ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (917)
  • NASA Technical Reports  (917)
  • AIRCRAFT DESIGN, TESTING AND PERFORMANCE
  • Inorganic Chemistry
  • Seismology
  • 1995-1999  (53)
  • 1980-1984  (852)
  • 1955-1959  (3)
  • 1950-1954  (9)
Collection
  • Other Sources  (917)
Source
Years
Year
  • 1
    Publication Date: 2013-08-31
    Description: The NASA Dryden Flight Research Center conducted flight tests of a propulsion-controlled aircraft system on an F-15 airplane. This system was designed to explore the feasibility of providing safe emergency landing capability using only the engines to provide flight control in the event of a catastrophic loss of conventional flight controls. Control laws were designed to control the flight path and bank angle using only commands to the throttles. While the program was highly successful, this paper concentrates on the challenges encountered using engine thrust as the only control effector. Compared to conventional flight control surfaces, the engines are slow, nonlinear, and have limited control effectiveness. This increases the vulnerability of the system to outside disturbances and changes in aerodynamic conditions. As a result, the PCA system had problems with gust rejection. Cross coupling of the longitudinal and lateral axis also occured, primarily as a result of control saturation. The normally negligible effects of inlet airframe interactions became significant with the engines as the control effector. Flight and simulation data are used to illustrate these difficulties.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: An Electronic Workshop on the Performance Seeking Control and Propulsion Controlled Aircraft Results of the F-15 Highly Integrated Digital Electronic Control Flight Research Program 229-244 (SEE N95-3; An Electronic Worksh
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: Aerodynamic characteristics of an aircraft may significantly differ when flying close to the ground rather than when flying up and away. Recent research has also determined that dynamic effects (i.e., sink rate) influence ground effects (GE). A ground effects flight test program of the F-15 aircraft was conducted to support the propulsion controlled aircraft (PCA) program at the NASA Dryden Flight Research Center. Flight data was collected for 24 landings on seven test flights. Dynamic ground effects data were obtained for low- and high-sink rates, between 0.8 and 6.5 ft/sec, at two approach speed and flap combinations. These combinations consisted of 150 kt with the flaps down (30 deg deflection) and 170 kt with the flaps up (0 deg deflection), both with the inlet ramps in the full-up position. The aerodynamic coefficients caused by ground effects were estimated from the flight data. These ground effects data were correlated with the aircraft speed, flap setting, and sink rate. Results are compared to previous flight test and wind-tunnel ground effects data for various wings and for complete aircraft.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Dryden Flight Research Center, An Electronic Workshop on the Performance Seeking Control and Propulsion Controlled Aircraft Results of the F-15 Highly Integrated Digital Electronic Control Flight Research Program; p 222-228
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: Flight tests of the propulsion controlled aircraft (PCA) system on the NASA F-15 airplane evolved as a result of a long series of simulation and flight tests. Initially, the simulation results were very optimistic. Early flight tests showed that manual throttles-only control was much more difficult than the simulation, and a flight investigation was flown to acquire data to resolve this discrepancy. The PCA system designed and developed by MDA evolved as these discrepancies were found and resolved, requiring redesign of the PCA software and modification of the flight test plan. Small throttle step inputs were flown to provide data for analysis, simulation update, and control logic modification. The PCA flight tests quickly revealed less than desired performance, but the extensive flexibility built into the flight PCA software allowed rapid evaluation of alternate gains, filters, and control logic, and within 2 weeks, the PCA system was functioning well. The initial objective of achieving adequate control for up-and-away flying and approaches was satisfied, and the option to continue to actual landings was achieved. After the PCA landings were accomplished, other PCA features were added, and additional maneuvers beyond those originally planned were flown. The PCA system was used to recover from extreme upset conditions, descend, and make approaches to landing. A heading mode was added, and a single engine plus rudder PCA mode was also added and flown. The PCA flight envelope was expanded far beyond that originally designed for. Guest pilots from the USAF, USN, NASA, and the contractor also flew the PCA system and were favorably impressed.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: An Electronic Workshop on the Performance Seeking Control and Propulsion Controlled Aircraft Results of the F-15 Highly Integrated Digital Electronic Control Flight Research Program; p 193-221
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: Development of a composite wing primary structure for commercial transport aircraft is being undertaken at McDonnell Douglas under NASA contract. The focus of the program is to design and manufacture a low cost composite wing which can effectively compete with conventional metal wing structures in terms of cost, weight, and ability to withstand damage. These goals are being accomplished by utilizing the stitched/RFI manufacturing process during which the dry fiber preforms consisting of several stacks of warp-knit material are stitched together, impregnated with resin and cured. The stitched/RFI wing skin panels have exceptional damage tolerance and fatigue characteristics, are easily repairable, and can carry higher gross stress than their metal counterparts. This paper gives an overview of the program, describes the key features of the composite wing design and addresses major issues on analysis and manufacturing.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA, Langley Research Center Mechanics of Textile Composites Conference; p 457-479
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-01-25
    Description: RAPID is a methodology and software system to define a class of airplane configurations and directly evaluate surface grids, volume grids, and grid sensitivity on and about the configurations. A distinguishing characteristic which separates RAPID from other airplane surface modellers is that the output grids and grid sensitivity are directly applicable in CFD analysis. A small set of design parameters and grid control parameters govern the process which is incorporated into interactive software for 'real time' visual analysis and into batch software for the application of optimization technology. The computed surface grids and volume grids are suitable for a wide range of Computational Fluid Dynamics (CFD) simulation. The general airplane configuration has wing, fuselage, horizontal tail, and vertical tail components. The double-delta wing and tail components are manifested by solving a fourth order partial differential equation (PDE) subject to Dirichlet and Neumann boundary conditions. The design parameters are incorporated into the boundary conditions and therefore govern the shapes of the surfaces. The PDE solution yields a smooth transition between boundaries. Surface grids suitable for CFD calculation are created by establishing an H-type topology about the configuration and incorporating grid spacing functions in the PDE equation for the lifting components and the fuselage definition equations. User specified grid parameters govern the location and degree of grid concentration. A two-block volume grid about a configuration is calculated using the Control Point Form (CPF) technique. The interactive software, which runs on Silicon Graphics IRIS workstations, allows design parameters to be continuously varied and the resulting surface grid to be observed in real time. The batch software computes both the surface and volume grids and also computes the sensitivity of the output grid with respect to the input design parameters by applying the precompiler tool ADIFOR to the grid generation program. The output of ADIFOR is a new source code containing the old code plus expressions for derivatives of specified dependent variables (grid coordinates) with respect to specified independent variables (design parameters). The RAPID methodology and software provide a means of rapidly defining numerical prototypes, grids, and grid sensitivity of a class of airplane configurations. This technology and software is highly useful for CFD research for preliminary design and optimization processes.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Lewis Research Center, Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions; p 87
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: A multiblock sensitivity analysis method is applied in a numerical aerodynamic shape optimization technique. The Sensitivity Analysis Domain Decomposition (SADD) scheme which is implemented in this study was developed to reduce the computer memory requirements resulting from the aerodynamic sensitivity analysis equations. Discrete sensitivity analysis offers the ability to compute quasi-analytical derivatives in a more efficient manner than traditional finite-difference methods, which tend to be computationally expensive and prone to inaccuracies. The direct optimization procedure couples CFD analysis based on the two-dimensional thin-layer Navier-Stokes equations with a gradient-based numerical optimization technique. The linking mechanism is the sensitivity equation derived from the CFD discretized flow equations, recast in adjoint form, and solved using direct matrix inversion techniques. This investigation is performed to demonstrate an aerodynamic shape optimization technique on a multiblock domain and its applicability to complex geometries. The objectives are accomplished by shape optimizing two aerodynamic configurations. First, the shape optimization of a transonic airfoil is performed to investigate the behavior of the method in highly nonlinear flows and the effect of different grid blocking strategies on the procedure. Secondly, shape optimization of a two-element configuration in subsonic flow is completed. Cases are presented for this configuration to demonstrate the effect of simultaneously reshaping interfering elements. The aerodynamic shape optimization is shown to produce supercritical type airfoils in the transonic flow from an initially symmetric airfoil. Multiblocking effects the path of optimization while providing similar results at the conclusion. Simultaneous reshaping of elements is shown to be more effective than individual element reshaping due to the inclusion of mutual interference effects.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-199784 , NAS 1.26:199784 , NIPS-95-06445
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: The recent interest in High Speed Civil Transport (HSCT) has resulted in renewed research studies of optimized supersonic cruise transport configurations. Incorporation of flow viscosity effects in the design process of such a supersonic wing is currently under investigation. This may lead to more accurate problem formulations and, in turn, greater aerodynamic efficiency than can be obtained by the traditional, inviscid, linear theories. In this context, for a design code to be a candidate for a complex optimization problem, such as three-dimensional viscous supersonic wing design, it should be validated using simpler building-block shapes. To optimize the shape of a supersonic wing, an automated method that also includes higher fidelity to the flow physics is desirable. With this impetus, an aerodynamic optimization methodology incorporating Navier-Stokes equations and sensitivity analysis had been previously developed. Prior to embarking upon the wing design task, the present investigation concentrated on testing the flexibility of the methodology, and the identification of adequate problem formulations, by defining two-dimensional, cost-effective test cases. Starting with two distinctly different initial airfoils, two independent shape optimizations resulted in shapes with very similar features. Secondly, the normal section to the subsonic portion of the leading edge, which had a high normal angle-of-attack, was considered. The optimization resulted in a shape with twist and camber, which eliminated the adverse pressure gradient, hence, exploiting the leading-edge thrust. The wing section shapes obtained in all the test cases had the features predicted by previous studies. Therefore, it was concluded that the flowfield analyses and the sensitivity coefficients were computed and fed to the present gradient-based optimizer correctly. Also, as a result of the present two-dimensional study, suggestions were made for problem formulations which should contribute to an effective wing shape optimization.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-199747 , NAS 1.26:199747 , NIPS-95-06440
