ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (147)
  • NASA Technical Reports  (147)
  • Aerodynamics  (147)
  • Inorganic Chemistry
  • 1955-1959  (141)
  • 1930-1934  (6)
  • 101
    Publication Date: 2019-08-26
    Description: A comprehensive discussion of the various factors affecting the determination of stability and control derivatives from flight data is presented based on the experience of the NASA High-Speed Flight Station. Factors relating to test techniques, determination of mass characteristics, instrumentation, and methods of analysis are discussed. For most longitudinal-stability-derivative analyses simple equations utilizing period and damping have been found to be as satisfactory as more comprehensive methods. The graphical time-vector method has been the basis of lateral-derivative analysis, although simple approximate methods can be useful If applied with caution. Control effectiveness has been generally obtained by relating the peak acceleration to the rapid control input, and consideration must be given to aerodynamic contributions if reasonable accuracy is to be realized.. Because of the many factors involved In the determination of stability derivatives, It is believed that the primary stability and control derivatives are probably accurate to within 10 to 25 percent, depending upon the specific derivative. Static-stability derivatives at low angle of attack show the greatest accuracy.
    Keywords: Aerodynamics
    Type: Flight Test Panel of the Advisory Group for Aeronautical Research and Development Meeting; Oct 20, 1958 - Oct 25, 1958; Copenhagen; Denmark
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2019-08-16
    Description: A research model of an airplane with a configuration suitable for supersonic flight was tested at transonic speeds in order to establish the effects on longitudinal and lateral stability of certain changes in both wing sweep and height of the horizontal tail. Two wings of aspect ratio 3 and taper ratio 0.15, one having the quarter-chord line swept back 30 deg and the other 45 deg, were each tested with the horizontal tail of the model in a low and in a high position. One configuration was also tested with fuselage strakes. The tests were made at Mach numbers from 0.60 to 1.17 and Reynolds numbers from 1.9 x 10(exp 6) to 2.6 x 10(exp 6). The results indicated that a low horizontal-tail position (below the wing-chord plane) gave positive longitudinal stability for the model for all angles of attack used (angles of attack up to 24 deg); whereas, a higher tail position (above the wing-chord plane) resulted in a large reduction in stability at moderate angles of attack. With the higher horizontal tail, the 30 deg-swept-wing model had somewhat more stability than the 45 deg-swept-wing model at subsonic Mach numbers. With the lower tail, the 45 deg-swept-wing model had slightly more stability at all Mach numbers. The model with the 30 deg swept wing had greater directional stability with the tail in the higher rather than the lower position, but the opposite was true for the 45 deg-swept-wing model. The directional stability decreased sharply at high angles of attack; this characteristic was alleviated by the use of fuselage strakes which, however, proved to be detrimental to the longitudinal stability of the model tested.
    Keywords: Aerodynamics
    Type: NASA-MEMO-10-3-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2019-08-16
    Description: An investigation has been conducted in the Langley full-scale tunnel to determine the aerodynamic characteristics in sideslip of a large-scale 490 sweptback wing-body-tail configuration having wing leading- edge and flap-blowing boundary-layer control. The wing and tails had an aspect ratio of 3.5, a taper ratio of 0.3, and NACA 65AO06 airfoil sections parallel to the plane of symmetry. The tests were conducted over a range of angles of attack of about -5 deg to 28 deg for sideslip angles of 0 deg, -5.06 deg, -10.15 deg, and -15.18 deg. Lateral and longitudinal stability and control characteristics were obtained for6a minimized blowing rate. The Reynolds number of the tests was 5.2 x 10(exp 6), corresponding to a Mach number of 0.08. The results of the investigation showed that sideslip to angles of about -15 deg did not require, from a consideration of the longitudinal characteristics, blowing rates over the wing leading edge or flap greater than that established as minimum at zero sideslip. The optimum configuration was laterally and directionally stable through the complete lift-coefficient range including the stall; however, maximum lift for sideslip angles greater than about 50 was seriously limited by a deficiency of lateral control. Blowing over the leading edge of the retreating wing in sideslip at a rate greater than that established as minimum at zero sideslip was ineffective in improving the lateral control characteristics. The optimum configuration at zero sideslip had no hysteresis of the aerodynamic parameters upon recovery from stall.
    Keywords: Aerodynamics
    Type: NASA-MEMO-10-11-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2019-05-31
    Description: A 1/13-scale model of the forebody of the Republic F-105 with twin-duct wing-root inlets was tested in the Langley 4- by 4-foot supersonic pressure tunnel through a range of angle of attack from -4 deg to 15 deg at a Mach number of 2.01 and a Reynolds number of approximately 3.4 x 10(exp 6) per foot. The tests were made with four configurations which incorporated varying amounts of sweep and stagger of the inlet leading edges, modifications to the areas of the boundary-layer diverter floor plate, and modifications to the area of the boundary-layer diverter bleed slots. The highest overall pressure recovery at an angle of attack of 0 deg (average total-pressure recovery, 0.84 mass-flow ratio, 0.98) was achieved with configuration having an inlet leading-edge sweep angle of 58 deg with no leading-edge stagger. Stagger was found to improve the angle-of- attack performance, but at a sacrifice in inlet efficiency for an angle of attack of 0 deg. The boundary-layer diverter floor height, of the order of one boundary-layer thickness, was satisfactory for bypassing the fuselage boundary layer. The boundary-layer diverter-plate bleed slots were effective in increasing the total-pressure recovery of the inlet. The total-pressure-recovery contour plots, taken at the compressor-face station, indicate the existence of high-velocity "cores" throughout the inlet operating range.
