ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (9,464)
  • NASA Technical Reports  (9,464)
  • FLUID MECHANICS AND HEAT TRANSFER  (3,947)
  • SPACECRAFT DESIGN, TESTING AND PERFORMANCE  (2,815)
  • INSTRUMENTATION AND PHOTOGRAPHY  (2,702)
  • 1985-1989  (5,680)
  • 1980-1984  (3,784)
Collection
  • Other Sources  (9,464)
Source
  • NASA Technical Reports  (9,464)
Keywords
Years
Year
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Viewgraphs on current analytical gaps for future needs for large space systems are presented. Topics covered include: future spacecraft; common control objectives; accuracy requirements; increasing complexity; promising approaches; and analytical gaps.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Harris Corp., The 7th Annual Air Force(SDI Forum on Space Structures; p 37-51
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-11-10
    Description: Large scale space missions of the near future will depend upon successful multi-launch coordination and construction in the space environment. One of the main challenges is how to accomplish a valid global analysis of a construction project with the intent of improving safety, reducing overall mission cost, and total construction time. These three items are dependent on the interruptability of the project, which is the ability of the project to recover from unplanned interruptions; such as failure of the launch vehicle; sudden, on-orbit, crew illness; or damage from a space debris impact on the partially completed space structure. A new method for addressing and analyzing this type of problem is being developed. The method is called Program Interruptability and Risk Evaluation Technique, or PIRET. PIRET has been developed in order to model and analyze potential interruptability concerns of the construction of the U.S. Space Station Freedom (SSF), although PIRET is applicable to any complex, multi-launch structural assembly. This paper is a progress report on the continuing research of the NASA Center for Space Construction at the University of Colorado, Boulder into this area of space construction interruptability. The paper will define the problem of interruptability, will diagram the PIRET approach to space construction, will share results from a preliminary PIRET analysis of SSF, and will show that PIRET is a useful tool for modelling space construction interruptability.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: First Annual Symposium. Volume 1: Plenary Session; 10 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-11-10
    Description: Large Space Structures do not have much damping, which necessitates the installation of a controller onto the structure. If the controller is improperly designed, the structure may become unstable and be destroyed. Since Large Space Structures are extremely expensive pieces of hardware, new controllers must not be tested first on the structure. They must first be tested in computer simulations. Until now, the usual procedure for simulating controlled Large Space Structures is to compute a reduced order modal representation of the structure and then apply the controller. However, this procedure entails modal truncation error. A new software package which is free from this error is currently under development within the Center for Space Construction. The more accurate finite element representation of the structure is used in the simulation, instead of the less accurate reduced order modal representation. This software also features an efficient matrix storage scheme, which effectively deals with the asymmetric system matrices which occur when control is added to the structure. Also, an integration algorithm was chosen so that the simulation is a reliable indicator of system stability or instability. The software package is fairly general in nature. Linearity of the finite element model and of the controller is the only assumption made. Actuator dynamics, sensor dynamics, noise, and disturbances can be handled by the package. In addition, output feedback of displacement, velocity, and/or acceleration signals can be simulated. Kalman state estimation was also implemented. This software was tested on a finite element model of a real Large Space Structure: The Mini-Mast Truss. Mini-Mast is a testbed at NASA-Langley which is currently under development. A 714 degree of freedom finite element model was computed, and a 19 state controller was designed for it. Torque wheel dynamics were added to the model, and the entire closed loop system was simulated with the software package.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: First Annual Symposium. Volume 1: Plenary Session; 8 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2005-11-10
    Description: Guided wave modes in cladded or uncladded fiber-reinforced composite plates and tubes have been analyzed using a stiffness method in which the displacement variation through the thickness is approximated by polynomial interpolation functions. This allows for an arbitrary number of laminations and fiber orientations different from lamina to lamina. It is shown that dispersive behavior of guided modes depends significantly on the cladding, number of laminae, and interfaces between the adjacent laminae. A hybrid modeling technique is described in which an inner region containing cracks (or other defects) is discretized by finite elements, and the field in the exterior region is represented in terms of modes that are found using the stiffness method described above. It is found that the reflected and transmitted amplitudes of modes vary significantly with the size of a transverse or longitudinal (delamination) crack and frequency. We have also studied the impact response of a unidirectional fiber-reinforced plate. Received signals at the epicentral and other locations are shown. Strong longitudinal anisotropy of the graphite/epoxy plate causes the signal to be considerably different from that in an isotropic plate.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: First Annual Symposium. Volume 1: Plenary Session; 11 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-11-10
    Description: One of the most difficult problems in controlling large systems and structures is compensating for the destructive interaction which can occur between the reduced-order model (ROM) of the plant, which is used by the controller, and the unmodeled dynamics of the plant, often called the residual modes. The problem is more significant in the case of large space structures because their naturally light damping and high performance requirements lead to more frequent, destructive residual mode interaction (RMI). Using the design/compensation technique of residual mode filters (RMF's), effective compensation of RMI can be accomplished in a straightforward manner when using linear controllers. The use of RMF's has been shown to be effective for a variety of large structures, including a space-based laser and infinite dimensional systems. However, the dynamics of space structures is often uncertain and may even change over time due to on-orbit erosion from space debris and corrosive chemicals in the upper atmosphere. In this case, adaptive control can be extremely beneficial in meeting the performance requirements of the structure. Adaptive control for large structures is also based on ROM's and so destructive RMI may occur. Unfortunately, adaptive control is inherently nonlinear, and therefore the known results of RMF's cannot be applied. The purpose is to present the results of new research showing the effects of RMI when using adaptive control and the work which will hopefully lead to RMF compensation of this problem.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: First Annual Symposium. Volume 1: Plenary Session; 9 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2005-11-10
    Description: The objective of this program is to develop technology needed for structural evaluation of alternative space construction concepts. Those concepts are as follows: interactive effects on dynamic performance of various environment and self-generated disturbance; new materials concepts, failure mechanisms, and non-destructive evaluation/failure detection; develop stable control algorithms and design effective combination of hierarchical and adaptive controls; and assess control-structure integrated performance and stability.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: First Annual Symposium. Volume 1: Plenary Session; 13 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2005-11-10
    Description: The low-g fluids management group with the Center for Space Construction is engaged in active research on the following topics: gauging; venting; controlling contamination; sloshing; transfer; acquisition; and two-phase flow. Our basic understanding of each of these topics at present is inadequate to design space structures optimally. A brief report is presented on each topic showing the present status, recent accomplishings by our group and our plans for future research. Reports are presented in graphic and outline form.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: First Annual Symposium. Volume 1: Plenary Session; 30 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2005-11-10
    Description: Partially constructed/assembled structures in space are complicated enough but their dynamics will also be operating in closed-loop with feedback controllers. The dynamics of such structures are modeled by large-scale finite element models. The model dimension L is extremely large (approximately 10,000) while the numbers of actuators (M) and sensors (P) are small. The model parameters M(sub m) mass matrix, D(sub o) damping matrix, and K(sub o) stiffness matrix, are all symmetric and sparse (banded). Thus simulation of open-loop structure models of very large dimension can be accomplished by special integration techniques for sparse matrices. The problem of simulation of closed-loop control of such structures is complicated by the addition of controllers. Simulation of closed-loop controlled structures is an essential part of the controller design and evaluation process. Current research in the following areas is presented: high-order simulation of actively controlled aerospace structures; low-order controller design and SCI compensation for unmodeled dynamics; prediction of closed-loop stability using asymptotic eigenvalue series; and flexible robot manipulator control experiment.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: First Annual Symposium. Volume 1: Plenary Session; 24 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2005-11-10