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: An aerodynamic shape optimization procedure based on discrete sensitivity analysis is extended to treat three-dimensional geometries. The function of sensitivity analysis is to directly couple computational fluid dynamics (CFD) with numerical optimization techniques, which facilitates the construction of efficient direct-design methods. The development of a practical three-dimensional design procedures entails many challenges, such as: (1) the demand for significant efficiency improvements over current design methods; (2) a general and flexible three-dimensional surface representation; and (3) the efficient solution of very large systems of linear algebraic equations. It is demonstrated that each of these challenges is overcome by: (1) employing fully implicit (Newton) methods for the CFD analyses; (2) adopting a Bezier-Bernstein polynomial parameterization of two- and three-dimensional surfaces; and (3) using preconditioned conjugate gradient-like linear system solvers. Whereas each of these extensions independently yields an improvement in computational efficiency, the combined effect of implementing all the extensions simultaneously results in a significant factor of 50 decrease in computational time and a factor of eight reduction in memory over the most efficient design strategies in current use. The new aerodynamic shape optimization procedure is demonstrated in the design of both two- and three-dimensional inviscid aerodynamic problems including a two-dimensional supersonic internal/external nozzle, two-dimensional transonic airfoils (resulting in supercritical shapes), three-dimensional transport wings, and three-dimensional supersonic delta wings. Each design application results in realistic and useful optimized shapes.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-199788 , NAS 1.26:199788 , NIPS-95-06439
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: A series of NASA Diagonal-Braked Vehicle (DBV) test runs were performed on the soil runway 7/25 at Holland landing zone, Fort Bragg, North Carolina, near Pope Air Force Base in March 1995 at the request of the Air Force C-17 System Program Office. These ground vehicle test results indicated that the dry runway friction level was suitable for planned C-17 transport aircraft landing and take-off operations at various gross weights. These aircraft operations were successfully carried out. On-board aircraft deceleration measurements were comparable to NASA DBV measurements. Additional tests conducted with an Army High Mobility Multi-Purpose Wheeled Vehicle equipped with a portable decelerometer, showed good agreement with NASA DBV data.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-110194 , NAS 1.15:110194 , NIPS-95-06403
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: The Agility Design Study was performed by the Boeing Defense and Space Group for the NASA Langley Research Center. The objective of the study was to assess the impact of agility requirements on new fighter configurations. Global trade issues investigated were the level of agility, the mission role of the aircraft (air-to-ground, multi-role, or air-to-air), and whether the customer is Air force, Navy, or joint service. Mission profiles and design objectives were supplied by NASA. An extensive technology assessment was conducted to establish the available technologies to industry for the aircraft. Conceptual level methodology is presented to assess the five NASA-supplied agility metrics. Twelve configurations were developed to address the global trade issues. Three-view drawings, inboard profiles, and performance estimates were made and are included in the report. A critical assessment and lessons learned from the study are also presented.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-195079 , NAS 1.26:195079
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-06-28
    Description: This paper presents the test design, instrumentation set-up, data acquisition, and the results of an acoustic flight experiment to study how noise due to blade-vortex interaction (BVI) may be alleviated. The flight experiment was conducted using the NASA/Army Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) research helicopter. A Local Differential Global Positioning System (LDGPS) was used for precision navigation and cockpit display guidance. A laser-based rotor state measurement system on board the aircraft was used to measure the main rotor tip-path-plane angle-of-attack. Tests were performed at Crows Landing Airfield in northern California with an array of microphones similar to that used in the standard ICAO/FAA noise certification test. The methodology used in the design of a RASCAL-specific, multi-segment, decelerating approach profile for BVI noise abatement is described, and the flight data pertaining to the flight technical errors and the acoustic data for assessing the noise reduction effectiveness are reported.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-110370 , NAS 1.26:110370 , A-950102 , NIPS-95-05299
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-06-28
    Description: This paper describes the implementation of optimization techniques based on control theory for airfoil design. In our previous work in the area it was shown that control theory could be employed to devise effective optimization procedures for two-dimensional profiles by using either the potential flow or the Euler equations with either a conformal mapping or a general coordinate system. We have also explored three-dimensional extensions of these formulations recently. The goal of our present work is to demonstrate the versatility of the control theory approach by designing airfoils using both Hicks-Henne functions and B-spline control points as design variables. The research also demonstrates that the parameterization of the design space is an open question in aerodynamic design.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-199151 , NAS 1.26:199151 , RIACS-TR-95-13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-06-28
    Description: Flight test maneuvers are specified for the F-18 High Alpha Research Vehicle (HARV). The maneuvers were designed for open loop parameter identification purposes, specifically for optimal input design validation at 5 degrees angle of attack, identification of individual strake effectiveness at 40 and 50 degrees angle of attack, and study of lateral dynamics and lateral control effectiveness at 40 and 50 degrees angle of attack. Each maneuver is to be realized by applying square wave inputs to specific control effectors using the On-Board Excitation System (OBES). Maneuver descriptions and complete specifications of the time/amplitude points define each input are included, along with plots of the input time histories.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-198248 , NAS 1.26:198248 , NIPS-96-08141
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-06-28
    Description: High-lift system aerodynamics has been gaining attention in recent years. In an effort to improve aircraft performance, comprehensive studies of multi-element airfoil systems are being undertaken in wind-tunnel and flight experiments. Recent developments in Computational Fluid Dynamics (CFD) offer a relatively inexpensive alternative for studying complex viscous flows by numerically solving the Navier-Stokes (N-S) equations. Current limitations in computer resources restrict practical high-lift N-S computations to two dimensions, but CFD predictions can yield tremendous insight into flow structure, interactions between airfoil elements, and effects of changes in airfoil geometry or free-stream conditions. These codes are very accurate when compared to strictly 2D data provided by wind-tunnel testing, as will be shown here. Yet, additional challenges must be faced in the analysis of a production aircraft wing section, such as that of the NASA Langley Transport Systems Research Vehicle (TSRV). A primary issue is the sweep theory used to correlate 2D predictions with 3D flight results, accounting for sweep, taper, and finite wing effects. Other computational issues addressed here include the effects of surface roughness of the geometry, cove shape modeling, grid topology, and transition specification. The sensitivity of the flow to changing free-stream conditions is investigated. In addition, the effects of Gurney flaps on the aerodynamic characteristics of the airfoil system are predicted.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-199610 , NIPS-95-05535 , NAS 1.26:199610
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-06-28
    Description: The development of a composite wing box section using a higher order-theory is proposed for accurate and efficient estimation of both static and dynamic responses. The theory includes the effect of through-the-thickness transverse shear deformations which is important in laminated composites and is ignored in the classical approach. The box beam analysis is integrated with an aeroelastic analysis to investigate the effect of composite tailoring using a formal design optimization technique. A hybrid optimization procedure is proposed for addressing both continuous and discrete design variables.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-199081 , NAS 1.26:199081
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-06-28
    Description: A full-scale BO-105 hingeless rotor system was tested in the NASA Ames 40- by 80-Foot Wind Tunnel on the rotor test apparatus. Rotor performance, rotor loads, and aeroelastic stability as functions of both collective and cyclic pitch, tunnel velocity, and shaft angle were investigated. This test was performed in support of the Rotor Data Correlation Task under the U.S. Army/German Memorandum of Understanding on Cooperative Research in the Field of Helicopter Aeromechanics. The primary objective of this test program was to create a data base for full-scale hingeless rotor performance and structural blade loads. A secondary objective was to investigate the ability to match flight test conditions in the wind tunnel. This data base can be used for the experimental and analytical studies of hingeless rotor systems over large variations in rotor thrust and tunnel velocity. Rotor performance and structural loads for tunnel velocities from hover to 170 knots and thrust coefficients (C(sub T)/sigma) from 0.0 to 0.12 are presented in this report. Thrust sweeps at tunnel velocities of 10, 20, and 30 knots are also included in this data set.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-110356 , A-950069 , NAS 1.15:110356
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: The paper reviews several aspects of NASA Langley Research Center's tire/runway friction evaluations directed towards improving the safety and economy of aircraft ground operations. The facilities and test equipment used in implementing different aircraft tire friction studies and other related aircraft ground performance investigations are described together with recent workshop activities at NASA Wallops Flight Facility. An overview of the pending Joint NASA/Transport Canada/FM Winter Runway Friction Program is given. Other NASA ongoing studies and on-site field tests are discussed including tire wear performance and new surface treatments. The paper concludes with a description of future research plans.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-110186 , NAS 1.15:110186
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-06-28
    Description: A wind tunnel investigation was conducted in the Langley 12-Foot Low-Speed Wind Tunnel to study the low-speed stability and control characteristics of a series of four flying wings over an extended range of angle of attack (-8 deg to 48 deg). Because of the current emphasis on reducing the radar cross section of new military aircraft, the planform of each wing was composed of lines swept at a relatively high angle of 60 deg, and all the trailing-edge lines were aligned with one of the two leading edges. Three arrow planforms with different aspect ratios and one diamond planform were tested. The models incorporated leading-edge flaps for improved pitching-moment characteristics and lateral stability and had three sets of trailing-edge flaps that were deflected differentially for roll control, symmetrically for pitch control, and in a split fashion for yaw control. Top bodies of three widths and twin vertical tails of various sizes and locations were also tested on each model. A large aerodynamic database was compiled that could be used to evaluate some of the trade-offs involved in the design of a configuration with a reduced radar cross section and good flight dynamic characteristics.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-4649 , L-17400 , NAS 1.15:4649