    Keywords: Aerodynamics
    Type: NACA-RM-SL56L12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2019-06-28
    Description: A simplified analysis of the velocity and deceleration history of missiles entering the earth's atmosphere at high supersonic speeds is presented. The results of this motion analysis are employed to indicate means available to the designer for minimizing aerodynamic heating. The heating problem considered involves not only the total heat transferred to a missile by convection, but also the maximum average and local time rates of convective heat transfer.
    Keywords: Aerodynamics
    Type: NACA-TN-4047
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2019-06-28
    Description: Ice was formed on a full-scale unheated supersonic nose inlet in the NACA Lewis icing tunnel to determine its effect on compressor-face total-pressure distortion and recovery.Inlet angle of attack was varied from 0degrees to 12 degrees, free-stream Mach number from 0.17 to 0.28, and compressor-face Mach number from 0.10 to 0.47. Icing-cloud liquid-water content was varied from 0.65 to 1.8 grams per cubic meter at free-stream static air temperatures of 15 degrees and 0 degrees F. The addition of ice to the inlet components increased total-pressure-distortion levels and decreased recovery values compared withclear0air results, the losses increasing with time in ice. The combination of glaze ice, high corrected weight flow, and high angle of attack yielded the highest levels of distortion and lowest values of recovery. The general character of compressor-face distortion with an iced inlet was the same as that for the clean inlet, the total-pressure gradients being predominantly radial, with circumferential gradients occurring at angle of attack. At zero angle of attack, free-stream Mach number of 0.27, and a constant corrected weight flow of 150 pounds per second (compressor-face Mach number of 0.43), compressor-face total-pressure-distortion level increased from about 6 percent in clear air to 12 percent after 21 minutes of heavy glaze icing; concurrently, total-pressure recovery decreased from about 0.98 to 0.945. For the same operating conditions but with the inlet at 12 deg angle of attack, a change in distortion level occurred from about 9 percent in clear air to 14 percent after 2-1/4 minutes of icing, with a decrease in recovery from about 0.97 to 0.94.
    Keywords: Aerodynamics
    Type: NACA-RM-E57G09
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-27
    Description: Of the various unsteady flows that occur in axial turbomachines certain asymmetric disturbances, of wave length large in comparison with blade spacing, have become understood to a certain extent. These disturbances divide themselves into two categories: self-induced oscillations and force disturbances. A special type of propagating stall appears as a self-induced disturbance; an asymmetric velocity profile introduced at the compressor inlet constitutes a forced disturbance. Both phenomena have been treated from a unified theoretical point of view in which the asymmetric disturbances are linearized and the blade characteristics are assumed quasi-steady. Experimental results are in essential agreement with this theory wherever the limitations of the theory are satisfied. For the self-induced disturbances and the more interesting examples of the forced disturbances, the dominant blade characteristic is the dependence of total pressure loss, rather than the turning angle, upon the local blade inlet angle.
    Keywords: Aerodynamics
    Type: O.N.E.R.A. PAPERS PRESENTED AT THE JOURNEES INTERN. DE SCI. AERON., PT. 2 〈1957〈 (SEE N68-81276) P 1-21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2019-06-27
    Description: No abstract available
    Keywords: Aerodynamics
    Type: NACA-RM-L56I18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2019-08-14
    Description: A full-scale rocket-powered model of a cruciform canard missile configuration with a low-aspect-ratio wing and blunt nose has been flight tested by the Langley Pilotless Aircraft Research Division. Static and dynamic longitudinal stability and control derivatives of this interdigitated canard-wing missile configuration were determined by using the pulsed-control technique at low angles of attack and for a Mach number range of 1.2 to 2.1. The lift-curve slope showed only small nonlinearities with changes in control deflection or angle of attack but indicated a difference in lift-curve slope of approximately 7 percent for the two control deflections of delta = 3.0 deg and delta = -0.3 deg. The large tail length of the missile tested was effective in producing damping in pitch throughout the Mach number range tested. The aerodynamic-center location was nearly constant with Mach number for the two control deflections but was shown to be less stable with the larger control deflection. The increment of lift produced by the controls was small and positive throughout the Mach number range tested, whereas the pitching moment produced by the controls exhibited a normal trend of reduced effectiveness with increasing Mach number. The effectiveness of the controls in producing angle of attack, lift, and pitching moment was good at all Mach numbers tested.
    Keywords: Aerodynamics
    Type: NACA-RM-L55K16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2019-08-13
    Description: Experiments have been made to determine the nature of turbulence in the wake of a two-dimensional airfoil at low speeds. The experiments were motivated by the need for data which can be used for analysis of the tail-buffeting problem in aircraft design. Turbulent intensity and power spectra of the velocity fluctuations were measured at a Reynolds number of 1.6 x 10(exp 5) for several angles of attack. Total-head measurements were also obtained in an attempt to relate steady and fluctuating wake properties. Mean-square downwash was found to have nearly the same dependence on vertical position in the wake as that shown by total-head loss. For this particular wing, turbulent intensity, integrated across the wake, increased roughly as the 3/2 power of the drag coefficient. Power-spectrum measurements indicated a decrease in frequency as wing angle of attack was increased. The average frequency in the wake was proportional to the ratio of mean wake velocity to wake width.
