractures due to stress hormones lowering bone density
    Print ISSN: 0028-6664
    Electronic ISSN: 1364-8500
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    facet.materialart.
    Unknown
    Reed Business Information
    Publication Date: 2019
    Description: Helium's essential for party balloons, but also for MRI scanners, physics experiments and space rockets. But supplies on Earth are getting dangerously low, warns Chanda Prescod-Weinstein
    Print ISSN: 0028-6664
    Electronic ISSN: 1364-8500
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    facet.materialart.
    Unknown
    Reed Business Information
    Publication Date: 2019
    Description: A survey of people aged 18 to 25 found that women are more interested in the quality of their sexual encounters, while men are more focused on quantity
    Print ISSN: 0028-6664
    Electronic ISSN: 1364-8500
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    facet.materialart.
    Unknown
    Reed Business Information
    Publication Date: 2019
    Description: A lack of cooking skills has been linked to eating poorer diets, but a study of culinary students has found kitchen skills don't always lead to a better diet
    Print ISSN: 0028-6664
    Electronic ISSN: 1364-8500
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    facet.materialart.
    Unknown
    Reed Business Information
    Publication Date: 2019
    Description: When goats were played a recording of a "happy" animal bleating, they noticed when there was a shift to "sad" bleats in the recording, and vice versa
    Print ISSN: 0028-6664
    Electronic ISSN: 1364-8500
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    facet.materialart.
    Unknown
    Reed Business Information
    Publication Date: 2019
    Description: Women who are genetically at risk for ovarian cancer have lower levels of protective strains of bacteria, similar to women who have the disease
    Print ISSN: 0028-6664
    Electronic ISSN: 1364-8500
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    facet.materialart.
    Unknown
    Reed Business Information
    Publication Date: 2019
    Description: Are carbs good for you? Or eggs? Every week seems to bring contradictory new diet advice. New Scientist unpicks the surprising flaws in nutritional science
    Print ISSN: 0028-6664
    Electronic ISSN: 1364-8500
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    facet.materialart.
    Unknown
    Wiley
    Publication Date: 2019
    Description: Front cover: The cover image is based on the Original Article The herbivorous fish family Kyphosidae (Teleostei: Perciformes) represents a recent radiation from higher latitudes by Steen Knudsen et al., https://doi.org/10.1111/jbi.13634.
    Print ISSN: 0305-0270
    Electronic ISSN: 1365-2699
    Topics: Biology , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2019
    Description: Abstract Aim The geographic range and ecological niche of species are widely used concepts in ecology, evolution and conservation and many modelling approaches have been developed to quantify each. Niche and distribution modelling methods require a litany of design choices; differences among subdisciplines have created communication barriers that increase isolation of scientific advances. As a result, understanding and reproducing the work of others is difficult, if not impossible. It is often challenging to evaluate whether a model has been built appropriately for its intended application or subsequent reuse. Here, we propose a standardized model metadata framework that enables researchers to understand and evaluate modelling decisions while making models fully citable and reproducible. Such reproducibility is critical for both scientific and policy reports, while international standardization enables better comparison between different scenarios and research groups. Innovation Range modelling metadata (RMMS) address three challenges: they (a) are designed for convenience to encourage use, (b) accommodate a wide variety of applications, and (c) are extensible to allow the research community to steer them as needed. RMMS are based on a metadata dictionary that specifies a hierarchical structure to catalogue different aspects of the range modelling process. The dictionary balances a constrained, minimalist vocabulary to improve standardization with flexibility for users to modify and extend. To facilitate use, we have developed an R package, rangeModelMetaData, to build templates, automatically fill values from common modelling objects, check for inconsistencies with standards, and suggest values. Main conclusions Range Modelling Metadata tools foster cross‐disciplinary advances in biogeography, conservation and allied disciplines by improving evaluation, model sharing, model searching, comparisons and reproducibility among studies. Our initially proposed standards here are designed to be modified and extended to evolve with research trends and needs.