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-06-28
    Description: A wind-tunnel investigation was conducted in the Langley 12-Foot Low-Speed Tunnel to study the low-speed stability and control characteristics of a series of four flying wings over an extended range of angle of attack (-8 deg to 48 deg). Because of the current emphasis on reducing the radar cross section (RCS) of new military aircraft, the planform of each wing was composed of lines swept at a relatively high angle of 70 deg, and all the trailing edges and control surface hinge lines were aligned with one of the two leading edges. Three arrow planforms with different aspect ratios and one diamond planform were tested. The models incorporated leading-edge flaps for improved longitudinal characteristics and lateral stability and had three sets of trailing-edge flaps that were deflected differentially for roll control, symmetrically for pitch control, and in a split fashion for yaw control. Three top body widths and two sizes of twin vertical tails were also tested on each model. A large aerodynamic database was compiled that could be used to evaluate some of the trade-offs involved in the design of a configuration with a reduced RCS and good flight dynamic characteristics.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-4671 , L-17460 , NAS 1.15:4671
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-06-28
    Description: This paper describes the implementation of optimization techniques based on control theory for wing and wing-body design of supersonic configurations. The work represents an extension of our earlier research in which control theory is used to devise a design procedure that significantly reduces the computational cost by employing an adjoint equation. In previous studies it was shown that control theory could be used to~eviseransonic design methods for airfoils and wings in which the shape and the surrounding body-fitted mesh are both generated analytically, and the control is the mapping function. The method has also been implemented for both transonic potential flows and transonic flows governed by the Euler equations using an alternative formulation which employs numerically generated grids, so that it can treat more general configurations. Here results are presented for three-dimensional design cases subject to supersonic flows governed by the Euler equation.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-199150 , NAS 1.26:199150 , RIACS-TR-95-14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-06-28
    Description: This report describes the development of an aeroelastic analysis capability for composite helicopter rotor blades with straight and swept tips, and its application to the simulation of helicopter vibration reduction through structural optimization. A new aeroelastic model is developed in this study which is suitable for composite rotor blades with swept tips in hover and in forward flight. The hingeless blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. Arbitrary cross-sectional shape, generally anisotropic material behavior, transverse shears and out-of-plane warping are included in the blade model. The nonlinear equations of motion, derived using Hamilton's principle, are based on a moderate deflection theory. Composite blade cross-sectbnal properties are calculated by a separate linear, two-dimensional cross section analysis. The aerodynamic loads are obtained from quasi-steady, incompressible aerodynamics, based on an implicit formulation. The trim and steady state blade aeroelastic response are solved in a fully coupled manner. In forward flight, where the blade equations of motion are periodic, the coupled trim-aeroelastic response solution is obtained from the harmonic balance method. Subsequently, the periodic system is linearized about the steady state response, and its stability is determined from Floquet theory.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-4665 , NAS 1.26:4665
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-06-28
    Description: This paper describes the implementation of optimization techniques based on control theory for wing and wing-body design. In previous studies it was shown that control theory could be used to devise an effective optimization procedure for airfoils and wings in which the shape and the surrounding body-fitted mesh are both generated analytically, and the control is the mapping function. Recently, the method has been implemented for both potential flows and flows governed by the Euler equations using an alternative formulation which employs numerically generated grids, so that it can more easily be extended to treat general configurations. Here results are presented both for the optimization of a swept wing using an analytic mapping, and for the optimization of wing and wing-body configurations using a general mesh.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-198024 , NAS 1.26:198024 , RIACS-TR-95-01
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-06-28
    Description: Past flight deck design practices used within the U.S. commercial transport aircraft industry have been highly successful in producing safe and efficient aircraft. However, recent advances in automation have changed the way pilots operate aircraft, and these changes make it necessary to reconsider overall flight deck design. The High Speed Civil Transport (HSCT) mission will likely add new information requirements, such as those for sonic boom management and supersonic/subsonic speed management. Consequently, whether one is concerned with the design of the HSCT, or a next generation subsonic aircraft that will include technological leaps in automated systems, basic issues in human usability of complex systems will be magnified. These concerns must be addressed, in part, with an explicit, written design philosophy focusing on human performance and systems operability in the context of the overall flight crew/flight deck system (i.e., a crew-centered philosophy). This document provides such a philosophy, expressed as a set of guiding design principles, and accompanied by information that will help focus attention on flight crew issues earlier and iteratively within the design process. This document is part 1 of a two-part set.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-109171 , NAS 1.15:109171
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-06-28
    Description: Aerospace design can be viewed as an optimization process, but conceptual studies are rarely performed using formal search algorithms. Three issues that restrict the success of automatic search are identified in this work. New approaches are introduced to address the integration of analyses and optimizers, to avoid the need for accurate gradient information and a smooth search space (required for calculus-based optimization), and to remove the restrictions imposed by fixed complexity problem formulations. (1) Optimization should be performed in a flexible environment. A quasi-procedural architecture is used to conveniently link analysis modules and automatically coordinate their execution. It efficiently controls a large-scale design tasks. (2) Genetic algorithms provide a search method for discontinuous or noisy domains. The utility of genetic optimization is demonstrated here, but parameter encodings and constraint-handling schemes must be carefully chosen to avoid premature convergence to suboptimal designs. The relationship between genetic and calculus-based methods is explored. (3) A variable-complexity genetic algorithm is created to permit flexible parameterization, so that the level of description can change during optimization. This new optimizer automatically discovers novel designs in structural and aerodynamic tasks.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-196695 , A-950044 , NAS 1.26:196695
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-06-28
    Description: A wind-tunnel investigation was conducted in the Langley 12-Foot Low-Speed Tunnel to study the low-speed stability and control characteristics of a series of four flying wings over an extended range of angle of attack (-8 deg to 48 deg). Because of the current emphasis on reducing the radar cross section (RCS) of new military aircraft, the planform of each wing was composed of lines swept at a relatively high angle of 50 deg, and all the trailing-edge lines were aligned with one of the two leading edges. Three arrow planforms with different aspect ratios and one diamond planform were tested. The models incorporated leading-edge flaps for improved longitudinal characteristics and lateral stability and had trailing-edge flaps in three segments that were deflected differentially for roll control, symmetrically for pitch control, and in a split fashion for yaw control. Three top body widths and two sizes of twin vertical tails were also tested on each model. A large aerodynamic database was compiled that could be used to evaluate some of the trade-offs involved in the design of a configuration with a reduced RCS and good flight dynamic characteristics.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-4640 , L-17427 , NAS 1.15:4640
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-06-28
    Description: This paper describes an integrated aerodynamic/dynamic/structural (IADS) optimization procedure for helicopter rotor blades. The procedure combines performance, dynamics, and structural analyses with a general-purpose optimizer using multilevel decomposition techniques. At the upper level, the structure is defined in terms of global quantities (stiffness, mass, and average strains). At the lower level, the structure is defined in terms of local quantities (detailed dimensions of the blade structure and stresses). The IADS procedure provides an optimization technique that is compatible with industrial design practices in which the aerodynamic and dynamic designs are performed at a global level and the structural design is carried out at a detailed level with considerable dialog and compromise among the aerodynamic, dynamic, and structural groups. The IADS procedure is demonstrated for several examples.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TP-3465 , L-17233 , NAS 1.60:3465 , ARL-TR-518
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-06-28
    Description: A piloted, motion-based simulation of Sikorsky's Black Hawk helicopter was used as a platform for the investigation of rotorcraft responses to vertical turbulence. By using an innovative temporal and geometrical distribution algorithm that preserved the statistical characteristics of the turbulence over the rotor disc, stochastic velocity components were applied at each of twenty blade-element stations. This model was implemented on NASA Ames' Vertical Motion Simulator (VMS), and ten test pilots were used to establish that the model created realistic cues. The objectives of this research included the establishment of a simulation-technology basis for future investigation into real-time turbulence modeling. This goal was achieved; our extensive additions to the rotor model added less than a 10 percent computational overhead. Using a VAX 9000 computer the entire simulation required a cycle time of less than 12 msec. Pilot opinion during this simulation was generally quite favorable. For low speed flight the consensus was that SORBET (acronym for title) was better than the conventional body-fixed model, which was used for comparison purposes, and was determined to be too violent (like a washboard). For high speed flight the pilots could not identify differences between these models. These opinions were something of a surprise because only the vertical turbulence component on the rotor system was implemented in SORBET. Because of the finite-element distribution of the inputs, induced outputs were observed in all translational and rotational axes. Extensive post-simulation spectral analyses of the SORBET model suggest that proper rotorcraft turbulence modeling requires that vertical atmospheric disturbances not be superimposed at the vehicle center of gravity but, rather, be input into the rotor system, where the rotor-to-body transfer function severely attenuates high frequency rotorcraft responses.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-108862 , A-95028 , NAS 1.15:108862
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-06-28