    Keywords: Aerodynamics
    Type: NACA-TM-1427
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2019-08-13
    Description: It seems possible that, in supersonic flight, unconventional arrangements of wings and bodies may offer advantages in the form of drag reduction. It is the purpose of this report to consider the methods for determining the pressure drag for such unconventional configurations, and to consider a few of the possibilities for drag reduction in highly idealized aircraft. The idealized aircraft are defined by distributions of lift and volume in three-dimensional space, and Hayes' method of drag evaluation, which is well adapted to such problems, is the fundamental tool employed. Other methods of drag evaluation are considered also wherever they appear to offer amplifications. The basic singularities such as sources, dipoles, lifting elements and volume elements are discussed, and some of the useful inter-relations between these elements are presented. Hayes' method of drag evaluation is derived in detail starting with the general momentum theorem. In going from planar systems to spatial systems certain new problems arise. For example, interference between lift and thickness distributions generally appears, and such effects are used to explain the difference between the non-zero wave drag of Sears-Haack bodies and the zero wave drag of Ferrari's ring wing plus central body. Another new feature of the spatial systems is that optimum configurations generally are not unique, there being an infinite family of lift or thickness distributions producing the same minimum drag. However it is shown that all members of an optimum family produce the same flow field in a certain region external to the singularity distribution. Other results of the study indicate that certain spatial distributions may produce materially less wave drag and vortex drag than comparable planar systems. It is not at all certain that such advantages can be realized in practical aircraft designs, but further investigation seems to be warranted.
    Keywords: Aerodynamics
    Type: NACA-TM-1421
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2019-08-13
    Description: A modified 1/10-power nose shape has been tested in free flight at Mach numbers up to 6.7 and free - stream Reynolds numbers based on diameter up to 16 X 10(exp 6). Measured heating rates were presented and compared with calculated values. Agreement ranges from poor on the forward portion of the nose to good on the rearward portion. The local Reynolds numbers of transition based on calculated momentum thickness varied between 1, 600 and 350. Laminar flow was maintained at momentum thickness Reynolds numbers of about 1,000 until the free-stream Reynolds number based on a length of 1 foot reached about 27 X 10(exp 6). At slightly higher free-stream Reynolds numbers transition occurred at momentum thickness Reynolds numbers as low as 250.
    Keywords: Aerodynamics
    Type: NACA-RM-L57E14a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2019-07-10
    Description: A flight investigation was conducted to determine the effects of inlet modification and rocket-rack extension on the longitudinal trim and low-lift drag of the Douglas F5D-1 airplane. The investigation was conducted with a 0.125-scale rocket-boosted model between Mach Numbers of 0.81 and 1.64. This paper presents the changes in trim angle of attack, trim lift coefficient, and low-lift drag caused by the modified inlets alone over a small part of the test Mach number range and by a combination of the modified inlets and extended rocket racks throughout the remainder of the test.
    Keywords: Aerodynamics
    Type: NACA-RM-SL57D30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2019-07-12
    Description: Tests were performed in the Langley Unitary Plan wind tunnel to determine the drag and static longitudinal and lateral stability and control characteristics of a 1/20-scale model of the McDonnell F4H-1 airplane at Mach numbers of 1 57, 1 87, 2.16, and 2.53. This is the second phase in a series of tests performed on this model. The Reynolds numbers for these tests, based on the mean aerodynamic chord of the wing, are 1.446 x 10 (exp 6), 1.269 x 10 (exp 6), 1.116 x 10 (exp 6), and 0.714 x 10 (exp 6) at Mach numbers of 1.57, 1.87, 2.16, and 2.53, respectively. The model had a 12 deg. wing tip dihedral, a larger vertical tail, and a modified duct.
    Keywords: Aerodynamics
    Type: NACA-RM-SL7A14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2019-07-12
    Description: Transition data on highly cooled blunt bodies are correlated in terms of the ratio of wall to local-stream enthalpy, Reynolds number based on displacement thickness, and location of transition. The proposed correlation, although not sensitive enough to predict the exact location of transition does predict the enthalpy ratio below which very early transition on blunt bodies is expected. The correlation is not altered by moderate amounts of surface roughness; however, the location of transition may well be affected by roughness.
    Keywords: Aerodynamics
    Type: NACA-RM-E-57J14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: Available experimental two-dimensional-cascade data for conventional compressor blade sections are correlated. The two-dimensional cascade and some of the principal aerodynamic factors involved in its operation are first briefly described. Then the data are analyzed by examining the variation of cascade performance at a reference incidence angle in the region of minimum loss. Variations of reference incidence angle, total-pressure loss, and deviation angle with cascade geometry, inlet Mach number, and Reynolds number are investigated. From the analysis and the correlations of the available data, rules and relations are evolved for the prediction of the magnitude of the reference total-pressure loss and the reference deviation and incidence angles for conventional blade profiles. These relations are developed in simplified forms readily applicable to compressor design procedures.
    Keywords: Aerodynamics
    Type: NACA-RM-E56B03a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2019-06-28
    Description: A model of a cruciform missile configuration having a low-aspect-ratio wing equipped with flap-type controls was flight tested in order to determine stability and control characteristics while rolling at about 5 radians per second. Comparison is made with results from a similar model which rolled at a much lower rate. Results showed that, if the ratio of roll rate to natural circular frequency in pitch is not greater than about 0.3, the motion following a step disturbance in pitch essentially remains in a plane in space. The slope of normal- force coefficient against angle of attack C(sub N(sub alpha)) was the same as for the slowly rolling model at 0 degrees control deflection but C(sub N(sub alpha)) was much higher for the faster rolling model at about 5 degrees control deflection. The slope of pitching-moment coefficient against angle of attack C(sub m(sub alpha)) as determined from the model period of oscillation was the same for both models at 0 degrees control deflection but was lower for the faster rolling model at about 5 degrees control deflection. Damping data for the faster rolling model showed considerably more scatter than for the slowly rolling model.
    Keywords: Aerodynamics
    Type: NACA-RM-L55L16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2019-06-27
    Description: An experimental investigation has been made in the Langley stability tunnel to determine the aerodynamic characteristics of the Army Chemical Corps model E-112 bomblets with span-chord ratio of 2:1. A detailed analysis has not been made; however, the results showed that all the models were spirally unstable and that a large gap between the model tips and end plates tended to reduce the instability.