    Description: Within the Center for Space Construction, the SIMSTRUC project's objectives center around the development of simulation tools for the realistic analysis of large space structures. The word 'tools' is the broad sense; it designates mathematical models, finite element/finite difference formulations, computational algorithms, implementations on advanced computer architectures, and visualization capabilities. The results of our activities during the first year within the SIMSTRUC project are reported. On the modeling side, an alternative approach to fluid/thermal/structure interaction analysis that is a departure from the 'loosely coupled' and 'unified' approaches that are being currently practiced are described. The advantages of our approach both in terms of accuracy and computational efficiency were demonstrated. On the computational side, a software architecture for parallel/vector and massively parallel supercomputers that speeds up finite element and finite difference computations by several orders of magnitude is presented. As an example, the simulation of the deployment of a space structure that used to require over six hours of a workstation using a conventional finite element software, now runs on a multiprocessor using a parallel computation strategy in less than three seconds. In order to promote the physical understanding of the simulation behavior, a real-time visualization capability on the Connection Machine, which allows the analyst to watch the graphical animation of the results at the same time these are generated, was also developed. It is believed that by combining efficient analytical formulations with the state-of-the-art high performance computer implementations and superfast visualization capabilities, SIMSTRUC is moving fast towards the real-time simulation of large space structures. The designers as well as the researchers will certainly benefit from this technology.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: First Annual Symposium. Volume 1: Plenary Session; 18 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-06-11
    Description: Microgravity offers a unique environment for studying polymer diffusion and polymer polymerization reactions. The absence of convection currents, which are the major mode of mixing at the molecular level on Earth, are eliminated or reduced in the microgravity environment. More importantly, the prediction of unique copolymer composition development in microgravity allows controlled formation of new compositions of matter. The absence of mixing at the molecular level should produce unique short block copolymers available for the first time for comonomer compositions which normally lead to random or long block copolymer under good mixing. The investigation of fundamental polymer diffusion and polymer polymerization processes in microgravity is proposed. This effort will involve fundamental studies of monomer and polymer diffusion; their effects on initiation, propagation, and especially termination kinetics rate constant; and the accurate evaluation of copolymerization reactivity ratios in microgravity. The experimental design is presented for these studies along with an evaluation technique for in situ monitoring of polymer diffusion and polymerization kinetics.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NASA, Lewis Research Center, NASA Laser Light Scattering Advanced Technology Development Workshop, 1988; p 215-227
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2006-06-11
    Description: The analysis of light scattered from an ensemble of particles has long been a preferred method for characterizing their physical properties. Instrumentation to perform the measurements which forms the basis for such analysis is available in many forms based upon a variety of different experimental techniques. A system is presented which is singularly applicable for making many types of measurements in a microgravity environment. The commercial version of this device, the DAWN-F, has been used in many labs throughout the world to perform analyses of particular importance for both research and production. Light scattering theory is reviewed and the structure and function of the system is described.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NASA, Lewis Research Center, NASA Laser Light Scattering Advanced Technology Development Workshop, 1988; p 165-172
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2006-06-11
    Description: Avalanche photodiodes (APD) are excellent small area, solid state detectors for photon counting. Performance possibilities include: photon detection efficiency in excess of 50 percent; wavelength response from 400 to 1000 nm; count rate to 10 (exp 7) counts per sec; afterpulsing at negligible levels; timing resolution better than 1 ns. Unfortunately, these performance levels are not simultaneously available in a single detector amplifier configuration. By considering theoretical performance predictions and previous and new measurements of APD performance, the anticipated performance of a range of proposed APD-based photon counting modules is derived.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NASA, Lewis Research Center, NASA Laser Light Scattering Advanced Technology Development Workshop, 1988; p 65-80
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2006-06-11
    Description: Traditional optical systems for photon correlation spectroscopy and laser anemometry have relied upon physically large and fairly expensive lasers, bulk-optics such as lenses of a few inches diameter, large mechanical mounts and carefully selected, fragile and bulky photon counting photomultiplier detectors. In some cases, experimental fluid dynamics at a desired position in a flow, perhaps deep inside complex machinery, is physically impossible or very difficult. Similar problems exist with photon correlation spectroscopy, e.g., remote and heterodyne experiments. Various optical and electro optical components were investigated and characterized with the aim of replacing existing photon correlation laser spectroscopy and anemometry techniques in miniaturized form, and with significant cost reduction. Very recently, a range of miniature, modular light scattering systems were constructed from little solid state optical and electro optical components, and experimentally verified measurement performance comparable to standard lab photon correlation spectroscopy and laser anemometry equipment.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NASA, Lewis Research Center, NASA Laser Light Scattering Advanced Technology Development Workshop, 1988; p 45-63
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-08-19
    Description: Experimental and theoretical studies have been conducted to determine critical parameters at the onset of nonlinear counterflow in He II below the lambda point of He-4. Critical temperature differences have been measured in porous media for zero net mass flow and for Darcy permeabilities in the order of magnitude range from 10 to the -10th to 10 to the -8th sq cm. The normalized critical temperature gradients, which covered the liquid temperature range of 1.5 K to the lambda temperature, are found to vary with T proportional to the ratio of the superfluid density to the normal fluid density. This liquid temperature dependence appears to be consistent with duct data which are limited at low temperature by a Reynolds number criterion.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Cryogenics (ISSN 0011-2275); 29; 498-502
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: Images from an airborne, scanning radiometer operating at a frequency of 98 GHz have been analyzed. The millimeter-wave images were obtained in 1985-1986 using the JPL millimeter-wave imaging sensor. The goal of this study was to enhance the information content of these images and make their interpretation easier. A visual-interpretative approach was used for information extraction from the images. This included application of nonlinear transform techniques for noise reduction and for color, contrast, and edge enhancement. Results of using the techniques on selected millimeter-wave images are discussed.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2011-08-19
    Description: An analysis is made based upon the concept that the velocity fluctuations, and therefore, the Reynolds stresses, driven by the instability of the original flow grow until a new stable state is approached. The Reynolds stresses incorporated into the Orr-Sommerfeld equation are coupled with the main flow such that all the imaginary parts of the complex eigenvalues vanish, i.e., the original instability is eliminated. Using this stabilization principle, it is possible to find the Reynolds stresses as well as the mean velocity for plane Poiseuille flow with the Reynolds number slightly higher than the critical.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Mathematical and Computer Modelling (ISSN 0895-7177); 12; 8, 19
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2011-08-19
    Description: The behavior of the reverse flow ceiling jet against the ventilation flow from 0.58 to 0.87 m/s was investigated in a 1/3 scale model of a wide body aircraft interior. For all tests, strong reverse-flow ceiling jets of hot gases were detected well upstream of the fire. Both thicknesses of the reverse-flow ceiling jet and the smoke layer increased with the fire-crossflow parameter. The thickness of the smoke layer where the smoke flows along the main flow below the reverse-flow ceiling jet was almost twice that of the reverse-flow ceiling jet. Detailed spatial and time-varying temperatures of the gas in the test section were measured, and velocity profiles were also measured using a temperature compensated hot film.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: Certain theoretical studies of boundary-layer transition are described, based on high Reynolds numbers and with attention drawn to the various nonlinear interactions and scales present. The article concentrates in particular on theories for which the mean-flow profile is completely altered from its original state. Two- and three-dimensional flow theory and conjectures on turbulent-boundary-layer structures are included. Specific recent findings noted, and in qualitative agreement with experiments, are: nonlinear finite-time break-ups in unsteady interactive boundary layers; strong vortex/wave interactions; and prediction of turbulent boundary-layer displacement- and stress sublayer-thicknesses.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2011-08-19
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 27; 1332-134
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2011-08-19