    Description: Aircraft performance can be optimized at the flight condition by using available redundancy among actuators. Effective use of this potential allows improved performance beyond limits imposed by design compromises. Optimization based on nominal models does not result in the best performance of the actual aircraft at the actual flight condition. An adaptive algorithm for optimizing performance parameters, such as speed or fuel flow, in flight based exclusively on flight data is proposed. The algorithm is inherently insensitive to model inaccuracies and measurement noise and biases and can optimize several decision variables at the same time. An adaptive constraint controller integrated into the algorithm regulates the optimization constraints, such as altitude or speed, without requiring and prior knowledge of the autopilot design. The algorithm has a modular structure which allows easy incorporation (or removal) of optimization constraints or decision variables to the optimization problem. An important part of the contribution is the development of analytical tools enabling convergence analysis of the algorithm and the establishment of simple design rules. The fuel-flow minimization and velocity maximization modes of the algorithm are demonstrated on the NASA Dryden B-720 nonlinear flight simulator for the single- and multi-effector optimization cases.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-4676 , H-2040 , NAS 1.15:4676
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-06-28
    Description: The NASA Dryden Flight Research Center has flight tested two X-29A aircraft at low and high angles of attack. The high-angle-of-attack tests evaluate the feasibility of integrated X-29A technologies. More specific objectives focus on evaluating the high-angle-of-attack flying qualities, defining multiaxis controllability limits, and determining the maximum pitch-pointing capability. A pilot-selectable gain system allows examination of tradeoffs in airplane stability and maneuverability. Basic fighter maneuvers provide qualitative evaluation. Bank angle captures permit qualitative data analysis. This paper discusses the design goals and approach for high-angle-of-attack control laws and provides results from the envelope expansion and handling qualities testing at intermediate angles of attack. Comparisons of the flight test results to the predictions are made where appropriate. The pitch rate command structure of the longitudinal control system is shown to be a valid design for high-angle-of-attack control laws. Flight test results show that wing rock amplitude was overpredicted and aileron and rudder effectiveness were underpredicted. Flight tests show the X-29A airplane to be a good aircraft up to 40 deg angle of attack.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TP-3537 , H-1984 , NAS 1.60:3537
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: This report summarizes the highlights and results of a workshop held at NASA Ames Research Center in October 1992. The objective of the workshop was a thorough review of the lessons learned from past research on lift fans, and lift-fan aircraft, models, designs, and components. The scope included conceptual design studies, wind tunnel investigations, propulsion systems components, piloted simulation, flight of aircraft such as the SV-5A and SV-5B and a recent lift-fan aircraft development project. The report includes a brief summary of five technical presentations that addressed the subject The Lift-Fan Aircraft: Lessons Learned.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-196694 , A-95041 , NAS 1.26:196694
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-06-28
    Description: A piloted motion simulator evaluation, using the NASA Ames Vertical Motion Simulator, was conducted in support of a NASA Lewis Contractual study of the integration of flight and propulsion systems of a STOVL aircraft. Objectives of the study were to validate the Design Methods for Integrated Control Systems (DMICS) concept, to evaluate the handling qualities, and to assess control power usage. The E-7D ejector-augmentor STOVL fighter design served as the basis for the simulation. Handling-qualities ratings were obtained during precision hover and shipboard landing tasks. Handling-qualities ratings for these tasks ranged from satisfactory to adequate. Further improvement of the design process to fully validate the DMICS concept appears to be warranted.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-108867 , A-950046 , NAS 1.15:108867
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-06-28
    Description: Finite Element Models (FEM's) are used in the design and analysis of aircraft to mathematically describe the airframe structure for such diverse tasks as flutter analysis and actively controlled landing gear design. FEM's are used to model the entire airplane as well as airframe components. The purpose of this document is to describe recommended methods for verifying the quality of the FEM's and to specify a step-by-step procedure for implementing the methods.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-4675 , NAS 1.26:4675
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-06-28
    Description: An experimental study was conducted to investigate the effects of controllable articulating winglets on glide performance and yawing moments of high performance sailplanes. Testing was conducted in the Texas A&M University 7 x 10 foot Low Speed Wind Tunnel using a full-scale model of the outboard 5.6 feet of a 15 meter class high performance sailplane wing. Different wing tip configurations could be easily mounted to the wing model. A winglet was designed in which the cant and toe angles as well as a rudder on the winglet could be adjusted to a range of positions. Cant angles used in the investigation consisted of 5, 25, and 40 degrees measured from the vertical axis. Toe-out angles ranged from 0 to 22.5 degrees. A rudder on the winglet was used to study the effects of changing the camber of the winglet airfoil on wing performance and wing yawing moments. Rudder deflections consisted of-10, 0, and 10 degrees. Test results for a fixed geometry winglet and a standard wing tip are presented to show the general behavior of winglets on sailplane wings, and the effects of boundary-layer turbulators on the winglets are also presented. By tripping the laminar boundary-layer to turbulent before laminar separation occurs, the wing performance was increased at low Reynolds numbers. The effects on the lift and drag, yawing moment, pitching moment, and wing root bending moment of the model are presented. Oil flows were used on the wing model with the fixed geometry winglet and the standard wing tip to visualize flow directions and areas of boundary layer transition. A cant angle of 25 degrees and a toe-out angle of 2.5 degrees provided an optimal increase in wing performance for the cant and toe angles tested. Maximum performance was obtained when the winglet rudder remained in the neutral position of zero degrees. By varying the cant, toe, and rudder angles from their optimized positions, wing performance decreases. Although the winglet rudder proved to be more effective in increasing the yawing moment compared to varying the cant and toe angles, the amount of increased yawing moment was insignificant when compared to that produced by the vertical tail. A rudder on the winglet was determined to be ineffective for providing additional yaw control.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-198579 , NAS 1.26:198579
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-06-28
    Description: This paper describes a new geometric analysis procedure for wing sections. This procedure is based on the normal mode analysis for continuous functions. A set of special shape functions is introduced to represent the geometry of the wing section. The generators of the NACA 4-digit airfoils were included in this set of shape functions. It is found that the supercritical wing section, Korn airfoil, could be well represented by a set of ten shape functions. Preliminary results showed that the number of parameters to define a wing section could be greatly reduced to about ten. Hence, the present research clearly advances the airfoil design technology by reducing the number of design variables.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-110346 , A-950049 , NAS 1.15:110346
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-06-28
    Description: Parameter estimation algorithms are developed in the frequency domain for systems modeled by input/output ordinary differential equations. The approach is based on Shinbrot's method of moment functionals utilizing Fourier based modulating functions. Assuming white measurement noises for linear multivariable system models, an adaptive weighted least squares algorithm is developed which approximates a maximum likelihood estimate and cannot be biased by unknown initial or boundary conditions in the data owing to a special property attending Shinbrot-type modulating functions. Application is made to perturbation equation modeling of the longitudinal and lateral dynamics of a high performance aircraft using flight-test data. Comparative studies are included which demonstrate potential advantages of the algorithm relative to some well established techniques for parameter identification. Deterministic least squares extensions of the approach are made to the frequency transfer function identification problem for linear systems and to the parameter identification problem for a class of nonlinear-time-varying differential system models.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-4654 , NAS 1.26:4654
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-06-28
    Description: Many attempts have been made in recent years to predict the off-axis response of a helicopter to control inputs, and most have had little success. Since physical insight is limited by the complexity of numerical simulation models, this paper examines the off-axis response problem using an analytical model, with the goal of understanding the mechanics of the coupling. A new induced velocity model is extended to include the effects of wake distortion from pitch rate. It is shown that the inclusion of these results in a significant change in the lateral flap response to a steady pitch rate. The proposed inflow model is coupled with the full rotor/body dynamics, and comparisons are made between the model and flight test data for a UH-60 in hover. Results show that inclusion of induced velocity variations due to shaft rate improves correlation in the pitch response to lateral cycle inputs.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-197420 , NAS 1.26:197420
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-06-28
    Description: A numerical analysis of forebody tangential slot blowing as a means of generating side force and yawing moment is conducted using an aircraft geometry. The Reynolds-averaged, thin-layer, Navier-Stokes equations are solved using a partially flux-split, approximately-factored algorithm. An algebraic turbulence model is used to determine the turbulent eddy viscosity values. Solutions are obtained using both patched and overset grid systems. In the patched grid model, and actuator plane is used to introduce jet variables into the flow field. The overset grid model is used to model the physical slot geometry and facilitate modeling of the full aircraft configuration. A slot optimization study indicates that a short slot located close to the nose of the aircraft provided the most side force and yawing moment per unit blowing coefficient. Comparison of computed surface pressure with that obtained in full-scale wind tunnel tests produce good agreement, indicating the numerical method and grid system used in the study are valid. Full aircraft computations resolve the changes in vortex burst point due to blowing. A time-accurate full-aircraft solution shows the effect of blowing on the changes in the frequency of the aerodynamic loads over the vertical tails. A study of the effects of freestream Mach number and various jet parameters indicates blowing remains effective through the transonic Mach range. An investigation of the force onset time lag associated with forebody blowing shows the lag to be minimal. The knowledge obtained in this study may be applied to the design of a forebody tangential slot blowing system for use on flight aircraft.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-197754 , NAS 1.26:197754 , MCAT-95-11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-20
    Description: An investigation was conducted from May 16, 1990 to August 31, 1994 on the development of computational fluid dynamics (CFD) methodologies for complex missiles and the store separation problem. These flowfields involved multiple-component configurations, where at least one of the objects was engaged in relative motion. The two most important issues that had to be addressed were: (1) the unsteadiness of the flowfields (time-accurate and efficient CFD algorithms for the unsteady equations), and (2) the generation of grid systems which would permit multiple and moving bodies in the computational domain (dynamic domain decomposition). The study produced two competing and promising methodologies, and their proof-of-concept cases, which have been reported in the open literature: (1) Unsteady solutions on dynamic, overlapped grids, which may also be perceived as moving, locally-structured grids, and (2) Unsteady solutions on dynamic, unstructured grids.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-197912 , NAS 1.26:197912
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-13