    Keywords: Aerodynamics
    Type: NACA-RM-SL56L20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2019-07-11
    Description: Lateral-stability flight tests were made over the Mach number range from 0.7 to 1.3 of models of three airplane configurations having 45deg sweptback wings. One model had a high wing; one, a low wing; and one, a high wing with cathedral. The models were otherwise identical. The lateral oscillations of the models resulting from intermittent yawing disturbances were interpreted in terms of full-scale airplane flying qualities and were further analyzed by the time-vector method to obtain values of the lateral stability derivatives. The effects of changes i n wing height on the static sideslip derivatives were fairly constant in the speed range investigated and agreed well with estimated values based on subsonic wind-tunnel tests. Effects of geometric dihedral on the rolling moment due to sideslip agreed well with theoretical and other experimental results and with a theoretical relation involving the damping in roll. The damping in roll, when compared with theoretical and other experimental results, shared good agreement at supersonic speeds but was somewhat higher at a Mach number of 1.0 and at subsonic speeds. The damping in yaw shared no large changes in the transonic region.
    Keywords: Aerodynamics
    Type: NACA-RM-L56E17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2019-08-14
    Description: A model of a cruciform missile configuration having a low-aspectratio wing equipped with flap-type controls was flight tested in order to determine stability and control characteristics while rolling at about 5 radians per second. Comparison is made with results from a similar model which rolled at a much lower rate. Results showed that, if the ratio of roll rate to natural circular frequency in pitch is not greater than about 0.3, the motion following a step disturbance in pitch essentially remains in a plane in space. The slope of normal-force coefficient against angle of attack C(sub N(sub A)) was the same as for the slowly rolling model at O deg control deflection but C(sub N(sub A)) was much higher for the faster rolling model at about 5 deg control deflection. The slope of pitching-moment coefficient against angle of attack & same for both models at 0 deg control deflection but was lower for the faster rolling model at about 5 deg control deflection. Damping data for the faster rolling model showed considerably more scatter than for the slowly rolling model.
    Keywords: Aerodynamics
    Type: NACA-RM-L55L16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2019-07-11
    Description: During the course of an aerodynamic loads investigation of a model of the Martin XP6M-1 flying boat in the.Langley 16-foot transonic tunnel, longitudinal-aerodynamic-performance information was obtained. Data were obtained at speeds up to and exceeding those anticipated for the seaplane in level flight and included the Mach number range from 0.84. to 1.09. The angle of attack was varied from -2deg to 6deg and the average Reynolds number, based on wing mean aerodyn&ic chord, was about 3.7 x 10(exp 6). This seaplane, although not designed to maintain level flight at Mach numbers beyond the force break, was found to have a transonic drag-rise coefficient of 0.0728, with an accompanying drag-rise Mach number of about 0.85. A large portion of the.drag rise and the relatively low value of drag-rise Mach number result from the axial coincidence of the maximum areas of the principal airplane components.
    Keywords: Aerodynamics
    Type: NACA-RM-SL55D07 , Rept-4960
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2019-07-12
    Description: Wind-tunnel tests have been made to determine the static longitudinal stability of several models of a short-range artillery shell at Mach numbers of 0.8, 0.9, 1.0, and 1.2. The results of the tests indicated that the best of the spool-shaped shells was statically stable in pitch at all test Mach numbers for an angle-of-attack range up to about 10 degrees. The best of the finned shells was stable to a maximum angle of attack of about 6 degrees. The addition of a probe to the nose of the finned shells resulted in increased static longitudinal stability at the highest Mach numbers tested and in a large decrease in the axial-force coefficients at all Mach numbers.
    Keywords: Aerodynamics
    Type: NACA-RM-SL56D27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2019-08-16
    Description: The following report deals in preliminary fashion with the transmission through a fuselage of random noise generated on the fuselage skin by a turbulent boundary layer. The concept of attenuation is abandoned and instead the problem is formulated as a sequence of two linear couplings: the turbulent boundary layer fluctuations excite the fuselage skin in lateral vibrations and the skin vibrations induce sound inside the fuselage. The techniques used are those required to determine the response of linear systems to random forcing functions of several variables. A certain degree of idealization has been resorted to. Thus the boundary layer is assumed locally homogeneous, the fuselage skin is assumed flat, unlined and free from axial loads and the 'cabin' air is bounded only by the vibrating plate so that only outgoing waves are considered. Some of the details of the statistical description have been simplified in order to reveal the basic features of the problem. The results, strictly applicable only to the limiting case of thin boundary layers, show that the sound pressure intensity is proportional to the square of the free stream density, the square of cabin air density and inversely proportional to the first power of the damping constant and to the second power of the plate density. The dependence on free stream velocity and boundary layer thickness cannot be given in general without a detailed knowledge of the characteristics of the pressure fluctuations in the boundary layer (in particular the frequency spectrum). For a flat spectrum the noise intensity depends on the fifth power of the velocity and the first power of the boundary layer thickness. This suggests that boundary layer removal is probably not an economical means for decreasing cabin noise. In general, the analysis presented here only reduces the determination of cabin noise intensity to the measurement of the effect of any one of our variables (free stream velocity, boundary layer thickness, plate thickness or the characteristic velocity of propagation in the plate). The plate generates noise by vibrating in resonance over a wide range of frequencies and increasing the damping constant is consequently an effective method of decreasing noise generation. One of the main features of the results is that the relevant quantities upon which noise intensity depends are non-dimensional numbers in which boundary layer and plate properties enter as ratios. This is taken as an indication that in testing models of structures for boundary layer noise it is not sufficient to duplicate in the model the structural characteristics of the fuselage. One must match properly the characteristics of the exicitng pressure fluctuations to that of the structure.