    Print ISSN: 1466-822X
    Electronic ISSN: 1466-8238
    Topics: Biology , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2019
    Description: Abstract Aim To test two prominent, alternate hypotheses that provide explanations for the great accumulation of endemic species in the Kimberley bioregion in north‐western Australia, using an extensively sampled, region wide phylogeny of northern Australia's most species‐rich freshwater fish family, Terapontidae. Specifically, we test whether the Kimberley may act as (1) a “museum” accumulating taxa and endemic species over time or (2) a “cradle” of more recent diversification and neoendemism. Location The Australian monsoonal tropics. Taxon Grunters (Terapontidae). Methods We obtained a robust and well‐supported Bayesian phylogeny for the family using DNA sequences from mtDNA and nuclear gene regions. We performed molecular phylogenetic analyses using species tree methods including molecular dating analysis, ancestral range reconstruction and diversification analysis. Results Based on our phylogeny, the combined molecular clock estimates and likelihood‐based historical‐biogeographic reconstructions suggest that terapontids recently transitioned into the Kimberley from the east during the late‐Miocene. We found that 80% of Kimberley terapontids diversified within the Kimberley in the last 3 Ma. Furthermore, diversification analyses identified a single significant shift in diversification rates ~1.4 Ma that corresponds with a change in global climate midway through the Pleistocene that was predominantly driven by speciation in the Kimberley. Main conclusions The weight of evidence suggests that the Kimberley has been a “cradle” of evolution for Terapontidae, rather than a “museum”. Our analysis provides strong evidence for a geologically recent transition of terapontids into the Kimberley from regions to the east during the late‐Miocene followed by a significant increase in speciation rates during the Pleistocene, driven by speciation in the Kimberley. The results provide important insight into the evolutionary and biogeographical processes that have shaped the regions unique biota, which will inform land managers working to protect and conserve both species and the processes responsible for generating and sustaining them.
    Print ISSN: 0305-0270
    Electronic ISSN: 1365-2699
    Topics: Biology , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2019
    Description: Abstract Aim Predicting future changes in species richness in response to climate change is one of the key challenges in biogeography and conservation ecology. Stacked species distribution models (S‐SDMs) are a commonly used tool to predict current and future species richness. Macroecological models (MEMs), regression models with species richness as response variable, are a less computationally intensive alternative to S‐SDMs. Here, we aim to compare the results of two model types (S‐SDMS and MEMs), for the first time for more than 14,000 species across multiple taxa globally, and to trace the uncertainty in future predictions back to the input data and modelling approach used. Location Global land, excluding Antarctica. Taxon Amphibians, birds and mammals. Methods We fitted S‐SDMs and MEMs using a consistent set of bioclimatic variables and model algorithms and conducted species richness predictions under current and future conditions. For the latter, we used four general circulation models (GCMs) under two representative concentration pathways (RCP2.6 and RCP6.0). Predicted species richness was compared between S‐SDMs and MEMs and for current conditions also to extent‐of‐occurrence (EOO) species richness patterns. For future predictions, we quantified the variance in predicted species richness patterns explained by the choice of model type, model algorithm and GCM using hierarchical cluster analysis and variance partitioning. Results Under current conditions, species richness predictions from MEMs and S‐SDMs were strongly correlated with EOO‐based species richness. However, both model types over‐predicted areas with low and under‐predicted areas with high species richness. Outputs from MEMs and S‐SDMs were also highly correlated among each other under current and future conditions. The variance between future predictions was mostly explained by model type. Main conclusions Both model types were able to reproduce EOO‐based patterns in global terrestrial vertebrate richness, but produce less collinear predictions of future species richness. Model type by far contributes to most of the variation in the different future species richness predictions, indicating that the two model types should not be used interchangeably. Nevertheless, both model types have their justification, as MEMs can also include species with a restricted range, whereas S‐SDMs are useful for looking at potential species‐specific responses.