    Description: Future spacecraft design will be affected by collisions with man-made debris orbiting the earth. Most of this orbital space debris comes from spent rocket stages. It is projected that the source of future debris will be the result of fragmentation of large objects through hypervelocity collisions. Orbiting spacecraft will have to be protected from hypervelocity debris in orbit. The options are to armor the spacecraft, resulting in increased mass, or actively removing the debris from orbit. An active space debris sweeper is described which will utilize momentum transfer to the debris through laser-induced ablation to alter its orbital parameters to reduce orbital lifetime with eventual entry into the earth's atmosphere where it will burn. The paper describes the concept, estimates the amount of velocity change (Delta V) that can be imparted to an object through laser-induced ablation, and investigates the use of a neutral particle beam for the momentum transfer. The space sweeper concept could also be extended to provide a collision avoidance system for the space station and satellites, or could be used for collision protection during interplanetary travel.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of Propulsion and Power (ISSN 0748-4658); 5; 582-590
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2011-08-19
    Description: The design and use of the Space Station Freedom are discussed. The contributions to the Station from EAS, Japan, Canada, and the US are described. Consideration is given to the capability of the Station, the internal accommodations for crew and payloads, various applications for the modules, and the planning and operation of the payloads.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Aerospace America (ISSN 0740-722X); 27; 20-22
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2011-08-19
    Description: This paper presents the application of a class of multi-grid methods to the solution of the Navier-Stokes equations for two-dimensional laminar flow problems. The methods consists of combining the full approximation scheme-full multi-grid technique (FAS-FMG) with point-, line- or plane-relaxation routines for solving the Navier-Stokes equations in primitive variables. The performance of the multi-grid methods is compared to those of several single-grid methods. The results show that much faster convergence can be procured through the use of the multi-grid approach than through the various suggestions for improving single-grid methods. The importance of the choice of relaxation scheme for the multi-grid method is illustrated.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Institution of Mechanical Engineers, Proceedings, Part C - Journal of Mechanical Engineering Science (ISSN 0954-4062); 203; C4, 1; 255-265
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2011-08-19
    Description: It is shown how a commercial time interval counter can be used to measure the relative stability of two signals that are offset in frequency and mixed down to a beat note of about 1 Hz. To avoid the dead-time problem, the counter is set up to read the time interval between each beat note upcrossing and the next pulse of a 10 Hz reference pulse train. The actual upcrossing times are recovered by a simple algorithm whose outputs can be used for computing residuals and Allan variance. A noise floor-test yielded a delta f-f Allan deviation of 1.3 times 10 to the minus 9th power/tau relative to the beat frequency.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control (ISSN 0885-3010); 36; 478-480
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2011-08-19
    Description: Rapid distortion theory is applied to study distortion of homogeneous turbulence subject to two different axisymmetric strain modes: the axisymmetric contraction (AC, nozzle-type flow), and the axisymmetric expansion (AE, diffuser-type flow). The paper explores the differences in effects of the two axisymmetric strain modes on the anisotropy of correlations and structures of turbulence; examines the effect of dilatation on the distortion of turbulence; and provides a theoretical background for turbulence model development. It is found that velocity and vorticity fluctuations are enhanced more efficiently by contraction than by expansion; contraction produces much higher anisotropy in velocity and vorticity than expansion; root-mean-square pressure is slightly reduced during contraction, whereas it increases rapidly during expansion; and vortical structures of rodlike shape develop in a contraction flow, while disklike structures develop in an expansion flow. A simple model that reflects the dependence of turbulence evolution on structural parameters such as the Reynolds-stress anisotropy and total strain is proposed, and is shown to outperform all other models for all cases examined, regardless of the mean strain rate.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Physics of Fluids A (ISSN 0899-8213); 1; 1541-155
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2011-08-19
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of Guidance, Control, and Dynamics (ISSN 0731-5090); 12; 714-722
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2011-08-19
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Aircraft (ISSN 0021-8669); 26; 887
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2011-08-19
    Description: Procedures for attitude determination based on Wahba's loss function are generalized to include the estimation of parameters other than the attitude, such as sensor biases. Optimization with respect to the attitude is carried out using the q-method, which does not require an a priori estimate of the attitude. Optimization with respect to the other parameters employs an iterative approach, which does require an a priori estimate of these parameters. Conventional state estimation methods require a priori estimates of both the parameters and the attitude, while the algorithm presented in this paper always computes the exact optimal attitude for given values of the parameters. Expressions for the covariance of the attitude and parameter estimates are derived.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of the Astronautical Sciences (ISSN 0021-9142); 37; 41-58
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2011-08-19
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: AIAA Journal (ISSN 0001-1452); 27; 1074-108
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 27; 1068-107
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2011-08-19
    Description: A correction factor to the number density measured by the Forward Scattering Spectrometer Probe (FSSP) which compensates for dead time and coincidence errors was determined by calculating the probabilities of, and the average number of particles in, the six possible types of dead time and coincidence events. These probabilities and averages were calculated by means of a probabilistic model based on Poisson statistics. A Monte Carlo computer simulation of the FSSP operation was also carried out and the number density correction factor was compared with the Monte Carlo data. For an actual number density of 2000/cu cm, it was found that the measured number density was of the order of 300/cu cm.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Review of Scientific Instruments (ISSN 0034-6748); 60; 1143-115
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2011-08-19
    Description: Measurement of times of flight of sound waves can be used to determine temperatures in a gas. This paper describes a system, based on this principle, that is capable of giving the temperature profile in a nonisothermal gas volume, for example, prevalent in a large furnace. The apparatus is simple, rugged, accurate, and capable of being automated for process control applications. It is basically an acoustic waveguide where the outside temperature profile is transferred to a chosen gas contained inside the guide.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: ASME, Transactions, Journal of Heat Transfer (ISSN 0022-1481); 111; 461-466
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2011-08-19
    Description: The development of a unique noncontact temperature measurement device utilizing rotating analyzer ellipsometry is described. The technique circumvents the necessity of spectral emissivity estimation by direct measurement concomitant with radiance brightness. Simultaneous determinations of dielectric constants and refractive indices allow changes in the physical and chemical state of a heated surface to be monitored. The results of optical property measurements at 633 nm as functions of temperature between 1000 and 2500 K for eight transition metals including Hf, Ir, Mo, Nb, Pd, Pt, Ta, and V are presented together with preliminary results of oxidation studies on iridium.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Applied Optics (ISSN 0003-6935); 28; 1885-189
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: The status and results to date of the NASA-Lewis/USAF Astronautics study of technology for large spacecraft heat-dissipation by means of liquid-droplet radiation (LDR) are discussed. The LDR concept uses a droplet generator to create billions of 200-micron droplets of a heatsink fluid which will cool through radiation into deep space as they fly toward a dropet collector. This exposure to the space environment entails the maintenance of vapor pressure as low as 10 to the -7th torr; the fluid must also be very stable chemically. While certain oils are good fluids for LDR use at low temperatures, higher-temperature heatsink fluids include Li, Sn, and Ga liquid metals.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Aerospace America (ISSN 0740-722X); 27; 32-35
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2011-08-19
    Description: Numerical studies of turbulent flow in an axisymmetric 45-deg-expansion combustor and bifurcated diffuser are presented. The Navier-Stokes equations incorporating a k-epsilon model were solved in a nonorthogonal curvilinear coordinate system. A zonal-grid method, where the flow field was divided into several subsections, was developed. This approach permitted different computational schemes to be used in the various zones. In addition, grid generation was made a more simple task. Boundary overlap and interpolating techniques were used, and an adjustment of the flow variables was required to assure conservation of mass flux. Three finite-differencing methods (hybrid, quadratic upwind, and skew upwind) were used to represent the convection terms. Results were compared with existing experimental data. In general, good agreement between predicted and measured values was obtained.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: International Journal for Numerical Methods in Fluids (ISSN 0271-2091); 9; 167-183