    Description: The objective is to develop an optimization procedure for high-speed and civil tilt-rotors by coupling all of the necessary disciplines within a closed-loop optimization procedure. Both simplified and comprehensive analysis codes are used for the aerodynamic analyses. The structural properties are calculated using in-house developed algorithms for both isotropic and composite box beam sections. There are four major objectives of this study. (1) Aerodynamic optimization: The effects of blade aerodynamic characteristics on cruise and hover performance of prop-rotor aircraft are investigated using the classical blade element momentum approach with corrections for the high lift capability of rotors/propellers. (2) Coupled aerodynamic/structures optimization: A multilevel hybrid optimization technique is developed for the design of prop-rotor aircraft. The design problem is decomposed into a level for improved aerodynamics with continuous design variables and a level with discrete variables to investigate composite tailoring. The aerodynamic analysis is based on that developed in objective 1 and the structural analysis is performed using an in-house code which models a composite box beam. The results are compared to both a reference rotor and the optimum rotor found in the purely aerodynamic formulation. (3) Multipoint optimization: The multilevel optimization procedure of objective 2 is extended to a multipoint design problem. Hover, cruise, and take-off are the three flight conditions simultaneously maximized. (4) Coupled rotor/wing optimization: Using the comprehensive rotary wing code CAMRAD, an optimization procedure is developed for the coupled rotor/wing performance in high speed tilt-rotor aircraft. The developed procedure contains design variables which define the rotor and wing planforms.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-199389 , NAS 1.26:199389
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-13
    Description: The performance of an engine-integrated wedge caret-wing waverider is optimized with respect to a set of geometric and flight attitude variables with constraints for steady state flight and static margin. The optimization is done with different values for the constraint on the static margin, and the resulting performances and geometries compared. This comparison is done for three performance parameters: L/D ratio, range coefficient, and a parameter that measures energy height gain per unit weight of fuel. The vehicle model incorporates a one-dimensional calculation on the forebody, inlet and wings. Fuel injection is done prior to the combustor entrance and flow properties are calculated with a one-dimensional model using a correlation for the shock shape in front of a transverse jet. The combustor is modeled as a shock-induced-combustion scramjet, and the nozzle flow field is calculated using the method of characteristics.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: AIAA PAPER 95-6142 , AIAA, Aerospace Planes and Hypersonics Technologies Conference; Apr 03, 1995 - Apr 07, 1995; Chattanooga, TN; United States|; 11 p.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-13
    Description: The efficiency of the Simultaneous Analysis and Design (SAND) approach in the minimum weight optimization of structural systems subject to strength and displacement constraints as well as size side constraints is investigated. SAND allows for an optimization to take place in one single operation as opposed to the more traditional and sequential Nested Analysis and Design (NAND) method, where analyses and optimizations alternate. Thus, SAND has the advantage that the stiffness matrix is never factored during the optimization retaining its original sparsity. One of SAND's disadvantages is the increase in the number of design variables and in the associated number of constraint gradient evaluations. If SAND is to be an acceptable player in the optimization field, it is essential to investigate the efficiency of the method and to present a possible cure for any inherent deficiencies.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-110168 , NAS 1.15:110168 , World Congress of Structural and Multidisciplinary Optimization; May 28, 1995 - Jun 02, 1995; Goslar; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-13
    Description: Since aircraft configuration plays an important role in aerodynamic performance and sonic boom shape, the configuration of the next generation supersonic civil transport has to be tailored to meet high aerodynamic performance and low sonic boom requirements. Computational fluid dynamics (CFD) can be used to design airplanes to meet these dual objectives. The work and results in this report are used to support NASA's High Speed Research Program (HSRP). CFD tools and techniques have been developed for general usages of sonic boom propagation study and aerodynamic design. Parallel to the research effort on sonic boom extrapolation, CFD flow solvers have been coupled with a numeric optimization tool to form a design package for aircraft configuration. This CFD optimization package has been applied to configuration design on a low-boom concept and an oblique all-wing concept. A nonlinear unconstrained optimizer for Parallel Virtual Machine has been developed for aerodynamic design and study.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-197745 , NAS 1.26:197745 , MCAT-95-7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-13
    Description: From December 1991 to June 1992, applied aerodynamic research support was given to the team working on Low Sonic Boom configurations in the RAC branch at NASA Ames Research Center. This team developed two different configurations: a conventional wing-tail and a canard wing, in an effort to reduce the overpressure of shock waves and the accompanying noise which are projected to the ground from supersonic civil transport aircraft. A generic description of this sensitive technology is given.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-197744 , NAS 1.26:197744 , MCAT-95-07
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-13
    Description: The objective of this research is to develop computationally efficient methods for solving aeroelasticity problems on parallel computers. Both uncoupled and coupled methods are studied in this research. For the uncoupled approach, the conventional U-g method is used to determine the flutter boundary. The generalized aerodynamic forces required are obtained by the pulse transfer-function analysis method. For the coupled approach, the fluid-structure interaction is obtained by directly coupling finite difference Euler/Navier-Stokes equations for fluids and finite element dynamics equations for structures. This capability will significantly impact many aerospace projects of national importance such as Advanced Subsonic Civil Transport (ASCT), where the structural stability margin becomes very critical at the transonic region. This research effort will have direct impact on the High Performance Computing and Communication (HPCC) Program of NASA in the area of parallel computing.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-197756 , NAS 1.26:197756 , MCAT-95-14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-13
    Description: The in-flight elastic wing twist of a fighter-type aircraft was studied to provide for an improved on-board real-time computed prediction of pointing variations of three wing store stations. This is an important capability to correct sensor pod alignment variation or to establish initial conditions of iron bombs or smart weapons prior to release. The original algorithm was based upon coarse measurements. The electro-optical Flight Deflection Measurement System measured the deformed wing shape in flight under maneuver loads to provide a higher resolution database from which an improved twist prediction algorithm could be developed. The FDMS produced excellent repeatable data. In addition, a NASTRAN finite-element analysis was performed to provide additional elastic deformation data. The FDMS data combined with the NASTRAN analysis indicated that an improved prediction algorithm could be derived by using a different set of aircraft parameters, namely normal acceleration, stores configuration, Mach number, and gross weight.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-4646 , H-2022 , NAS 1.15:4646 , AIAA PAPER 94-2112 , Biennial Flight Test Conference; Jun 20, 1994 - Jun 23, 1994; Colorado Springs, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-13
    Description: A definitive measurement of the low-speed flight characteristics of waverider-based aircraft is required to augment the overall design database for this important class of vehicles which have great potential for efficient high-speed flight. Two separate waverider-derived vehicles were tested; one in the 14- by 22-Foot Tunnel and the other in the 12-Foot Low-Speed Tunnel at Langley Research Center. These tests provided measurements of moments and forces about all three axes, control effectiveness, flow field characteristics and the effects of configuration changes. This paper will summarize the results of these tunnels and show the subsonic aerodynamic characteristics of the two configurations.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: AIAA PAPER 95-6093 , ; 17 p.|AIAA, Aerospace Planes and Hypersonics Technologies Conference; Apr 03, 1995 - Apr 07, 1995; Chattanooga, TN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-13
    Description: In multidisciplinary optimization problems, response surface techniques can be used to replace the complex analyses that define the objective function and/or constraints with simple functions, typically polynomials. In this work a response surface is applied to the design optimization of a helicopter rotor blade. In previous work, this problem has been formulated with a multilevel approach. Here, the response surface takes advantage of this decomposition and is used to replace the lower level, a structural optimization of the blade. Problems that were encountered and important considerations in applying the response surface are discussed. Preliminary results are also presented that illustrate the benefits of using the response surface.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-111274 , NAS 1.15:111274 , NIPS-96-08086 , American Helicopter Society Technical Specialist'' Meeting on Rotorcraft Structures: Design Challenges and Innovative Solutions; Oct 30, 1995 - Nov 02, 1995; Williamsburg, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-13
    Description: This paper investigates the use of automatic differentiation (AD) as a means for generating sensitivity analyses in rotorcraft design and optimization. This technique transforms an existing computer program into a new program that performs sensitivity analysis in addition to the original analysis. The original FORTRAN program calculates a set of dependent (output) variables from a set of independent (input) variables, the new FORTRAN program calculates the partial derivatives of the dependent variables with respect to the independent variables. The AD technique is a systematic implementation of the chain rule of differentiation, this method produces derivatives to machine accuracy at a cost that is comparable with that of finite-differencing methods. For this study, an analysis code that consists of the Langley-developed hover analysis HOVT, the comprehensive rotor analysis CAMRAD/JA, and associated preprocessors is processed through the AD preprocessor ADIFOR 2.0. The resulting derivatives are compared with derivatives obtained from finite-differencing techniques. The derivatives obtained with ADIFOR 2.0 are exact within machine accuracy and do not depend on the selection of step-size, as are the derivatives obtained with finite-differencing techniques.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-111273 , NAS 1.15:111273 , NIPS-96-08085 , American Helicopter Society National Technical Specialist'' Meeting on Rotorcaft Structures: Design Challenges and Innovative Solutions; Oct 30, 1995 - Nov 02, 1995; Williamsburg, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: This report summarizes the efforts in two areas: (1) development of advanced methods of structural weight estimation, and (2) development of advanced methods of trajectory optimization. The majority of the effort was spent in the structural weight area. A draft of 'Analytical Fuselage and Wing Weight Estimation of Transport Aircraft', resulting from this research, is included as an appendix.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-199949 , NAS 1.26:199949 , NIPS-96-07074
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-13