    Keywords: Aerodynamics
    Type: NACA-TM-1420
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: So far, very careful investigations have been made regarding the flight properties, in particular the static and dynamic stability, of engine-propelled aircraft and of untowed gliders. In contrast, almost no investigations exist regarding the stability of airplanes towed by a towline. Thus, the following report will aim at investigating the directional stability of the towed airplane and, particularly, at determining what parameters of the flight attitude and what configuration properties affect the stability. The most important parameters of the flight attitude are the dynamic pressure, the aerodynamic coefficients of the flight attitude, and the climbing angle. Among the configuration properties, the following exert the greatest influence on the stability: the tow-cable length, the tow-cable attachment point, the ratio of the wing loadings of the towing and the towed airplanes, the moments of inertia, and the wing dihedral of the towed airplane. In addition, the size and shape of the towed airplane vertical tail, the vertical tail length, and the fuselage configuration are decisive factors in determining the yawing moment and side force due to sideslip, respectively.
    Keywords: Aerodynamics
    Type: NACA-TM-1401 , Deutsches Igneieur-Archives; 21; 4; 245-265
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2019-07-13
    Description: We have set ourselves the problem of calculating the laminar flow on a body of revolution in an axial flow which simultaneously rotates about its axis. The problem mentioned above, the flow about a rotating disk in a flow, which we solved some time ago, represents the first step in the calculation of the flow on the rotating body of revolution in a flow insofar as, in the case of a round nose, a small region about the front stagnation point of the body of revolution may be replaced by its tangential plane. In our problem regarding the rotating body of revolution in a flow, for laminar flow, one of the limiting cases is known: that of the body which is in an axial approach flow but does not rotate. The other limiting case, namely the flow in the neighborhood of a body which rotates but is not subjected to a flow is known only for the rotating circular cylinder, aside from the rotating disk. In the case of the cylinder one deals with a distribution of the circumferential velocity according to the law v = omega R(exp 2)/r where R signifies the cylinder radius, r the distance from the center, and omega the angular velocity of the rotation. The velocity distribution as it is produced here by the friction effect is therefore the same as in the neighborhood of a potential vortex. When we treat, in what follows, the general case of the rotating body of revolution in a flow according to the calculation methods of Prandtl's boundary-layer theory, we must keep in mind that this solution cannot contain the limiting case of the body of revolution which only rotates but is not subjected to a flow. However, this is no essential limitation since this case is not of particular importance for practical purposes.
    Keywords: Aerodynamics
    Type: NACA-TM-1415 , Ingenieur-Archives; 21; 4; 227-244
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2019-06-28
    Description: A solution of the equations of the compressible laminar boundary layer including the effects of transpiration cooling is presented. The analysis applies to the flow over an isothermal porous plate with a velocity of fluid injection proportional to the reciprocal of the square root of the distance from the leading edge. The effect of several flow parameters on coolant-flow rates is discussed with the aid of representative examples. A stability analysis indicates that, although transpiration cooling requires a lower surface temperature for stable flow than does internal wall cooling, this lower temperature can be obtained with a smaller expenditure of coolant.
    Keywords: Aerodynamics
    Type: NACA-TN-3404
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2019-06-28
    Description: The temperature distributions encountered in thin solid wings subjected to aerodynamic heating induce thermal stresses that may effectively reduce the stiffness of the wing. The effects of this reduction in stiffness were investigated experimentally by rapidly heating the edges of a cantilever plate. The midplane thermal stresses imposed by the nonuniform temperature distribution caused the plate to buckle torsionally, increased the deformations of the plate under a constant applied torque, and reduced the frequency of the first two natural modes of vibration. By using small-deflection theory and employing energy methods, the effect of nonuniform heating on the plate stiffness was calculated. The theory predicts the general effects of the thermal stresses, but becomes inadequate as the temperature difference increases and plate deflections become large.
    Keywords: Aerodynamics
    Type: NACA-RM-L55E20c
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2019-07-12
    Description: During an investigation of the J57-P-1 turbojet engine in the Lewis altitude wind tunnel, effects of inlet-flow distortion on engine stall characteristics and operating limits were determined. In addition to a uniform inlet-flow profile, the inlet-pressure distortions imposed included two radial, two circumferential, and one combined radial-circumferential profile. Data were obtained over a range of compressor speeds at an altitude of 50,000 and a flight Mach number of 0.8; in addition, the high- and low-speed engine operating limits were investigated up to the maximum operable altitude. The effect of changing the compressor bleed position on the stall and operating limits was determined for one of the inlet distortions. The circumferential distortions lowered the compressor stall pressure ratios; this resulted in less fuel-flow margin between steady-state operation and compressor stall. Consequently, the altitude operating Limits with circumferential distortions were reduced compared with the uniform inlet profile. Radial inlet-pressure distortions increased the pressure ratio required for compressor stall over that obtained with uniform inlet flow; this resulted in higher altitude operating limits. Likewise, the stall-limit fuel flows required with the radial inlet-pressure distortions were considerably higher than those obtained with the uniform inlet-pressure profile. A combined radial-circumferential inlet distortion had effects on the engine similar to the circumferential distortion. Bleeding air between the two compressors eliminated the low-speed stall limit and thus permitted higher altitude operation than was possible without compressor bleed.
    Keywords: Aerodynamics
    Type: NACA-RM-SE55E23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2019-07-12
    Description: A linear stability analysis and flight-test investigation has been performed on a rolleron-type roll-rate stabilization system for a canard-type missile configuration through a Mach number range from 0.9 to 2.3. This type damper provides roll damping by the action of gyro-actuated uncoupled wing-tip ailerons. A dynamic roll instability predicted by the analysis was confirmed by flight testing and was subsequently eliminated by the introduction of control-surface damping about the rolleron hinge line. The control-surface damping was provided by an orifice-type damper contained within the control surface. Steady-state rolling velocities were at all times less than 1 radian per second between the Mach numbers of 0.9 to 2.3 on the configurations tested. No adverse longitudinal effects were experienced in flight because of the tendency of the free-floating rollerons to couple into the pitching motion at the low angles of attack and disturbance levels investigated herein after the introduction of control-surface damping.