    Print ISSN: 0305-0270
    Electronic ISSN: 1365-2699
    Topics: Biology , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2019
    Description: The Arctic is a hotspot for climate change, which is affecting populations in complex ways since it impacts the entire Arctic food web. In this Arctic goose population, rapid climate change benefits early stages of reproduction through advanced snow melt and vegetation green‐up, but this is counteracted by changes at other trophic levels, also caused by climate change. Processes at non‐breeding sites affect goose reproduction and survival directly and via carryover effects. This highlights the importance of holistic approaches, studying all migratory stages, when predicting climate change effects. These counteracting effects contributed to stabilizing population growth at the Arctic breeding grounds. Abstract Climate change is most rapid in the Arctic, posing both benefits and challenges for migratory herbivores. However, population‐dynamic responses to climate change are generally difficult to predict, due to concurrent changes in other trophic levels. Migratory species are also exposed to contrasting climate trends and density regimes over the annual cycle. Thus, determining how climate change impacts their population dynamics requires an understanding of how weather directly or indirectly (through trophic interactions and carryover effects) affects reproduction and survival across migratory stages, while accounting for density dependence. Here, we analyse the overall implications of climate change for a local non‐hunted population of high‐arctic Svalbard barnacle geese, Branta leucopsis, using 28 years of individual‐based data. By identifying the main drivers of reproductive stages (egg production, hatching and fledging) and age‐specific survival rates, we quantify their impact on population growth. Recent climate change in Svalbard enhanced egg production and hatching success through positive effects of advanced spring onset (snow melt) and warmer summers (i.e. earlier vegetation green‐up) respectively. Contrastingly, there was a strong temporal decline in fledging probability due to increased local abundance of the Arctic fox, the main predator. While weather during the non‐breeding season influenced geese through a positive effect of temperature (UK wintering grounds) on adult survival and a positive carryover effect of rainfall (spring stopover site in Norway) on egg production, these covariates showed no temporal trends. However, density‐dependent effects occurred throughout the annual cycle, and the steadily increasing total flyway population size caused negative trends in overwinter survival and carryover effects on egg production. The combination of density‐dependent processes and direct and indirect climate change effects across life history stages appeared to stabilize local population size. Our study emphasizes the need for holistic approaches when studying population‐dynamic responses to global change in migratory species.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2019
    Description: Abstract The dynamic system response curve (DSRC) method has been shown to effectively use error feedback correction to obtain updated areal estimates of mean rainfall and thereby improve the accuracy of real‐time flood forecasts. In this study, we address two main shortcomings of the existing method. First, ridge estimation is used to deal with ill‐conditioning of the normal equation coefficient matrix when the method is applied to small basins, or when the length of updating rainfall series is short. Second, the effects of spatial heterogeneity of rainfall on rainfall error estimates are accounted for using a simple index. The improved performance of the method is demonstrated using both synthetic and real data studies. For smaller basins with relatively homogeneous spatial distributions of rainfall, the use of ridge regression provides more accurate and robust results. For larger‐scale basins with significant spatial heterogeneity of rainfall, spatial rainfall error updating provides significant improvements. Overall, combining the two strategies results in the best performance for all cases, with the effects of ridge estimation and spatially distributed updating complementing each other.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2019
    Description: Abstract Understanding how spatial variability in stream discharge and water chemistry decrease with increasing catchment area is required to improve our ability to predict hydrological and biogeochemical processes in ungauged basins. We investigated differences in this decrease of variability with increasing catchment area among catchments, and among specific discharge (Qs) and water chemistry parameters. We defined the slope of the decrease in the variability with increasing catchment area as the rate of decrease in the standard deviation and coefficient of variation (δSD and δCV, respectively), both of which are −0.5 for the simple mixing of random variables (random mixing). All δSD and δCV values of Qs were less than −0.5, while those of most water chemistry values were greater than −0.5, indicating that with increased catchment area the spatial variability of Qs decreased more steeply than for random mixing, while for water chemistry they decreased less steeply. δSD and δCV had linear relationships with both the spatial dissimilarity index and relative changes in parameters’ mean values with increasing catchment area. It suggested that differences in δSD or δCV for Qs and water chemistry can be explained by the different spatial structures, where dissimilar values of Qs and similar values of water chemistry, respectively, are located close together in space. Differences in δSD and δCV according to Qs and water chemistry should significantly affect the determination of representative elementary area (REA), and therefore need to be considered when predicting REA from spatial variability of low‐order streams.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2019