    Description: To improve the shape of a supersonic wing, an automated method that also includes higher fidelity to the flow physics is desirable. With this impetus, an aerodynamic optimization methodology incorporating thin-layer Navier-Stokes equations and sensitivity analysis had been previously developed. Prior to embarking upon the wind design task, the present investigation concentrated on testing the feasibility of the methodology, and the identification of adequate problem formulations, by defining two-dimensional, cost-effective test cases. Starting with two distinctly different initial airfoils, two independent shape optimizations resulted in shapes with similar features: slightly cambered, parabolic profiles with sharp leading- and trailing-edges. Secondly, the normal section to the subsonic portion of the leading edge, which had a high normal angle-of-attack, was considered. The optimization resulted in a shape with twist and camber which eliminated the adverse pressure gradient, hence, exploiting the leading-edge thrust. The wing section shapes obtained in all the test cases had the features predicted by previous studies. Therefore, it was concluded that the flowfield analyses and sensitivity coefficients were computed and fed to the present gradient-based optimizer correctly. Also, as a result of the present two-dimensional study, suggestions were made for the problem formulations which should contribute to an effective wing shape optimization.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-199746 , NAS 1.26:199746 , NIPS-95-06438 , 1995 ASME International Mechanical Engineering Congress and Exposition; Nov 12, 1995 - Nov 17, 1995; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This paper reviews the test techniques developed over the last several decades for flight flutter testing of aircraft. Structural excitation systems, instrumentation systems, digital data preprocessing, and parameter identification algorithms (for frequency and damping estimates from the response data) are described. Practical experiences and example test programs illustrate the combined, integrated effectiveness of the various approaches used. Finally, comments regarding the direction of future developments and needs are presented.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-4720 , NAS 1.15:4720 , H-2077 , NIPS-95-05908 , AGARD Structures and Materials Panel Meeting; May 08, 1995 - May 10, 1995; Rotterdam; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-13
    Description: The NASA Dryden Flight Research Center has developed a versatile simulation software package that is applicable to a broad range of fixed-wing aircraft. This package has evolved in support of a variety of flight research programs. The structure is designed to be flexible enough for use in batch-mode, real-time pilot-in-the-loop, and flight hardware-in-the-loop simulation. Current simulations operate on UNIX-based platforms and are coded with a FORTRAN shell and C support routines. This paper discusses the features of the simulation software design and some basic model development techniques. The key capabilities that have been included in the simulation are described. The NASA Dryden simulation software is in use at other NASA centers, within industry, and at several universities. The straightforward but flexible design of this well-validated package makes it especially useful in an engineering environment.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-104315 , NAS 1.15:104315 , H-2052 , American Institute of Aeronautics and Astronautics Flight Simulation Technologies Conference; Aug 07, 1995 - Aug 10, 1995; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-20
    Description: This investigation was conducted from March 1994 to August 1995, primarily, to extend and implement the previously developed aerodynamic design optimization methodologies for the problems related to a supersonic transport design. These methods had demonstrated promise to improve the designs (more specifically, the shape) of aerodynamic surfaces, by coupling optimization algorithms (OA) with Computational Fluid Dynamics (CFD) algorithms via sensitivity analyses (SA) with surface definition methods from Computer Aided Design (CAD). The present extensions of this method and their supersonic implementations have produced wing section designs, delta wing designs, cranked-delta wing designs, and nacelle designs, all of which have been reported in the open literature. Despite the fact that these configurations were highly simplified to be of any practical or commercial use, they served the algorithmic and proof-of-concept objectives of the study very well. The primary cause for the configurational simplifications, other than the usual simplify-to-study the fundamentals reason, were the premature closing of the project. Only after the first of the originally intended three-year term, both the funds and the computer resources supporting the project were abruptly cut due to their severe shortages at the funding agency. Nonetheless, it was shown that the extended methodologies could be viable options in optimizing the design of not only an isolated single-component configuration, but also a multiple-component configuration in supersonic and viscous flow. This allowed designing with the mutual interference of the components being one of the constraints all along the evolution of the shapes.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-CR-199748 , NAS 1.26:199748 , NIPS-95-06441
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2005-03-28
    Description: Transport fuselage section drop tests provided useful information about the crash behavior of metal aircraft in preparation for a full-scale Boeing 720 controlled impact demonstration (CID). The fuselage sections have also provided an operational test environment for the data acquisition system designed for the CID test, and data for analysis and correlation with the DYCAST nonlinear finite-element program. The correlation of the DYCAST section model predictions was quite good for the total fuselage crushing deflection (22 to 24 inches predicted versus 24 to 26 inches measured), floor deformation, and accelerations for the floor and fuselage. The DYCAST seat and occupant model was adequate to approximate dynamic loading to the floor, but a more sophisticated model would be required for good correlation with dummy accelerations. Although a full-section model using only finite elements for the subfloor was desirable, constraints of time and computer resources limited the finite-element subfloor model to a two-frame model. Results from the two-frame model indicate that DYCAST can provide excellent correlation with experimental crash behavior of fuselage structure with a minimum of empirical force-deflection data representing structure in the analytical model.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Res. in Struct. and Dyn., 1984; p 347-368
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2005-03-28
    Description: The dynamic behavior of aircraft fuselage structures subject to various impact conditions was investigated. An analytical model was developed based on a self-consistent finite element (CFE) formulation utilizing shell, curved beam, and stringer type elements. Equations of motion were formulated and linearized (i.e., for small displacements), although material nonlinearity was retained to treat local plastic deformation. The equations were solved using the implicit Newmark-Beta method with a frontal solver routine. Stiffened aluminum fuselage models were also tested in free flight using the UTIAS pendulum crash test facility. Data were obtained on dynamic strains, g-loads, and transient deformations (using high speed photography in the latter case) during the impact process. Correlations between tests and predicted results are presented, together with computer graphics, based on the CFE model. These results include level and oblique angle impacts as well as the free-flight crash test. Comparisons with a hybrid, lumped mass finite element computer model demonstrate that the CFE formulation provides the test overall agreement with impact test data for comparable computing costs.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center Res. in Struct. and Dyn., 1984; p 325-346
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2006-02-14
    Description: The multiobjective programming techniques are important in the design of complex structural systems whose quality depends generally on a number of different and often conflicting objective functions which cannot be combined into a single design objective. The applicability of multiobjective optimization techniques is studied with reference to simple design problems. Specifically, the parameter optimization of a cantilever beam with a tip mass and a three-degree-of-freedom vabration isolation system and the trajectory optimization of a cantilever beam are considered. The solutions of these multicriteria design problems are attempted by using global criterion, utility function, game theory, goal programming, goal attainment, bounded objective function, and lexicographic methods. It has been observed that the game theory approach required the maximum computational effort, but it yielded better optimum solutions with proper balance of the various objective functions in all the cases.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center Recent Experiences in Multidisciplinary Analysis and Optimization, Part 2; 8 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2006-02-14
    Description: There are a number of helicopter design problems that are well suited to applications of numerical design optimization techniques. Adequate implementation of this technology will provide high pay-offs. There are a number of numerical optimization programs available, and there are many excellent response/performance analysis programs developed or being developed. But integration of these programs in a form that is usable in the design phase should be recognized as important. It is also necessary to attract the attention of engineers engaged in the development of analysis capabilities and to make them aware that analysis capabilities are much more powerful if integrated into design oriented codes. Frequently, the shortcoming of analysis capabilities are revealed by coupling them with an optimization code. Most of the published work has addressed problems in preliminary system design, rotor system/blade design or airframe design. Very few published results were found in acoustics, aerodynamics and control system design. Currently major efforts are focused on vibration reduction, and aerodynamics/acoustics applications appear to be growing fast. The development of a computer program system to integrate the multiple disciplines required in helicopter design with numerical optimization technique is needed. Activities in Britain, Germany and Poland are identified, but no published results from France, Italy, the USSR or Japan were found.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center Recent Experiences in Multidisciplinary Analysis and Optimization, Part 2; 13 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2006-02-14
    Description: An optimization study was performed to develop a minimum weight spreader bar to allow two helicopters to lift the same payload. With this arrangement, the maximum payload that can be lifted is almost doubled without the expense of designing and building a new helicopter. The concept has had some limited use by civil helicopter operators using small helicopters and has been demonstrated in large scale by two CH-54's which successfully lifted a total load of 20 ton. To this point, rather heavy available beams or tower structures have been used for the spreader bar. Since the weight of the bar not only detracts from payload but also adds to the logistics problem, there are more than the usual incentives to minimize weight. Since the design requirement is for classic beam column with uniform side loads resulting from bar weight and aerodynamic drag, the design problem is particularly amenable to optimization. A study has been performed at Sikorsky to establish the minimum weight for a spreader bar sized to carry a load equal to the capacity of two Army BLACK HAWK helicopters. Toward this end, a computer program was written to analyze the spreader bar deflections and stresses and coupled to the NASA developed CONMIN optimization routines.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center Recent Experiences in Multidisciplinary Analysis and Optimization, Part 2; 12 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2006-02-14
    Description: The optimization approach discussed is part of an ongoing effort to develop a general automated procedure for rotor blade design. This procedure can be used to determine the necessary geometric, structural, and material properties of a rotor system to achieve desired objectives relating to vibration, stress, and aerodynamic performance. The approach used for helicopter vibration is emphasized. Based on analytical studies performed at the United Technologies Research Center (UTRC), a simplified vibration analysis was developed to be used in conjunction with a forced response analysis in the optimization process. This simplified analysis improves the efficiency of the design process significantly. Results of applying this approach to the design of an existing rotor blade model are presented.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center Recent Experiences in Multidisciplinary Analysis and Optimization, Part 2; 17 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2006-02-14