    Keywords: Aerodynamics
    Type: NACA-RM-SL55C22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2019-08-14
    Description: Two full-scale models of an inline, cruciform, canard missile configuration having a low-aspect-ratio wing equipped with flap-type controls were flight tested in order to determine the missile's longitudinal aerodynamic characteristics. Stability derivatives and control and drag characteristics are presented for a range of Mach number from 0.7 to 1.8. Nonlinear lift and moment curves were noted for the angle - of-attack range of this test (0 deg to 8 deg). The aerodynamic-center location for angles of attack near 50 remained nearly constant for supersonic speeds at 13.5 percent of the mean aerodynamic chord; whereas for angles of attack near 0 deg, there was a rapid forward movement of the aerodynamic center as the Mach number increased. At a control deflection of 0 deg, the missile's response to the longitudinal control was in an essentially fixed space plane which was not coincident with the pitch plane as a result of the missile rolling. As a consequence, stability characteristics were determined from the resultant of pitch and yaw motions. The damping-in-pitch derivatives for the two angle -of-attack ranges of the test are in close agreement and varied only slightly with Mach number. The horn-balanced trailing-edge flap was effective in producing angle of attack over the Mach number range.
    Keywords: Aerodynamics
    Type: NACA-RM-L54B12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2019-08-14
    Description: Two full-scale models of an inline, cruciform, canard missile configuration having a low-aspect-ratio wing equipped with flap-type controls were flight tested in order to determine the missile's longitudinal aerodynamic characteristics. Stability derivatives and control and drag characteristics are presented for a range of Mach number from 0.7 to 1.8. Nonlinear lift and moment curves were noted for the angle-of-attack range of this test (0 deg to 8 deg ). The aerodynamic-center location for angles of attack near 5 deg remained nearly constant for supersonic speeds at 13.5 percent of the mean aerodynamic chord; whereas for angles of attack near O deg, there was a rapid forward movement of the aerodynamic center as the Mach number increased. At a control deflection of O deg, the missile's response to the longitudinal control was in an essentially fixed space plane which was not coincident with the pitch plane as a result of the missile rolling. As a consequence, stability characteristics were determined from the resultant of pitch and yaw motions. The damping-in-pitch derivatives for the two angle-of-attack ranges of the test are in close agreement and varied only slightly with Mach number. The horn-balanced trailing-edge flap was effective in producing angle of attack over the Mach number range.
    Keywords: Aerodynamics
    Type: NACA-RM-L54B12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2019-07-11
    Description: An investigation was made of a 1/10-scale dynamically similar model of the Grumman FgF-2 airplane to study its behavior when ditched. The model was landed in calm water at the Langley Tank No. 2 monorail. Various landing attitudes, speeds, and configurations were investigated. The behavior of the model was determined from visual observations, acceleration records, and motion-picture records of the ditchings. Data are presented in tabular form, sequence photographs, time-history acceleration curves, and plots of attitude and speed against distance after contact.
    Keywords: Aerodynamics
    Type: NACA-RM-SL50I29B
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2019-07-11
    Description: Low-lift drag data are presented herein for one 1/7.5-scale rocket-boosted model and three 1/45.85-scale equivalent-body models of the Grumman F9F-9 airplane, The data were obtained over a Reynolds number range of about 5 x 10(exp 6) to 10 x 10(exp 6) based on wing mean aerodynamic chord for the rocket model and total body length for the equivalent-body models. The rocket-boosted model showed a drag rise of about 0,037 (based on included wing area) between the subsonic level and the peak supersonic drag coefficient at the maximum Mach number of this test. The base drag coefficient measured on this model varied from a value of -0,0015 in the subsonic range to a maximum of about 0.0020 at a Mach number of 1.28, Drag coefficients for the equivalent-body models varied from about 0.125 (based on body maximum area) in the subsonic range to about 0.300 at a Mach number of 1.25. Increasing the total fineness ratio by a small amount raised the drag-rise Mach number slightly.
    Keywords: Aerodynamics
    Type: NACA-RM-SL55D15 , Rept-4987
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2019-07-11
    Description: A comparison of the zero-lift drag coefficients at Mach numbers from 0.81 to 1.41 of a fin-stabilized parabolic body of revolution as measured in the Langley transonic blowdown tunnel has been made with measurements obtained in free-flight on a larger but geometrically similar model. The absolute values of drag coefficient obtained in the slotted wind tunnel were equivalent to the free-flight drag-coefficient values up to a Mach number of 1.4 when adjustments were made for the effect on viscous drag of differences in Reynolds number between the two test conditions. Excellent agreement was obtained between the two tests for the pressure-drag variation with Mach number, regardless of whether the scale effect on skin friction was considered. Favorable agreement was also obtained between the pressure-drag increments due t o the presence of the stabilizing fins as determined in the wine tunnel from fins-on and fins-off tests and as obtained by a different method in free flight. Tests of a specific airplane configuration to obtain an indication of the problems involved in the construction and tests of small-scale (approximately 7-inch span) complete airplane configuration with internal air flow indicated that reliable zero-lift drag-coefficient measurements at Mach numbers up to 1.4 can be attained with such models, provided the model is constructed with a high but not an unreasonable degree of accuracy.