    Description: Abstract The Ensemble Kalman Filter (EnKF) has been proved as a useful algorithm to merge coarse resolution Gravity Recovery and Climate Experiment (GRACE) data with hydrologic model results. However, in order for the EnKF to perform optimally a correct forecast error covariance is needed. The EnKF estimates this error covariance through an ensemble of model simulations with perturbed forcing data. Consequently a correct specification of perturbation magnitude is essential for the EnKF to work optimally. To this end, an Adaptive EnKF (AEnKF), a variant of the EnKF with an additional component that dynamically detects and corrects error misspecifications during the filtering process, has been applied. Due to the low spatial and temporal resolution of GRACE data, the efficiency of this method could be different than for other hydrologic applications. Therefore, instead of spatially or temporally averaging the internal diagnostic (normalized innovations) to detect the misspecifications, spatiotemporal averaging was used. First, sensitivity of the estimation accuracy to the degree of error in forcing perturbations was investigated. Second, efficiency of the AEnKF for GRACE assimilation was explored using two synthetic and one real data experiment. Results show that there is considerable benefit in using this method to estimate the forcing error magnitude, and that the AEnKF can efficiently estimate this magnitude.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2019
    Description: Abstract The scarcity of groundwater storage change data at the global scale hinders our ability to monitor groundwater resources effectively. In this study, we assimilate a state‐of‐the‐art terrestrial water storage (TWS) product derived from Gravity Recovery and Climate Experiment (GRACE) satellite observations into NASA's Catchment land surface model (CLSM) at the global scale, with the goal of generating groundwater storage time series that are useful for drought monitoring and other applications. Evaluation using in situ data from nearly 4,000 wells shows that GRACE data assimilation improves the simulation of groundwater, with estimation errors reduced by 36% and 10% and correlation improved by 16% and 22% at the regional and point scales, respectively. The biggest improvements are observed in regions with large interannual variability in precipitation, where simulated groundwater responds too strongly to changes in atmospheric forcing. The positive impacts of GRACE data assimilation are further demonstrated using observed low flow data. CLSM and GRACE data assimilation performance is also examined across different permeability categories. The evaluation reveals that GRACE data assimilation fails to compensate for the lack of a groundwater withdrawal scheme in CLSM when it comes to simulating realistic groundwater variations in regions with intensive groundwater abstraction. CLSM simulated groundwater correlates strongly with 12‐month precipitation anomalies in low and mid‐latitude areas. A groundwater drought indicator based on GRACE data assimilation generally agrees with other regional‐scale drought indicators, with discrepancies mainly in their estimated drought severity.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2019
    Description: Abstract Plant functional traits provide a link in process‐based vegetation models between plant‐level physiology and ecosystem‐level responses. Recent advances in physiological understanding and computational efficiency have allowed for the incorporation of plant hydraulic processes in large‐scale vegetation models. However, a more mechanistic representation of water limitation that determines ecosystem responses to plant water stress necessitates a re‐evaluation of trait‐based constraints for plant carbon allocation, particularly allocation to leaf area. In this review, we examine model representations of plant allocation to leaves, which is often empirically set by plant functional type‐specific allometric relationships. We analyze the evolution of the representation of leaf allocation in models of different scales and complexities. We show the impacts of leaf allocation strategy on plant carbon uptake in the context of recent advancements in modeling hydraulic processes. Finally, we posit that deriving allometry from first principles using mechanistic hydraulic processes is possible and should become standard practice, rather than using prescribed allometries. The representation of allocation as an emergent property of scarce resource constraints is likely to be critical to representing how global change processes impact future ecosystem dynamics and carbon fluxes and may reduce the number of poorly constrained parameters in vegetation models.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2019