    Description: This discussion summarizes the effort conducted by the BHTI Human Factors and Cockpit Arrangement group for a study and design of the integration of a cockpit control system for the AH 1T (TOW). The resulting design is a culmination of studies that were conducted using the existing configuration as a baseline and complementing it with new equipment and subsystems that fulfill the attack helicopter requirements for the foreseeable future. Of primary concern was the requirement to add a missile control system, with secondary considerations for improved NOE and night operations. In addition, growth capabilities for improved target acquisition, weapons delivery, and precise navigation was considered. Along with the addition of new equipment, the aircraft was assumed to have a central multiplex data bus system for information transfer throughout the aircraft and its subsystems.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Ames Research Center Technical Workshop: Advanced Helicopter Cockpit Design Concepts; p 271-316
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2006-02-14
    Description: Nine research areas that are most critical to the issue of cockpits for the single pilot are discussed. Helicopter are addressed in this report. They are as follows: (1) automation priority issues; (2) increased complexity of systems; (3) cockpit workload highest in navigation; (4) auto hover and flight trim controls; (5) voice technology in integrated form; (6) systems must have visual and auditory declutter modes; (7) cockpit should be designed to be NBC resistant; and (8) considerations for spillover to civilian public service.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Technical Workshop: Advanced Helicopter Cockpit Design Concepts; p 229-238
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2006-02-14
    Description: Fundamental development issues, system requirements and improvements are reported for the HH-60D night hawk helicopter. The HH-60D mission requirements are for combat search and rescue (aerospace rescue and recovery service user based at Scott AFB) and special operations (special operations forces based at Hurlburt AFB). Cockpit design, computer architecture and software are described in detail.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Ames Research Center Technical Workshop: Advanced Helicopter Cockpit Design Concepts; p 145-164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2006-04-09
    Description: An analytical study was performed in order to assess relative performance and economic factors involved with alternative advanced fuel systems for future commercial aircraft operating with broad property fuels. Significant results, with emphasis on design practicality from the engine manufacturer' standpoint, are highlighted. Several advanced fuel systems were modeled to determine as accurately as possible the relative merits of each system from the standpoint of compatibility with broad property fuel. Freezing point, thermal stability, and lubricity were key property issues. A computer model was formulated to determine the investment incentive for each system. Results are given.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Lewis Research Center Assessment of Alternative Aircraft Fuels; p 141-158
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2006-02-14
    Description: Several problems related to the aeroelastic/aerodynamic optimization of a high speed helicopter compound rotor are discussed. The helicopter fuselage vibration problem, the effects of fuselage vibrations, the source of external and periodic air loads, typical airfoil environments and configurations, rotor dynamics, vibration reduction, and requirements for the rotor design optimization analysis are among the topics covered.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center Recent Experiences in Multidisciplinary Analysis and Optimization, Part 2; 20 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2006-02-14
    Description: Formal mathematical programing was applied to the aerodynamic rotor blade design process. The approach is to couple hover and forward flight analysis programs with the general-purpose optimization program CONMIN to determine the blade taper ratio, percent taper, twist distribution, and solidity which minimize the horsepower required at hover while meeting constraints on forward flight performance. Designs obtained using this approach for the blade of a representative Army helicopter compare well with those obtained using a conventional approach involving personnel-intensive parametric studies. Results from the present method can be obtained in 2 days as compared to 5 weeks required by the conventional procedure. Also the systematic manipulation of the design variables by the optimization procedure minimizes the need for the researcher to have a vast body of past experience and data in determining the influence of a design change on the performance.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Recent Experiences in Multidisciplinary Analysis and Optimization, Part 2; 12 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2006-02-14
    Description: The main Army Helicopter Improvement Program (AHIP) mission is to navigate precisely, locate targets accurately, communicate their position to other battlefield elements, and to designate them for laser guided weapons. The onboard navigation and mast-mounted sight (MMS) avionics enable accurate tracking of current aircraft position and subsequent target location. The AHIP crewstation development was based on extensive mission/task analysis, function allocation, total system design, and test and verification. The avionics requirements to meet the mission was limited by the existing aircraft structural and performance characteristics and resultant space, weight, and power restrictions. These limitations and night operations requirement led to the use of night vision goggles. The combination of these requirements and limitations dictated an integrated control/display approach using multifunction displays and controls.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Ames Research Center Technical Workshop: Advanced Helicopter Cockpit Design Concepts; p 121-144
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2006-04-09
    Description: The interactions between the design and operation of aircraft fuel systems and the properties of alternative aircraft fuels are discussed. An overview of fuels system research and technology in terms of its rationale, its progress, and future plans is given. The measurement of ambient air temperatures for a wide range of seasonal and geographic variations, design studies on the use of fuels with increased as well as conventional freezing temperatures, the evaluation of fuel heating systems, and the low temperature behavior of fuels are among the topics discussed.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Assessment of Alternative Aircraft Fuels; p 111-120
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2006-02-14
    Description: Several examples of spacecraft systems fires are examined. Much of the design, manufacture, inspection, test, and operation of current high pressure oxygen components and systems has been driven by weight, cost, functional, and schedule requirements. As a result, little coordination has been expended on design for safe operation. While the number of oxygen related fires has not been large, their cost, including program losses and delays, has been very large. Most of these failures need not have occurred.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center Recent Experiences in Multidisciplinary Analysis and Optimization, Part 2; 13 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2006-04-09
    Description: The results of a study assessing the impact of using jet fuel with relaxed specification properties on an aircraft fuel system are given. The study objectives were to identify credible values for specific fuel properties which might be relaxed, to evolve advanced fuel system designs for airframe and engines which would permit use of the specified relaxed properties fuels, and to evaluate performance of the candidate advanced fuel systems and the relaxed property fuels in a typical transport aircraft. The study used, as a baseline, the fuel system incorporated in the Lockheed Tristar. This aircraft is powered by three RB.211-524 Rolls-Royce engines and incorporates a Pratt and Whitney ST6C-421 auxiliary power unit for engine starting and inflight emergency electrical power. The fuel property limits examined are compared with commercial Jet A kerosene and the NASA RFP fuel properties. A screening of these properties established that a higher freezing point and a lower thermal stability would impact fuel system design more significantly than any of the other property changes. Three candidate fuel systems which combine the ability to operate with fuels having both a high freeze point and a low thermal stability are described. All candidates employ bleed air to melt fuel freeze-out prior to starting the APU or an inoperable engine. The effects of incorporating these systems on aircraft weight and engine specific fuel consumption are given.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Lewis Research Center Assessment of Alternative Aircraft Fuels; p 159-170
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2006-02-14
    Description: Based on initial results obtained from the performance optimization code, a number of observations can be made regarding the utility of optimization codes in supporting design of rotors for improved performance. (1) The primary objective of improving the productivity and responsiveness of current design methods can be met. (2) The use of optimization allows the designer to consider a wider range of design variables in a greatly compressed time period. (3) Optimization requires the user to carefully define his problem to avoid unproductive use of computer resources. (4) Optimization will increase the burden on the analyst to validate designs and to improve the accuracy of analysis methods. (5) Direct calculation of finite difference derivatives by the optimizer was not prohibitive for this application but was expensive. Approximate analysis in some form would be considered to improve program response time. (6) Program developement is not complete and will continue to evolve to integrate new analysis methods, design problems, and alternate optimizer options.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center Recent Experiences in Multidisciplinary Analysis and Optimization, Part 2; 15 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: The application of an experimental flight test maneuver autopilot test technique for collecting aerodynamic and structural flight research data on a highly maneuverable aircraft is described in this paper. This technique, which was developed to increase the quality and quantity of data obtained during flight test, was applied to the highly maneuverable aircraft technology (HiMAT) vehicle. A primary flight experiment was to verify the design techniques used to develop the HiMAT aerodynamics and structures. This required the performance of maneuvers for collection of large quantities of high-quality pressure distribution, loads, and wing and canard deflection data. Flight data obtained while executing these research maneuvers are presented to demonstrate the effectiveness of this new technique.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of Aircraft (ISSN 0021-8669); 21; 776-782
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2011-08-18
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of Aircraft (ISSN 0021-8669); 21; 767-775
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: Rotorcraft noise includes turbofan engine noise components, as well as noise from the main and tail rotors that is conditioned by the aircraft's various operational modes. Both of the rotors generate loading noise and broadband noise. Another noise contributor is blade/vortex interaction noise, which results when shed vortices are encountered by a following blade, releasing impulsive acoustic energy. Attention is presently given to the experimental and developmental initiatives to be made by a NASA/industry five-year program that began in 1983. Aeroacoustic data acquired from experiments conducted in NASA facilities can be used in the development of empirical noise prediction methods, in the improvement of existing noise prediction methodology, in the evaluation of proposed reduced noise designs, and in the establishment of useful scaling relationships for selected noise-generating mechanisms.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Aerospace America (ISSN 0740-722X); 22; 60-63