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2011-08-19
    Description: A design concept developed for a polarimeter on the vector magnetograph of the SAMEX satellite that would be very sensitive to solar vector magnetic fields is described. A description of the Poincare sphere is presented, along with the instrument scientific requirements, to provide an understanding of how the polarimeter design has been selected. It is shown that the design goal of a polarimetric sensitivity of 0.0001 can be achieved in the linear measurements using a hybrid analyzer. It is also noted that the systematic errors that produce linear crosstalk into the circular measurement will require the use of the redundant polarization measurements for in-flight calibrations and corrections of the data.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Optical Engineering (ISSN 0091-3286); 28; 131-140
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2011-08-19
    Description: The present analysis method for hot-wire data in supersonic turbulence takes sound field effects into account and yields greater accuracy in its treatment of flow variable fluctuations than existing methods despite requiring only a moderately accurate estimate of static pressure fluctuations. The method demonstrates the way in which neglecting pressure fluctuations will affect hot-wire data analysis, as well as indicating the probable direction the errors will take.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: AIAA Journal (ISSN 0001-1452); 27; 115-117
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2011-08-19
    Description: Displays of multifrequency passive microwave data from the Special Sensor Microwave/Imager (SSM/I) flying on the Defense Meteorological Satellite Program (DMSP) spacecraft are presented. Observed brightness temperatures at 85.5 GHz (vertical and horizontal polarizations) and 37 GHz (vertical polarization) are respectively used to 'drive' the red, green, and blue 'guns' of a color monitor. The resultant false-color images can be used to distinguish land from water, highlight precipitation processes and structure over both land and water, and detail variations in other surfaces such as deserts, snow cover, and sea ice. The observations at 85.5 GHz also add a previously unavailable frequency to the problem of rainfall estimation from space. Examples of mesoscale squall lines, tropical and extra-tropical storms, and larger-scale land and atmospheric features as 'viewed' by the SSM/I are shown.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: American Meteorological Society, Bulletin (ISSN 0003-0007); 70; 146-151
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2011-08-19
    Description: A postdispersion system for astronomical observations with Fourier transform spectrometers in the thermal infrared has been developed which improves the sensitivity of radiation noise limited observations by reducing the spectral range incident on the detector. Special attention is given to the first-generation blocked impurity band detector. Planetary, solar, and stellar observations are reported.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Applied Optics (ISSN 0003-6935); 28; 139-145
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2011-08-19
    Description: The measurement by a three-dimensional laser Doppler velocimeter of a turbulent flow has been numerically simulated. Errors associated with the probe volume geometry and the coincidence time window concept are revealed. One type of error occurs for high system data rates when multiple particles lead to system realizations. Another error occurs associated with a geometric bias discovered in the present study. This three-dimensional ldv geometric bias exists even for single-particle realizations and regardless of the system data rate. A technique for the elimination of the geometric bias is presented.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Experiments in Fluids (ISSN 0723-4864); 7; 1, 19
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: A computer-controlled tunable diode laser spectrometer and spectral analysis software are described. The three-channel system records simultaneously the transmission of a subject gas, a temperature-stabilized etalon, and a calibration gas. The software routines are applied to diode laser spectra of HNO3 and NO2 to illustrate the procedures adopted for conversion of raw spectral data to useful transmission and harmonic spectra. Extraction of line positions, absorption intensities, collisional broadening coefficients, and gas concentrations from recorded spectra is also described.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Applied Spectroscopy (ISSN 0003-7028); 43; 834-839
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2011-08-19
    Description: Optical interconnects are being considered for control signal distribution in phased array antennas. A packaged hybrid GaAs optical controller with a 1:16 demultiplexed output that is suitable for this application is described. The controller, which was fabricated using enhancement/depletion mode MESFET technology, operates at demultiplexer-limited input data rates up to 305 Mb/s and requires less than 200 microW optical input power.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: IEEE Photonics Technology Letters (ISSN 1041-1135); 1; 389-391
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2011-08-19
    Description: A technique has been developed to support the study of the effects of cosmic rays on integrated circuits. The system is designed to determine the particle distribution across the surface of an integrated circuit accurately while the circuit is bombarded by a particle beam. The system uses photomultiplier tubes, an octal discriminator, a computer-controlled NIM quad counter, and an IBM PC. It provides real-time operator feedback for fast beam tuning and monitors momentary fluctuations in the particle beam. The hardware, software, and system performance are described.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: IEEE Transactions on Nuclear Science (ISSN 0018-9499); 36; 1738-174
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2011-08-19
    Description: A three-channel transportable radiometer that operates at 20.6, 31.65, and 90.0 GHz has been developed. The design of the radiometer is described and the results of various experimental applications of the radiometer are presented. The experiments include a comparison of brightness temperature measurements at various frequencies with the water vapor absorption models of Waters (1976) and Lieve (1989). Measurements of absorption ratios for cloud attenuation are given and the radiometer measurements are compared with oxygen absorption calculated using the Rasenkranz (1988) model.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: (ISSN 0002-6557); 58; 467-474
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2011-08-19
    Description: This paper describes a program of airborne radiometric imaging at 90 GHz and 140 GHz. Using high sensitivity (below 1 K) and high angular resolution (0.5-1.0 degree), high quality images have been made. The following measurements are discussed: cloud and fog penetration at 90 GHz, discrimination between agricultural and urban areas, discrimination between different vegetation types, detection of vehicles on roads, detection and classification of airports and airplanes, ship detection and quantitative oil spill sensing. The application of information enhancement techniques with automatic and real time application aspects is also described, and results of applied techniques for contrast and contour enhancement are shown.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: (ISSN 0002-6557); 58; 457-465
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2011-08-19
    Description: A numerical procedure in which the Navier-Stokes equations are discretized using tightly coupled discretizations of pressure derivatives and continuity equations is used here to extend the range of known terminal velocities of gaseous bubbles in liquids well beyond that in previous investigations. Computations performed for Reynolds numbers up to 2000 and Marangoni numbers up to 1000 show only a modest variation of the scaled bubble velocity between 0.16 and 0.5. The bubble velocity is influenced more by the Marangoni number than by the Reynolds number.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Numerical Heat Transfer, Part A: Applications (ISSN 1040-7782); 16; 2, Se
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2011-08-19
    Description: A numerical analysis is performed on thermocapillary buoyancy convection induced by phase change in a liquid droplet. A finite-difference code is developed using an alternating-direction implicit (ADI) scheme. The intercoupling relation between thermocapillary force, buoyancy force, fluid property, heat transfer, and phase change, along with their effects on the induced flow patterns, are disclosed. The flow is classified into three types: thermocapillary, buoyancy, and combined convection. Among the three mechanisms, the combined convection simulates the experimental observations quite well, and the basic mechanism of the observed convection inside evaporating sessile drops is thus identified. It is disclosed that evaporation initiates unstable convection, while condensation always brings about a stable density distribution which eventually damps out all fluid disturbances. Another numerical model is presented to study the effect of boundary recession due to evaporation, and the 'peeling-off' effect (the removal of the surface layer of fluid by evaporation) is shown to be relevant.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Numerical Heat Transfer, Part A: Applications (ISSN 1040-7782); 16; 2, Se
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2011-08-19
    Description: Two-dimensional solidification influenced by anisotropic heat conduction has been considered. The interfacial energy balance was derived to account for the heat transfer in one direction (x or y) depending on the temperature gradient in both the x and y directions. A parametric study was made to determine the effects of the Stefan number, aspect ratio, initial superheat, and thermal conductivity ratios on the solidification rate. Because of the imposed boundary conditions, the interface became skewed and sometimes was not a straight line between the interface position at the upper and lower adiabatic walls (spatially nonlinear along the height). This skewness depends on the thermal conductivity ratio k(yy)/k(yx). The nonlinearity of the interface is influenced by the solidification rate, aspect ratio, and k(yy/k(yx).