    Keywords: Aerodynamics
    Type: NACA-RM-L55H09 , Rept-5146
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2019-07-10
    Description: A free-flight investigation over a Mach number range from 0.6 to 2.0 has been conducted to determine the longitudinal aerodynamic characteristics and effect of rocket jet on zero-lift drag of 1/5-scale models of two ballistic-type missiles, the Hermes A-3A and A-3B. Models of both types of missiles exhibited very nearly linear normal forces and pitching moments over the angle-of-attack range of 8 deg to -4 deg and Mach number range tested. The centers of pressure for both missiles were not appreciably affected by Mach number over the subsonic range; however, between a Mach number of 1.02 and 1.50 the center of pressure for the A-3A model moved forward 0.34 caliber with increasing Mach number. At a trim angle-of-attack of approximately 30 deg, the A-3A model indicated a total drag coefficient 30% higher than the power-off zero-lift drag over the subsonic Mach number range and 10% higher over the supersonic range. Under the conditions of the present test, and excluding the effect of the jet on base drag, there was no indicated effect of the propulsive jet on the total drag of the A-3A model. The propulsive jet operating at a jet pressure ratio p(sub j)/p(sub o) of 0.8 caused approximately 100% increase in base drag over the Mach number range M = 0.6 to 1.0. This increase in base drag amounts to 15% of the total drag. An underexpanded jet operating at jet pressure ratios corresponding approximately to those of the full-scale missile caused a 22% reduction in base drag at M = 1.55 (p(sub j)/p(sub o) = 1.76) but indicated no change at M = 1.30 (p(sub j)/p(sub o) = 1.43). At M = 1.1 and p(sub j)/p(sub o) = 1.55, the jet caused a 50% increase in base drag.
    Keywords: Aerodynamics
    Type: NACA-RM-SL55F15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2019-07-11
    Description: An investigation is being conducted in the Langley 20-foot free-spinning tunnel on a 1/24-scale model of the Grumman F11F-1 airplane to determine spin and recovery characteristics and the minimum-size parachute required to satisfactorily terminate the spin in an emergency. Results obtained to date are presented herein. Test results indicate that it may be difficult to obtain an erect or inverted spin on the airplane, but, if a spin is obtained, the spin will be very oscillatory and recovery from the developed erect spin by rudder reversal may not be possible. The lateral controls will have no appreciable effect on recoveries from erect.spins. Recovery from the inverted spin by merely neutralizing the rudder will be satisfactory. After recoveries by rudder reversal and after recoveries from spins without control movement (no spins), the model oftentimes rolled very rapidly about the X-axis. Based on limited preliminary tests made in this investigation to make the model recover satisfactorily, it appears that canards near the nose of the airplane or differentially operated horizontal tails may be utilized to provide rapid recoveries. The parachute test results indicate that an 11-foot-diameter (laid-out-flat) parachute with a drag coefficient of 0.650 (based on the laid- out-flat diameter) and with a towline length equal to the wing span is the minimum-size parachute required to satisfactorily terminate an erect or inverted spin in an emergency.
    Keywords: Aerodynamics
    Type: NACA-RM-SL55G20 , Rept-5121
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2019-07-11
    Description: An investigation is being conducted in the Langley 20-foot free-spinning tunnel on a l/18 scale model of the Ryan X-13 airplane to determine its spin and recovery characteristics. The spin and recovery characteristics determined to date are presented in this report.
    Keywords: Aerodynamics
    Type: NACA-RM-SL55H08 , Rept-5145
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2019-07-11
    Description: Tests have been conducted in the Langley 8-foot transonic tunnel on a 0.04956-scale model of the Convair F-102A airplane which employed an indented and extended fuselage, cambered wing leading edges, and deflected wing tips. Force and moment characteristics were obtained for Mach numbers from 0.60 to 1.135 at angles of attack up to 20 . In addition, tests were made over a limited angle-of-attack range to determine the effects of the cambered leading edges, deflected tips, and a nose section with a smooth area distribution. Fuselage modifications employed on the F-102A were responsible for a 25.percent reduction in the minimum drag-coefficient rise between the Mach numbers of 0.85 and 1.075 when compared with that for the earlier versions of the F-102. Although the wing modifications increased the F-102A subsonic minimum drag-coefficient level approximately 0.0020, they produced large decreases in drag at lifting conditions over that for the original (plane-wing) F-102. The F-102A had 15 to 25 percent higher maximum lift-drag ratios than did the original F-102. The F-102A had about 15 percent lower maximum lift-drag ratios at Mach numbers below 0.95 and slightly higher maximum lift-drag ratios at supersonic speeds when compared with those ratios for sn earlier modified-wing version of the F-102. Chordwise wing fences which provided suitable longitudinal stability for the original F-102 were not adequate for the cambered-wing F-102A The pitching-moment curves indicated a region of near neutral stability with possible pitch-up tendencies for the F-102A at high subsonic Mach numbers for lift coefficients between about 0.4 and 0.5.
    Keywords: Aerodynamics
    Type: NACA-RM-SL55D19 , Rept-4990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2019-07-12
    Description: A flight test of a rocket-propelled model of the Convair XFY-1 airplane was conducted to determine the lateral stability and control characteristics, The 0.133-scale model had windmilling propellers for this test, which covered a Mach number range of O.70 to 1.12. The center of gravity was located at 13.9 percent of the mean aerodynamic chord. The methods of analysis included both a solution by vector diagrams and simple one- and two-degree-of-freedom methods. The model was both statically and dynamically stable throughout the speed range of the testa The roll damping was good, and the slope of the side-force curve varied little with speed. The rudder was effective throughout the test speed range, although it was reduced to about 43 percent of its subsonic value at supersonic speeds.