    Description: Abstract Groundwater transit time is an essential hydrologic metric for groundwater resources management. However, especially in tropical environments studies on the transit time distribution (TTD) of groundwater infiltration and its corresponding mean transit time (mTT) have been extremely limited due to data sparsity. In this study, we primarily use stable isotopes to examine the TTDs and their mTTs of both vertical and horizontal infiltration at a riverbank infiltration area in the Vietnamese Mekong Delta (VMD), representative of the tropical climate in Asian Monsoon regions. Precipitation, river water, groundwater, and local ponding surface water were sampled for three to nine years and analyzed for stable isotopes (δ18O and δ2H), providing a unique data set of stable isotope records for a tropical region. We quantified the contribution that the two sources contributed to the local shallow groundwater by a novel concept of two‐component lumped parameter models (LPMs) that are solved using δ18O records. The study illustrates that two‐component LPMs, in conjunction with hydrological and isotopic measurements, are able to identify subsurface flow conditions and water mixing at riverbank infiltration systems. However, the predictive skill and the reliability of the models decrease for locations farther from the river, where recharge by precipitation dominates, and a low‐permeable aquitard layer above the highly permeable aquifer is present. This specific setting impairs the identifiability of model parameters. For river infiltration short mTTs (〈40 weeks) were determined for sites closer to the river (〈200 m), whereas for the precipitation infiltration the mTTs were longer (〉80 weeks) and independent of the distance to the river. The results not only enhance the understanding of the groundwater recharge dynamics in the VMD but also suggest that the highly complex mechanisms of surface‐groundwater interaction can be conceptualized by exploiting two‐component LPMs in general. The model concept could thus be a powerful tool for better understanding both the hydrological functioning of mixing processes and the movement of different water components in riverbank infiltration systems.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2019
    Description: Abstract Physically‐based models are useful frameworks for testing intervention strategies designed to reduce elevated sediment loads in agricultural catchments. Evaluating the success of these strategies depends on model accuracy, generally established by a calibration and evaluation process. In this contribution, the physically‐based SHETRAN model was assessed in two similar UK agricultural catchments. The model was calibrated on the Blackwater catchment (18 km2) and evaluated in the adjacent Kit Brook catchment (22 km2) using 4‐years of 15‐minute discharge and suspended sediment flux data. Model sensitivity to changes in single and multiple combinations of parameters as well as sensitivity to changes in Digital Elevation Model (DEM) resolution were assessed. Model flow performance was reasonably accurate; with a Nash‐Sutcliffe efficiency coefficient (NSE) of 0.78 in Blackwater and 0.60 in Kit Brook. In terms of event prediction, the mean of the absolute percentage of difference (μAbsdiff) between measured and simulated flow volume (Qv), peak discharge (Qp), sediment yield (Sy) and peak sediment flux (Sp) showed larger values in Kit Brook (48% [Qv], 66% [Qp], 298% [Sy], 438% [Sp]) compared to the Blackwater catchment (30% [Qv], 41% [Qp], 106% [Sy], 86% [Sp]). Results indicate that SHETRAN can produce reasonable flow prediction but performs less well in estimation of sediment flux, despite reasonably similar hydro‐sedimentary behaviour between catchments. The sensitivity index showed flow volume sensitive to saturated hydraulic conductivity and peak discharge to the Strickler coefficient; sediment yield was sensitive to the overland flow erodibility coefficient and peak sediment flux to raindrop/leaf soil erodibility coefficient. The multi‐parameter sensitivity analysis showed that different combinations of parameters produced similar model responses. Model sensitivity to grid resolution presented similar flow volumes for different DEM resolutions, whereas event peak and duration (for both flow and sediment flux) were highly sensitive to changes in grid size.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2019
    Description: Abstract Warming permafrost on a global scale is projected to have significant impacts on engineering, hydrology and environmental quality. Greater warming trends are predicted on the Qinghai–Tibetan Plateau (QTP), but most models for mountain permafrost have not considered the effects of water phase change and the state of deep permafrost due to a lack of detailed information. To better understand historical and future permafrost change based on in situ monitoring and field investigations, a numerical heat conduction permafrost model was introduced which differentiated the frozen and thawed state of soil, and considered unfrozen water content in frozen soil, distribution of ground ice and geothermal heat flow. Simulations were conducted at two sites with validation by long‐term monitoring of ground temperature data. After forcing with reconstructed historical ground surface temperature series starting from 1966, the model predicted permafrost changes until 2100 under different RCP scenarios. The results indicate a slow thermal response of permafrost to climate warming at the two investigated sites. Even under the most radical warming scenario (RCP8.5), deepening of the permafrost table is not obvious before 2040. At both sites, the model indicates that shallow permafrost may disappear but deep permafrost may persist by 2100. Moreover, the simulation shows that the degradation modes may differ between zones of discontinuous and continuous permafrost. The main degradation mode of the site in the discontinuous zone appears to be upward thawing from the permafrost base, while that of the site in the continuous zone is downward thawing at the permafrost table with little change at the permafrost base.