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Numerical Heat Transfer, Part A: Applications (ISSN 1040-7782); 15; 2, 19; 181-195
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2011-08-19
    Description: Mercuric iodide X-ray detectors have been undergoing tests in a prototype scanning electron microscope system being developed for unmanned space flight. The detector program addresses the issues of geometric configuration in the SEM, compact packaging that includes separate thermoelectric coolers for the detector and FET, X-ray transparent hermetic encapsulation and electrical contacts, and a clean vacuum environment.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Nuclear Instruments and Methods in Physics Research, Section A - Accelerators, Spectrometers, Detectors, and Associated Equipment (ISSN 0168-9002); 283; 348-351
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2011-08-19
    Description: A multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method is presented. In the model, the effect of the ratio of the production rate to the dissipation rate on eddy viscosity is modeled by use of the multiple-time-scales and a variable partitioning of the turbulent kinetic energy spectrum. The concept of a variable partitioning of the turbulent kinetic energy spectrum and the rest of the model details are based on the previously reported algebraic stress turbulence model. Example problems considered include: a fully developed channel flow, a plane jet exhausting into a moving stream, a wall jet flow, and a weakly coupled wake-boundary layer interaction flow. The computational results compared favorably with those obtained by using the algebraic stress turbulence model as well as experimental data. The present turbulence model, as well as the algebraic stress turbulence model, yielded significantly improved computational results for the complex turbulent boundary layer flows, such as the wall jet flow and the wake boundary layer interaction flow, compared with available computational results obtained by using the standard kappa-epsilon turbulence model.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Numerical Heat Transfer, Part B: Fundamentals (ISSN 1040-7790); 16; 2, 19; 193-211
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2011-08-19
    Description: The emission from a gray radiating medium is analyzed for transient cooling in surroundings at a low temperature. The medium is rectangular with no variations in the direction normal to the cross section. The integral equation for the transient temperature distribution is solved numerically using a two-dimensional Gaussian integration subroutine. The emissive ability for a rectangle at uniform temperature is compared with that for transient cooling where the temperature distribution of the region has reached a fully developed shape, as shown by a separation of variables solution. The two solutions provide the upper and lower bounds for the emittance of a rectangle during transient cooling. The emittances for various aspect ratios are presented as a function of the mean length of the rectangle and are compared with results for a plane layer and a cylinder.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: International Journal of Heat and Mass Transfer (ISSN 0017-9310); 32; 1955-196
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: Calculations for n-decane drops evaporating in a spherical cluster surrounded by unvitiated ambient air at atmospheric pressure were performed using two previously proposed cluster models. Both cluster models predict that turbulent transport effects are more important in the case of small clusters. This is due to the smaller volume to surface ratio and thus to the greater transport of hot unvitiated gas to the drops in order to promote evaporation. The results obtained are compared with those of two turbulent models for each one of the 'trapping factors' and similarity models.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: International Journal of Heat and Mass Transfer (ISSN 0017-9310); 32; 2000-200
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2011-08-19
    Description: The effects of critical layer nonlinearity are considered on spatially growing oblique instability waves on nominally two-dimensional shear layers between parallel streams. The analysis shows that three-dimensional effects cause nonlinearity to occur at much smaller amplitudes than it does in two-dimensional flows. The nonlinear instability wave amplitude is determined by an integro-differential equation with cubic type nonlinearity. The numerical solutions to this equation are worked out and discussed in some detail. The numerical solutions always end in a singularity at a finite downstream distance.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Fluid Mechanics (ISSN 0022-1120); 207; 97-120
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2011-08-19
    Description: The effects of critical-layer nonlinearity on spatially growing oblique instability waves on compressible shear layers between two parallel streams are considered. The analysis shows that mean temperature nonuniformities cause nonlinearity to occur at much smaller amplitudes than it does when the flow is isothermal. The nonlinear instability wave growth rate effects are described by an integrodifferential equation which bears some resemblance to the Landau equation, in that it involves a cubic-type nonlinearity. The numerical solutions to this equation are worked out and discussed in some detail. Inviscid solutions always end in a singularity at a finite downstream distance, but viscosity can eliminate this singularity for certain parameter ranges.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Fluid Mechanics (ISSN 0022-1120); 207; 73-96
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2011-08-19
    Description: A simulation is performed of a passive scalar field convected by a rapidly fluctuating velocity field whose correlation time approaches zero. By using a code proposed in a previous study (Chasnov et al., 1988), the turbulence spectrum of the passive temperature field in the conductive subrange is determined. A theoretical model is proposed which explains the result obtained by representing the transfer of scalar variance by an eddy conductivity, whose correlation time is limited by the correlation time of the velocity field.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Physics of Fluids A (ISSN 0899-8213); 1; 1698-170
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2011-08-19
    Description: A review of unfurlable satellite antennas is presented. Typical application requirements for future space missions are first outlined. Then, U.S. and European mesh and inflatable antenna concepts are described. Precision deployables using rigid panels or petals are not included in the survey. RF modeling and performance analysis of gored or faceted mesh reflector antennas are then reviewed. Finally, both on-ground and in-orbit RF test techniques for large unfurlable antennas are discussed.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Annales des Telecommunications (ISSN 0003-4347); 44; 475-488
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2011-08-19
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 27; 1557-156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: The development and use of microspacecraft are examined. It is proposed that 10-50 microspacecraft per year can be launched; up to 50 microspacecraft can be dispatched with traditional launchers; and 1-3 experiments can be performed on the spacecraft. Various applications for the microspacecraft are discussed and specific examples of proposed missions are presented. Some systems and instruments designed for the microspacecraft are described.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Aerospace America (ISSN 0740-722X); 27; 14-17
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: The recent development of Scanning Tunneling Microscopy technology allows the application of electron tunneling to position detectors for the first time. The vacuum tunnel junction is one of the most sensitive position detection mechanisms available. It is also compact, simple, and requires little power. A prototype accelerometer based on electron tunneling, and other sensor applications of this promising new technology are described.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: British Interplanetary Society, Journal (ISSN 0007-084X); 42; 474-477
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: Long's self-similar vortex is known to have two solutions for each supercritical value of the flow force. Each of those solutions is shown to have a double structure if the flow force is large. The inertial instabilities of one of those large-flow-force limit solutions are investigated, showing that they are related to the instabilities of the Bickley jet in one regime. However, the swirl in the vortex becomes important for long waves, very strongly modifying the sinuous and varicose, Bickley modes. The asymptotic results obtained agree well with the numerical solutions for the sinuous mode, but not for the varicose mode, the difficulty in the latter case being apparently due to mode jumping.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Fluid Mechanics (ISSN 0022-1120); 206; 405-432
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2011-08-19
    Description: Numerical techniques are developed to solve the Navier-Stokes equations for unsteady incompressible flow. The extension of the finite-difference Galerkin (FDG) method of Stephens et al. (1984) to the continuous-time case in two or three space dimensions is explained, and the numerical implementation of the method is discussed with particular attention to the staggered-MAC-grid primitive-variable discretization, the application of discrete mass balance to avoid problems inherent in FDG schemes, the direct interpretation of the FDG expansion variables as a discrete streamfunction, and a mass-balance approach to two-dimensional problems with throughflow or obstacles. Numerical results are presented graphically for the evolution of asymptotic steady flow in a driven cavity at Reynolds number 400, 1000, or 3200; good agreement with published experimental data is demonstrated, with accurate predictions of secondary-vortex formation from wall bubble recirculations at Reynolds number 1000.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Computational Physics (ISSN 0021-9991); 84; 207-241
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2011-08-19
    Description: Flow-field measurements of unsteady turbulent flow downstream of a rotating spoked-wheel wake generator were performed in a short-duration light-piston tunnel, and the instantaneous-velocity data were phase averaged based on a signal synchronized with the bar-passing frequency. Mean axial velocities were found to agree well with those obtained from measurements behind a stationary cylinder and to be independent of both Reynolds and bar-passing Strouhal numbers. Reynolds stresses were found to be consistent with related cylinder-wake measurements, but were significantly higher than corresponding measurements obtained in large-scale research turbomachines. Phase-averaged triple velocity correlations were calculated from the digital velocity records, revealing the sign and the magnitude of skewness in the velocity probability density distributions for the two components.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: ASME, Transactions, Journal of Turbomachinery (ISSN 0889-504X); 111; 475-482
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: The bifurcation diagram corresponding to the Eckhaus stability curve has been constructed for the one-dimensional Swift-Hohenberg equation in a finite domain. Finite-amplitude solutions with particular spatial wavelength recover linear stability, as predicted by the Eckhaus curve, after a sequence of secondary bifurcations from the branch of solutions with this wavelength. No connectivity between the primary-solution branches is admissible if the stability predicted by this bifurcation diagram is to correspond to the prediction of the Eckhaus analysis. The Eckhaus curve does not exist if nonlinear couplings destroy this pattern. This is demonstrated by analysis of a coupled pair of Swift-Hohenberg equations.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Physical Review Letters (ISSN 0031-9007); 63; 2048-205
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2011-08-19