    Keywords: Aerodynamics
    Type: NACA-RM-SL55J31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2019-07-12
    Description: Available experimental two-dimensional cascade data for conventional compressor blade sections are correlated at a reference incidence angle in the region of minimum loss. Variations of reference incidence angle, total-pressure loss, and deviation angle with cascade geometry, inlet Mach number, and Reynolds number are investigated. From the analysis and the correlations of the available data, rules and relations are evolved for the prediction of blade-profile performance. These relations are developed in simplified forms readily applicable to compressor design procedures.
    Keywords: Aerodynamics
    Type: NACA-RM-E55K01a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2019-07-12
    Description: Free-flight tests in the transonic and supersonic speed ranges utilizing rocket-propelled models have been made on two pairs of 1/9-scale Convair YF-102 airplane wings with elevons to investigate the possibility of flutter . These wings had modified 60 deg delta plan forms with the trailing edge swept forward 5 deg. The aspect ratio of two exposed wing panels was 2.19 and the wings had NACA 0004-65 (modified) airfoil sections. The model wings and elevons were dynamic-scale models at sea level of the full-scale wings at 20,000 feet. The first set of wings developed elevon buzz near a Mach number of 1 during both power-on and coasting flight at amplitudes of equal to or greater than +/-4 deg.. The second set of wings did not develop the elevon buzz experienced by the first set but, as the model reached the maximum speed of the test (Mach number 1.93), one or both of the wings suddenly failed, possibly as a result of aerodynamic heating or high stresses imposed on the wings at separation from the booster. No flutter was experienced during either flight.
    Keywords: Aerodynamics
    Type: NACA-RM-SL54L22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2019-06-28
    Description: This thesis presents the results of an investigation wherein the change of the normal force coefficient with Reynolds Number was obtained statically for a 15.5-centimeter hemisphere cup under the following conditions: (1) single cup with no interference; (2) single cup with three-cup interference; (3) four cups. The coefficients found in this research vary with Reynolds Number and are high as compared with those of Eiffel. The effect of interference upon a single cup is to increase the drag and normal force coefficients. The curve resulting from the summation of the coefficients for four cups agrees with the static torque curve of a Robinson type cup anemometer. All tests were carried on in the University of Detroit atmospheric wind tunnel during May 1933.
    Keywords: Aerodynamics
    Type: NACA-TN-502
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2019-06-28
    Description: This report gives the exact treatment of the problem of determining the 2-dimensional potential flow around wing sections of any type. The treatment is based directly on the solution of this problem as advanced by Theodorsen in NACA-TR-411. The problem condenses into the compact form of an integral equation capable of yielding numerical solutions by a direct process.
    Keywords: Aerodynamics
    Type: NACA-TR-452
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: Progressive application of the Kutta-Joukowsky theorem to the relationship between airfoil lift and circulation affords a number of formulas concerning the conduct of vortex systems. The application of this line of reasoning to several problems of airfoil theory yields an insight into many hitherto little observed relations. This report is confined to plane flow, hence all vortex filaments are straight and mutually parallel (perpendicular to the plane of flow).
    Keywords: Aerodynamics
    Type: NACA-TM-713
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2019-07-12
    Description: Although the application of a ring cowl to an airplane with an air-cooled engine increases the maximum L/D and the high speed to an appreciable extent, the performance in climb and ceiling is not increased as much as one would expect without analyzing the conditions. When a ring cowl is installed on an airplane, the propeller is set at a higher pitch to allow the engine to turn its rated r.p.m. at the increased high speed. V/nD is increased and the propeller efficiency at high speed is increased slightly. The ratio of r.p.m. at climbing speed, V(sub c) , to the r.p.m. at maximum speed, V (sub m) is dependent upon the ratio of V(sub c) to V(sub m). The increase in V(sub c) for all airplane with ring cowl i s not as great as the increase in V(sub m), so that the ratio V(sub c)/V(sub m) is less than for the airplane without ring. Consequently the r.p.m. and full throttle thrust power available are less at V(sub c) for the airplane with ring cowl and in spite of the increase in L/D due to the installation of the ring, the excess thrust power available for climbing is not appreciably changed. The same method of reasoning accounts for the small increase in absolute ceiling in spite of a large increase in L/D maximum.
    Keywords: Aerodynamics
    Type: NACA-SR-3A , NACA Misc. Paper No. 26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2019-06-28
    Description: Part I gives a general method for finding the steady-flow velocity relative to a body in plane curvilinear motion, whence the pressure is found by Bernoulli's energy principle. Integration of the pressure supplies basic formulas for the zonal forces and moments on the revolving body. Part II, applying this steady-flow method, finds the velocity and pressure at all points of the flow inside and outside an ellipsoid and some of its limiting forms, and graphs those quantities for the latter forms. Part III finds the pressure, and thence the zonal force and moment, on hulls in plane curvilinear flight. Part IV derives general equations for the resultant fluid forces and moments on trisymmetrical bodies moving through a perfect fluid, and in some cases compares the moment values with those found for bodies moving in air. Part V furnishes ready formulas for potential coefficients and inertia coefficients for an ellipsoid and its limiting forms. Thence are derived tables giving numerical values of those coefficients for a comprehensive range of shapes.
    Keywords: Aerodynamics
    Type: NACA-TR-323
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2019-06-28
    Description: This report deals with the measurement of the velocity distribution of the air in the velocity of a plate placed parallel to the air flow. The measurements took place in a small wind tunnel where the diameter of the entrance cone is 30 cm and the length of the free jet between the entrance and exit cones is about 2.5 m. The measurements were made in the free jet where the static pressure was constant, which was essential for the method of measurement used.
    Keywords: Aerodynamics
    Type: NACA-TM-585 , Abhandlungen aus dem Aerodynamischen Institut an der Technischen Hochshcule Aachen; No. 8; 31-45
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...