    Print ISSN: 1045-6740
    Electronic ISSN: 1099-1530
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2019
    Description: Abstract High‐frequency stable isotope data are useful for validating atmospheric moisture circulation models and provide improved understanding of the mechanisms controlling isotopic compositions in tropical rainfall. Here we present a near‐continuous 6‐month record of O‐ and H‐isotope compositions in both water vapour and daily rainfall from Northeast Australia measured by laser spectroscopy. The data set spans both Wet and Dry Seasons to help address a significant data and knowledge gap in the southern hemisphere tropics. We interpret the isotopic records for water vapour and rainfall in the context of contemporaneous meteorological observations. Surface air moisture provided near‐continuous tracking of the links between isotopic variations and meteorological events on local to regional spatial scales. Power spectrum analysis of the isotopic variation showed a range of significant periodicities, from hourly to monthly scales and cross‐wavelet analysis identified significant regions of common power for hourly‐averaged water vapour isotopic composition and relative humidity, wind direction and solar radiation. Relative humidity had the greatest sub‐diurnal influence on isotopic composition. On longer timescales (weeks to months) isotope variability was strongly correlated with both wind direction and relative humidity. The high‐frequency records showed diurnal isotopic variations in O‐ and H‐isotope compositions due to local dew formation and, for deuterium excess, as a result of evapotranspiration. Several significant negative isotope anomalies on a daily scale were associated with the activity of regional mesoscale convective systems and the occurrence of two tropical cyclones. Calculated air parcel back‐trajectories identified the predominant moisture transport paths from the Southwest Pacific Ocean while moisture transport from northerly directions occurred mainly during the Wet Season monsoonal air flow. Water vapour isotope compositions reflected the same meteorological events as recorded in rainfall isotopes but provided much more detailed and continuous information on atmospheric moisture cycling than the intermittent isotopic record provided by rainfall. Improved global coverage of stable isotope data for atmospheric water vapour is likely to improve simulations of future changes to climate drivers of the hydrological cycle.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    facet.materialart.
    Unknown
    Reed Business Information
    Publication Date: 2019
    Description: The Brazilian space agency, INPE, this week reported more than 75,000 fires across the Brazilian part of the world’s greatest rainforest, up 84 per cent on last year
    Print ISSN: 0028-6664
    Electronic ISSN: 1364-8500
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    facet.materialart.
    Unknown
    Reed Business Information
    Publication Date: 2019
    Description: In greenhouses across China, scientists are exposing lettuces and cucumbers to powerful electric fields in an attempt to make them grow faster. Can electroculture work?
    Print ISSN: 0028-6664
    Electronic ISSN: 1364-8500
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    facet.materialart.
    Unknown
    Reed Business Information
    Publication Date: 2019
    Description: Nigeria has officially wiped out wild polio, but there have already been 15 cases of infection this year, caused by the live virus used in some vaccines
    Print ISSN: 0028-6664
    Electronic ISSN: 1364-8500
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...