    Description: The effects of asymmetry in furnace temperature profile and pulling velocity on the crystal interface shape are demonstrated while neglecting the latent heat of solidification. It is seen that the furnace temperature profile may be varied in order to influence the shape of the melt-crystal interface. An exact thermal analysis is then performed on the Bridgman technique by including the latent heat of solidification as a source term. The exact temperature field required for yielding a flat melt-crystal interface is obtained. The earlier observation regarding the influence of furnace temperature profile on the interface shape is confirmed and a criterion for achieving a flat interface is obtained. Various furnace temperature profiles are selected and their corresponding melt-crystal interface results are presented.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: International Journal of Heat and Mass Transfer (ISSN 0017-9310); 32; 1741-175
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: New methods have been developed to implement position sensors based on electron tunneling. The electron tunneling methods enable position to be detected with sub-Angstrom resolution using a compact mechanical structure and simple electronic control elements. A prototype accelerometer is the first sensor based on these principles; it shows reliable operation with a noise-limited sensitivity and a bandwidth of approximately 3 kHz. Based on these results, it is expected that tunnel sensors optimized for many applications will enable an entirely new class of sensors to be developed.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Sensors and Actuators (ISSN 0250-6874); 19; 201-210
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2011-08-19
    Description: Transient cooling by radiation is analyzed for a cylindrical region filled with axially flowing streams of drops that are becoming solidified. This is of interest for the dissipation of waste heat from orbiting power system in space. The drops absorb, emit, and scatter radiation, and the surroundings are at a lower uniform temperature. The radiative properties are assumed gray, and the scattering is isotropic. The radiating region is a two-phase mixture that remains at the melting temperature of the drops. Its temperature uniformity maintains a high emissive power as energy is lost. This is an advantage over a sensible heat radiator in which the temperature decreases, thereby reducing the emissive power. The results provide the axial length that remains two-phase and the fraction of energy dissipated within this length in which the emissive power has not decreased because of sensible cooling. It is also shown how the radial distribution of the axial velocity of the drops can be modified to increase this energy fraction.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Thermophysics and Heat Transfer (ISSN 0887-8722); 3; 340-344
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Thermophysics and Heat Transfer (ISSN 0887-8722); 3; 233-244
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2011-08-19
    Description: A number of successful applications of a spectral collocation method extended by a multi-domain patching technique are shown. The multi-domain technique can be used to improve resolution for problems with widely disparate scales, and to reduce the ill-conditioning of the spectral operators for problems in which a large number of points are required for distributed resolution. A new nonreflecting outflow boundary treatment for unsteady transition-to-turbulence simulations is also presented, which relies on the multi-domain technique. The role of multi-domain in improving the efficiency of such calculations is discussed.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Applied Numerical Mathematics (ISSN 0168-9274); 6; 123-139
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2011-08-19
    Description: Spectral element methods are high-order weighted residual techniques based on spectral expansions of variables and geometry for the Navier-Stokes (NS) and transport equations. Here, practical aspects of these methods and their efficient implementation are examined, and several examples of flows in truly complex geometries are presented. The spectral element discretization for NS equations is introduced, and the convergence of the method is addressed. An efficient data management scheme is discussed in the context of parallel processing computations. The method is validated by comparing the spectral element solutions with the exact eigensolutions for the Orr-Sommerfeld equations in two and three dimensions. Computer-aided flow visualizations are presented for an impulsive flow past a sharp edge wedge. Three-dimensional states of channel flow disrupted by an array of cylindrical eddy promoters are studied, and the results of a direct simulation of the turbulent flow in a plane channel are presented.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Applied Numerical Mathematics (ISSN 0168-9274); 6; 85-105
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2011-08-19
    Description: The Particle Measuring Systems (PMS) Forwared Scattering Spectrometer Probe (FSSP-100) which was flown on the ER-2 during the Airborne Antarctic Ozone Experiment for the measurement of particles in polar stratospheric clouds has been evaluated and calibrated. The sample volume of the probe per 10-s sampling period increases from 257 cu cm for 1-micron particles to 412 for 15-micron particles, but there is substantial uncertainty in this value. Limitations in the measurements from this instrument and possible corrections are discussed. The uncertainty in the total particle mass measured by the probe may be as large as + or - 100 percent. Recommendations are given for the processing of data from the FSSP used in this project.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 94; 16475-16
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2011-08-19
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 27; 1707-171
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-08-31
    Description: A description of the Axial Flow Turbine Research Facility (AFTRF) being built at the Turbomachinery Laboratory of the Pennsylvania State University is presented. The purpose of the research to be performed in this facility is to obtain a better understanding of the rotor/stator interaction, three dimensional viscous flow field in nozzle and rotor blade passages, spanwise mixing and losses in these blade rows, transport of wake through rotor passage, and unsteady aerodynamics and heat transfer of rotor blade row. The experimental results will directly feed and support the analytical and the computational tool development. This large scale low speed facility is heavily instrumented with pressure and temperature probes and has provision for flow visualization and laser Doppler anemometer measurement. The facility design permits extensive use of the high frequency response instrumentation on the stationary vanes and more importantly on the rotating blades. Furthermore it facilitates detailed nozzle wake, rotor wake, and boundary layer surveys. The large size of the rig also has the advantage of operating at Reynolds numbers representative of the engine environment.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Structural Integrity and Durability of Reusable Space Propulsion Systems; p 223-236
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-08-31
    Description: A quasi-three-dimensional analysis has been developed for unsteady rotor-stator interaction in turbomachinery. The analysis solves the unsteady Euler or thin-layer Navier-Stokes equations in a body-fitted coordinate system. It accounts for the effects of rotation, radius change, and stress-surface thickness. The Baldwin-Lomax eddy-viscosity model is used for turbulent flows. The equations are integrated in time using an explicit four-stage Runge-Kutta scheme with a constant time step. Implicit residual smoothing is used to increase the stability limit of the time-accurate computations. The scheme is described, and stability and accuracy analyses are given.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Structural Integrity and Durability of Reusable Space Propulsion Systems; p 237-246
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-08-31
    Description: A 3-D model was developed for simulating multistage turbomachinery flows using supercomputers. This average passage flow model described the time averaged flow field within a typical passage of a bladed wheel within a multistage configuration. To date, a number of inviscid simulations were executed to assess the resolution capabilities of the model. Recently, the viscous terms associated with the average passage model were incorporated into the inviscid computer code along with an algebraic turbulence model. A simulation of a stage-and-one-half, low speed turbine was executed. The results of this simulation, including a comparison with experimental data, is discussed.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Structural Integrity and Durability of Reusable Space Propulsion Systems; p 247-251
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-08-31
    Description: A recent study by Rocketdyne for NASA identified laser anemometry, using a compact optical head, as a feasible diagnostic instrument for the Space Shuttle Main Engine (SSME) Model Verification experiments. Physical Research, Inc. (PRI) is presently under contract from NASA Lewis to develop and deliver such a laser anemometer system. For this application, it is desired to place the laser at a remote distance from the engine, and use single mode polarization preserving fiber optics for the transmission of the laser light to and from the measurement head. Other requirements are given. Analytical and experimental tools are being used to develop the technologies required for the laser anemometer. These include finite element analysis of the optical head and vibration tests for various optical and mechanical components. Design of the optical head and the fiber optic connectors are driven by the temperature and vibration requirements for the measurement environment. Results of the finite element analysis and the vibration tests of the components are included. Conceptual design of the fiber optic launcher and the optical probe has also been complete. Detailed design of the probe as well as the fabrication and assembly of the components is in progress.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NASA. Lewis Research Center, Structural Integrity and Durability of Reusable Space Propulsion Systems; p 105-112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: Spacecraft range measurements have provided the most accurate tests, to date, of some relativistic gravitational parameters, even though the measurements were made with ranging systems having error budgets of about 10 meters. Technology is now available to allow an improvement of two orders of magnitude in the accuracy of spacecraft ranging. The largest gains in accuracy result from the replacement of unstable analog components with high speed digital circuits having precisely known delays and phase shifts.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NASA, Relativistic Gravitational Experiments in Space; p 203-205
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-08-31
    Description: For 22 years (from ATS-1 to GOES-H) a single technology has dominated imaging from geosynchronous altitudes. In 1990, with the scheduled launch of GOES-I, a major change will occur which will in turn open the way for the Geostationary Platform. The need for improved observations of severe storms has led NOAA to a decision to replace spinning geostationary spacecraft with a three-axis-stabilized type (non-spinning) vehicle already common among communications spacecraft and demonstrated by INSAT. Also, the current spin-scan imager with sounder channels will be replaced by separate instruments capable of independent aiming. The advantages and challenges of the changes are discussed.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA, Langley Research Center, Earth Science Geostationary Platform Technology; p 29-33
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-08-31
    Description: EDO Corporation, Barnes Engineering Division designed and constructed a high resolution thermal imaging system on contract to Lockheed for use in the SDI Star Lab. This employs a Pt Si CCD array which is sensitive in the spectral range of 3 to 5 microns. Star Lab will be flown in the Shuttle bay and consists basically of a large, reflecting, tracking telescope with associated sensors and electronics. The thermal imaging system is designed to operate in the focal plane of this telescope. The configuration of the system is illustrated. The telescope provides a collimated beam output which is focussed onto the detector array by a silicon objective lens. The detector array subtends a field of view of 1.6 degrees x 1.22 degrees. A beam switching mirror permits bypassing the large telescope to give a field of 4 degrees x 3 degrees. Two 8 position filter wheels are provided, and background radiation is minimized by Narcissus mirrors. The detector is cooled with a Joule-Thompson cryostat fed from a high pressure supply tank. This was selected instead of a more convenient closed-cycle system because of concern with vibration. The latter may couple into the extremely critical Starlab tracking telescope. The electronics produce a digitized video signal for recording. Offset and responsivity correction factors are stored for all pixels and these corrections are made to the digitized output in real time.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: JPL, Proceedings of the Second Noncontact Temperature Measurement Workshop; p 271-283
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-08-31
    Description: A preliminary evaluation was made by ORNL of a two-color ratio pyrometer (TCRP) for temperature control in the Modular Electromagnetic Levitation (MEL) experiment. A discussion was presented by Eric Spjut at the 1987 NASA Non-Contact Temperature Measurement Workshop (NASA Conf. Publ. 2503, pp. 182-213) in which he described the non-linear characteristics of the time response of TCPs. Researchers replicated his model and results and note that the non-linear response behavior is minimized for small temperature steps at high temperatures. They then used the predicted response in a model for a proportional or integral feedback controller and predicted the control characteristics for heating and cooling a 5-mm diameter sphere of niobium at high (1500 to 2750 K) temperatures. The analysis shows that for a slow (25-ms) time response for a commercial RCRP, overshoots of several hundred kelvins will result from a 100-K decrease in the setpoint, and temperature tracking errors of 14 to 45 K will occur for control temperature ramps of 1000K/s. For a fast (greater than 0.1 ms) time response, the overshoot and ramp response errors are largely eliminated.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: JPL, Proceedings of the Second Noncontact Temperature Measurement Workshop; p 299-302
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-08-31
    Description: The development of a noncontact temperature measurement device utilizing rotating analyzer ellipsometry is described. The technique circumvents the necessity of spectral emissivity estimation by direct measurement concomittant with radiance brightness. Using this approach, the optical properties of electromagnetically levitated liquid metals Cu, Ag, Au, Ni, Pd, Pt, and Zr were measured in situ at four wavelengths and up to 600 K superheat in the liquid. The data suggest an increase in the emissivity of the liquid compared with the incandescent solid. The data also show moderate temperature dependence of the spectral emissivity. A few measurements of the optical properties of undercooled liquid metals were also conducted. The data for both solids and liquids show excellent agreement with available values in the literature for the spectral emissivities as well as the optical constants.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: JPL, Proceedings of the Second Noncontact Temperature Measurement Workshop; p 110-140
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: Commercially available types of infrared thermal imaging instruments, both viewers (qualitative) and imagers (quantitative) are discussed. The various scanning methods by which thermal images (thermograms) are generated will be reviewed. The performance parameters (figures of merit) that define the quality of performance of infrared radiation thermometers will be introduced. A discussion of how these parameters are extended and adapted to define the performance of thermal imaging instruments will be provided. Finally, the significance of each of the key performance parameters of thermal imaging instruments will be reviewed and procedures currently used for testing to verify performance will be outlined.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: JPL, Proceedings of the Second Noncontact Temperature Measurement Workshop; p 80-89
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-08-31
    Description: A multiphase turbulence closure model is presented which employs one transport equation, namely the turbulence kinetic energy equation. The proposed form of this equation is different from the earlier formulations in some aspects. The power spectrum of the carrier fluid is divided into two regions, which interact in different ways and at different rates with the suspended particles as a function of the particle-eddy size ratio and density ratio. The length scale is described algebraically. A mass/time averaging procedure for the momentum and kinetic energy equations is adopted. The resulting turbulence correlations are modeled under less retrictive assumptions comparative to previous work. The closures for the momentum and kinetic energy equations are given. Comparisons of the predictions with experimental results on liquid-solid jet and gas-solid pipe flow show satisfactory agreement.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA, Marshall Space Flight Center, Constitutive Relationships and Models in Continuum Theories of Multiphase Flows; p 147-162
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: Generally, two types of theory are used to describe the field equations for suspensions. The so-called postulated equations are based on the kinetic theory of mixtures, which logically should give reasonable equations for solutions. The basis for the use of such theory for suspensions is tenuous, though it at least gives a logical path for mathematical arguments. It has the disadvantage that it leads to a system of equations which is underdetermined, in a sense that can be made precise. On the other hand, the so-called averaging theory starts with a determined system, but the very process of averaging renders the resulting system underdetermined. A third type of theory is proposed in which the kinetic theory of gases is used to motivate continuum equations for the suspended particles. This entails an interpretation of the stress in the particles that is different from the usual one. Classical theory is used to describe the motion of the suspending medium. The result is a determined system for a dilute suspension. Extension of the theory to more concentrated systems is discussed.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA, Marshall Space Flight Center, Constitutive Relationships and Models in Continuum Theories of Multiphase Flows; p 57-64
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-08-31
    Description: A new, near-optimal feedback control technique is introduced that is shown to provide excellent vibration attenuation for those distributed parameter systems that are often encountered in the areas of aeroservoelasticity and large space systems. The technique relies on a novel solution methodology for the classical optimal control problem. Specifically, the quadratic regulator control problem for a flexible vibrating structure is first cast in a weak functional form that admits an approximate solution. The necessary conditions (first-order) are then solved via a time finite-element method. The procedure produces a low dimensional, algebraic parameterization of the optimal control problem that provides a rigorous basis for a discrete controller with a first-order like hold output. Simulation has shown that the algorithm can successfully control a wide variety of plant forms including multi-input/multi-output systems and systems exhibiting significant nonlinearities. In order to firmly establish the efficacy of the algorithm, a laboratory control experiment was implemented to provide planar (bending) vibration attenuation of a highly flexible beam (with a first clamped-free mode of approximately 0.5 Hz).
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, Proceedings of the Workshop on Computational Aspects in the Control of Flexible Systems, Part 2; p 957-981
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-08-31
    Description: Flexibility is important for high speed, high precision operation of lightweight manipulators. Accurate dynamic modeling of flexible robot arms is needed. Previous work has mostly been based on linear elasticity with prescribed rigid body motions (i.e., no effect of flexible motion on rigid body motion). Little or no experimental validation of dynamic models for flexible arms is available. Experimental results are also limited for flexible arm control. Researchers include the effects of prismatic as well as revolute joints. They investigate the effect of full coupling between the rigid and flexible motions, and of axial shortening, and consider the control of flexible arms using only additional sensors.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, Proceedings of the Workshop on Computational Aspects in the Control of Flexible Systems, Part 2; p 745-777
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-08-31
    Description: A flexible aircraft or space structure with active control is typically modeled by a large-order state space system of equations in order to accurately represent the rigid and flexible body modes, unsteady aerodynamic forces, actuator dynamics and gust spectra. The control law of this multi-input/multi-output (MIMO) system is expected to satisfy multiple design requirements on the dynamic loads, responses, actuator deflection and rate limitations, as well as maintain certain stability margins, yet should be simple enough to be implemented on an onboard digital microprocessor. A software package for performing an analog or digital control law synthesis for such a system, using optimal control theory and constrained optimization techniques is described.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Proceedings of the Workshop on Computational Aspects in the Control of Flexible Systems, Part 2; p 693-707
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-08-31
    Description: Simulation of structural response of multi-flexible-body systems by linearized flexible motion combined with nonlinear rigid motion is discussed. Advantages and applicability of such an approach for accurate simulation with greatly reduced computational costs and turnaround times are described, restricting attention to the control design environment. Requirements for updating the linearized flexibility model to track large angular motions are discussed. Validation of such an approach by comparison with other existing codes is included. Application to a flexible robot manipulator system is described.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, Proceedings of the Workshop on Computational Aspects in the Control of Flexible Systems, Part 1; p 441-472
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-08-31
    Description: A simulation of the system made up of the Orbiter, Remote Manipulator System (RMS), and payload grappled by the RMS was completed. The simulation was used to study the stability of this overall system when its attitude is under control of the Orbiter's on-orbit Flight Control System (FCS). The simulation was also used to study the dynamics of the system when the RMS and its associated command software are in active control of the relative Orbiter to payload position and orientation. The simulation models all of the following elements: RMS boom bending (represented by two cubic bending models); RMS boom torsion; RMS joint gearbox compliance (represented by a non-linear wind-up model); flexibility at the RMS to Orbiter interface; flexibility at the RMS to payload interface; joint motor dynamics; joint servo-loop dynamics; RMS on-board computer command logic; data transfer delays between the RMS sensor and the RMS on-board computer and between the RMS on-board computer and RMS joint servos; on-orbit flight control nonlinear control logic; and the Reaction Control System (both Primary and Vernier) jet forces and moments.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, Proceedings of the Workshop on Computational Aspects in the Control of Flexible Systems, Part 1; p 473-494
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-08-31
    Description: A three-dimensional finite element formulation for modeling the transient dynamics of constrained multibody space sructures with truss-like configurations is presented. Convected coordinate systems are used to define rigid-body motion of individual elements in the system. These systems are located at one end of each element and are oriented such that one axis passes through the other end of the element. Deformation of each element, relative to its convected coordinate system, is defined by cubic flexural shape functions as used in finite element methods of structural analysis. The formulation is oriented toward joint dominated structures and places the generalized coordinates at the joint. A transformation matrix is derived to integrate joint degree-of-freedom into the equations of motion of the element. Based on the derivation, a general-purpose code LATDYN (Large Angle Transient DYNamics) was developed. Two examples are presented to illustrate the application of the code. For the spin-up of a flexible beam, results are compared with existing solutions available in the literature. For the deployment of one bay of a deployable space truss (the Minimast), results are verified by the geometric knowledge of the system and converged solution of a successively refined model.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, Proceedings of the Workshop on Computational Aspects in the Control of Flexible Systems, Part 1; p 283-321
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-08-31
    Description: Described here are Boeing software tools used for the development of control laws of flexible structures. The Boeing Company has developed a software tool called Modern Control Software Package (MPAC). MPAC provides the environment necessary for linear model development, analysis, and controller design for large models of flexible structures. There are two features of MPAC which are particularly appropriate for use with large models: (1) numerical accuracy and (2) label-driven nature. With the first feature MPAC uses double precision arithmetic for all numerical operations and relies on EISPAC and LINPACK for the numerical foundation. With the second feature, all MPAC model inputs, outputs, and states are referenced by user-defined labels. This feature allows model modification while maintaining the same state, input, and output names. In addition, there is no need for the user to keep track of a model variable's matrix row and colunm locations. There is a wide range of model manipulation, analysis, and design features within the numerically robust and flexible environment provided by MPAC. Models can be built or modified using either state space or transfer function representations. Existing models can be combined via parallel, series, and feedback connections; and loops of a closed-loop model may be broken for analysis.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, Proceedings of the Workshop on Computational Aspects in the Control of Flexible Systems, Part 1; p 221-241
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-08-31
    Description: The goal is to develop the next generation guidance and control analysis and design tools to enable future missions and to improve productivity and reliability.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, Proceedings of the Workshop on Computational Aspects in the Control of Flexible Systems, Part 1; p 33-48
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: A NASA program is about to start which has the objective to advance Controls-Structures Interaction (CSI) technology to a point where it can be used in spacecraft design for future missions. Because of the close interrelationships between the structure, the control hardware, and the analysis/design, a highly interdisciplinary activity is defined in which structures, dynamics, controls, computer and electronics engineers work together on a daily basis and are co-located to a large extent. Methods will be developed which allow the controls and structures analysis and design functions to use the same mathematical models. Hardware tests and applications are emphasized and will require development of concepts and test methods to carry out. Because of a variety of mission application problem classes, several time-phased, focus ground test articles are planned. They will be located at the Langley Researdh Center (LaRC), the Marshall Space Flight Center (MSFC) and at the Jet Propulsion Laboratory (JPL). It is anticipated that the ground tests will be subject to gravity and other environmental effects to the extent that orbital flights tests will be needed for verification of some technology items. The need for orbital flight experiments will be quantified based on ground test results and mission needs. Candidate on-orbit experiments will be defined and preliminary design/definition and cost studies will be carried out for one or more high-priority experiments.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Proceedings of the Workshop on Computational Aspects in the Control of Flexible Systems, Part 1; p 21-32
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-08-31
    Description: The optimal placement of discrete actuators and sensors is posed as a combinatorial optimization problem. Two examples for truss structures were used for illustration; the first dealt with the optimal placement of passive dampers along existing truss members, and the second dealt with the optimal placement of a combination of a set of actuators and a set of sensors. Except for the simplest problems, an exact solution by enumeration involves a very large number of function evaluations, and is therefore computationally intractable. By contrast, the simulated annealing heuristic involves far fewer evaluations and is best suited for the class of problems considered. As an optimization tool, the effectiveness of the algorithm is enhanced by introducing a number of rules that incorporate knowledge about the physical behavior of the problem. Some of the suggested rules are necessarily problem dependent.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NASA. Langley Research Center, Recent Advances in Multidisciplinary Analysis and Optimization, Part 3; p 1441-1457
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-08-31
    Description: Actual design turn-around time has become shorter due to the use of optimization techniques which have been introduced into the design process. It seems that what, how and when to use these optimization techniques may be the key factor for future aircraft engineering operations. Another important aspect of this technique is that complex physical phenomena can be modeled by a simple mathematical equation. The new powerful multilevel methodology reduces time-consuming analysis significantly while maintaining the coupling effects. This simultaneous analysis method stems from the implicit function theorem and system sensitivity derivatives of input variables. Use of the Taylor's series expansion and finite differencing technique for sensitivity derivatives in each discipline makes this approach unique for screening dominant variables from nondominant variables. In this study, the current Computational Fluid Dynamics (CFD) aerodynamic and sensitivity derivative/optimization techniques are applied for a simple cone-type forebody of a high-speed vehicle configuration to understand basic aerodynamic/structure interaction in a hypersonic flight condition.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center, Recent Advances in Multidisciplinary Analysis and Optimization, Part 3; p 1137-1155
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-08-31
    Description: The problem is to develop analysis methods, modeling stategies, and simulation tools to predict with assurance the on-orbit performance and integrity of large complex space structures that cannot be verified on the ground. The problem must incorporate large reliable structural models, multi-body flexible dynamics, multi-tier controller interaction, environmental models including 1g and atmosphere, various on-board disturbances, and linkage to mission-level performance codes. All areas are in serious need of work, but the weakest link is multi-body flexible dynamics.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Computational Methods for Structural Mechanics and Dynamics; p 443-454
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-08-31
    Description: The double lead spiral platen parallel jaw end effector is an extremely powerful, compact, and highly controllable end effector that represents a significant improvement in gripping force and efficiency over the LaRC Puma (LP) end effector. The spiral end effector is very simple in its design and has relatively few parts. The jaw openings are highly predictable and linear, making it an ideal candidate for remote control. The finger speed is within acceptable working limits and can be modified to meet the user needs; for instance, greater finger speed could be obtained by increasing the pitch of the spiral. The force relaxation is comparable to the other tested units. Optimization of the end effector design would involve a compromise of force and speed for a given application.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA, Marshall Space Flight Center, The 23rd Aerospace Mechanisms Symposium; p 195-206
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-08-31
    Description: A sensor has been designed and tested for precise pointing applications. The device is able to sense extremely small rotary motion and is immune to cross-axis forces. The hardware and design characteristics of the torque sensor are presented. Test data, integrated control methodology, and future applications are included.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NASA, Marshall Space Flight Center, The 23rd Aerospace Mechanisms Symposium; p 169-180
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-08-31
    Description: The Deployable Retrievable Boom which was developed as a part of the joint U.S.-Italian Tethered Satellite System (TSS) is described. The design mission of the boom is to support, deploy, and retrieve an experiment package for the study of the electromagnetic field surrounding the satellite. The mechanism includes a jettisoning provision and deployable harness for the supported payloads connection. The boom is based on a tubular telescopic concept. Particular emphasis is placed on the payload harness connection capability and safety provisions.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA, Marshall Space Flight Center, The 23rd Aerospace Mechanisms Symposium; p 101-112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2013-08-31
    Description: The development of a prototype Control Moment Gyroscope (CMG) is discussed. Physical characteristics and the results of functional testing are presented to demonstrate the level of system performance obtained. Particular attention is given to how the man-rated mission requirement influenced the choice of the materials, fabrication, and design details employed. Comparisons are made of the measured system responses against the prediction generated by computer simulation.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: The 23rd Aerospace Mechanisms Symposium; p 59-76
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2013-08-31
    Description: A brief listing of the concerns of the working group on spacecraft charging is presented. Brief conclusions for each concern is also given.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA, Langley Research Center, NASA(SDIO Space Environmental Effects on Materials Workshop, Part 2; p 609-612
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: The effects of spacecraft charging on spacecraft materials are studied. Spacecraft charging interactions seem to couple environment to system performance through materials. Technology is still developing concerning both environment-driven and operating system-driven interactions. The meeting addressed environment but lacked specific mission requirements, as a result system definition are needed to prioritize interactions.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA, Langley Research Center, NASA(SDIO Space Environmental Effects on Materials Workshop, Part 2; p 577-584
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...