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2011-08-19
    Description: Several recent helicopter vibration reduction research programs are described. Results of studies of blade design parameters in rotor vibratory response and of an advanced blade design for reduced vibration are examined. An optimization approach to develop a general automated procedure for rotor blade design is described, and analytical results for an articulated rotor operating at a steady 160 kt flight condition are reported. The use of a self-adaptive controller to implement higher harmonic control in closed-loop fashion is addressed, and a computer simulation used to evaluate and compare the performance of alternative algorithms included in the generic active controller is discussed. Results are presented for steady level flight conditions, short-duration maneuvers, blade stresses and rotor performance, blade-appended aeroelastic devices, vibratory airloads, wake-induced blade airloads, and airloads from blade motions, the interaction of rotor and fuselage, and the interaction of rotor and empennage.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of Aircraft (ISSN 0021-8669); 21; 966-970
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: The X-29 experimental aircraft, which is a technology integration and evaluation platform for such features as static longitudinal instability, sweptforward wings and three-surface longitudinal control, offers an opportunity to validate the entire aircrft design process through careful correlation and comparison of flight test results with wind tunnel results and design predictions. Attention is presently given to the design features of the aircraft, which encompass supercritical airfoils, digital flight control, and aeroelastically tailored composite wings, as well as to the flight test program that was formulated to investigate the interactions and relative merits of these design features, in light of data gathered by carefully positioned sensors.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: AIAA Student Journal (ISSN 0001-1452); 22; 2-12
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2011-08-18
    Description: A program of experimental and analytical research has been performed to demonstrate the effects of rotor and fuselage design parameters on rotor in-plane stability, including aeromechanical stability. The experimental data were obtained from hover and wind-tunnel tests of a scaled advanced bearingless main rotor model. Both isolated-rotor and free-hub conditions were tested. Test parameters included blade built-in cone and sweep angles; rotor inplane structural stiffness and damping; pitch link stiffness and location; and fuselage natural frequency, damping, and inertia. The results show that rotor blade structural damping is one of the most influential design parameters in obtaining acceptable aeromechanical stability margins. Other parameters, such as blade cone angle, pitch link location (rotor delta 3) and anisotropic hub damper configurations, may be used to improve stability margins, but their individual effects are subtle.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2011-08-18
    Description: Previously cited in issue 12, p. 1701, Accession no. A83-29806
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of Aircraft (ISSN 0021-8669); 21; 272-277
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2011-08-18
    Description: Previously cited in issue 12, p. 1702, Accession no. A83-29860
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of Aircraft (ISSN 0021-8669); 21; 209-217
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2016-06-07
    Description: The need for numerical design optimization of naval structures is discussed. The complexity of problems that arise due to the significant roles played by three major disciplines, i.e., structural mechanics, acoustics, and hydrodynamics are discussed. A major computer software effort that has recently begun at the David W. Taylor Naval Ship R&D Center to accommodate large multidisciplinary analyses is also described. In addition to primarily facilitating, via the use of data bases, interdisciplinary analyses for predicting the response of the Navy's ships and related structures, this software effort is expected to provide the analyst with a convenient numerical workbench for performing large numbers of analyses that may be necessary for optimizing the design performance. Finally, an example is included that investigates several aspects of optimizing a typical naval structure from the viewpoints of strength, hydrodynamic form, and acoustic characteristics.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center Recent Experiences in Multidisciplinary Analysis and Optimization, Part 1; 8 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2016-06-07
    Description: To evaluate the role that optimization can play in structural model refinement, it is necessary to examine the existing environment for the structural design/structural modification process. The traditional approach to design, analysis, and modification is illustrated. Typically, a cyclical path is followed in evaluating and refining a structural system, with parallel paths existing between the real system and the analytical model of the system. The major failing of the existing approach is the rather weak link of communication between the cycle for the real system and the cycle for the analytical model. Only at the expense of much human effort can data sharing and comparative evaluation be enhanced for the two parallel cycles. Much of the difficulty can be traced to the lack of a user-friendly, rapidly reconfigurable engineering software environment for facilitating data and information exchange. Until this type of software environment becomes readily available to the majority of the engineering community, the role of optimization will not be able to reach its full potential and engineering productivity will continue to suffer. A key issue in current engineering design, analysis, and test is the definition and development of an integrated engineering software support capability. The data and solution flow for this type of integrated engineering analysis/refinement system is shown.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center Recent Experiences in Multidisciplinary Analysis and Optimization, Part 1; 7 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: The mathematical statement of the general nonlinear optimization problem is given as follows: find the vector of design variables, X, that will minimize f(X) subject to G sub J (x) + or - 0 j=1,m H sub K hk(X) = 0 k=1,l X Lower I approx less than X sub I approx. less than X U over I i = 1,N. The vector of design variables, X, includes all those variables which may be changed by the ADS program in order to arrive at the optimum design. The objective function F(X) to be minimized may be weight, cost or some other performance measure. If the objective is to be maximized, this is accomplished by minimizing -F(X). The inequality constraints include limits on stress, deformation, aeroelastic response or controllability, as examples, and may be nonlinear implicit functions of the design variables, X. The equality constraints h sub k(X) represent conditions that must be satisfied precisely for the design to be acceptable. Equality constraints are not fully operational in version 1.0 of the ADS program, although they are available in the Augmented Lagrange Multiplier method. The side constraints given by the last equation are used to directly limit the region of search for the optimum. The ADS program will never consider a design which is not within these limits.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center Recent Experiences in Multidisciplinary Analysis and Optimization, Part 1; 10 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2016-06-07
    Description: The purpose of this project was to investigate the use of optimization techniques to improve the flutter margins of the HARM AGM-88A wing. The missile has four cruciform wings, located near mid-fuselage, that are actuated in pairs symmetrically and antisymmetrically to provide pitch, yaw, and roll control. The wings have a solid stainless steel forward section and a stainless steel crushed-honeycomb aft section. The wing restraint stiffness is dependent upon wing pitch amplitude and varies from a low value near neutral pitch attitude to a much higher value at off-neutral pitch attitudes, where aerodynamic loads lock out any free play in the control system. The most critical condition for flutter is the low-stiffness condition in which the wings are moved symmetrically. Although a tendency toward limit-cycle flutter is controlled in the current design by controller logic, wing redesign to improve this situation is attractive because it can be accomplished as a retrofit. In view of the exploratory nature of the study, it was decided to apply the optimization to a wing-only model, validated by comparison with results obtained by Texas Instruments (TI). Any wing designs that looked promising were to be evaluated at TI with more complicated models, including body modes. The optimization work was performed by McIntosh Structural Dynamics, Inc. (MSD) under a contract from TI.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center Recent Experiences in Multidisciplinary Analysis and Optimization, Part 1; 13 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2016-06-07
    Description: The work that has been done in the last decade or so in the application of optimization techniques to vehicle design is discussed. Much of the work reviewed deals with the design of body or suspension (chassis) components for reduced weight. Also reviewed are studies dealing with system optimization problems for improved functional performance, such as ride or handling. In reviewing the work on the use of optimization techniques, one notes the transition from the rare mention of the methods in the 70's to an increased effort in the early 80's. Efficient and convenient optimization and analysis tools still need to be developed so that they can be regularly applied in the early design stage of the vehicle development cycle to be most effective. Based on the reported applications, an attempt is made to assess the potential for automotive application of optimization techniques. The major issue involved remains the creation of quantifiable means of analysis to be used in vehicle design. The conventional process of vehicle design still contains much experience-based input because it has not yet proven possible to quantify all important constraints. This restraint on the part of the analysis will continue to be a major limiting factor in application of optimization to vehicle design.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center Recent Experiences in Multidisciplinary Analysis and Optimization, Part 1; 25 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2016-06-07
    Description: In optimizing a helicopter configuration, Hughes Helicopters uses a program called Computer Aided Sizing of Helicopters (CASH), written and updated over the past ten years, and used as an important part of the preliminary design process of the AH-64. First, measures of effectiveness must be supplied to define the mission characteristics of the helicopter to be designed. Then CASH allows the designer to rapidly and automatically develop the basic size of the helicopter (or other rotorcraft) for the given mission. This enables the designer and management to assess the various tradeoffs and to quickly determine the optimum configuration.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center Recent Experiences in Multidisciplinary Analysis and Optimization, Part 1; 19 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2016-06-07
    Description: Optimum Preliminary Design of Transports (OPDOT) is a computer program developed at NASA Langley Research Center for evaluating the impact of new technologies upon transport aircraft. For example, it provides the capability to look at configurations which have been resized to take advantage of active controls and provide and indication of economic sensitivity to its use. Although this tool returns a conceptual design configuration as its output, it does not have the accuracy, in absolute terms, to yield satisfactory point designs for immediate use by aircraft manufacturers. However, the relative accuracy of comparing OPDOT-generated configurations while varying technological assumptions has been demonstrated to be highly reliable. Hence, OPDOT is a useful tool for ascertaining the synergistic benefits of active controls, composite structures, improved engine efficiencies and other advanced technological developments. The approach used by OPDOT is a direct numerical optimization of an economic performance index. A set of independent design variables is iterated, given a set of design constants and data. The design variables include wing geometry, tail geometry, fuselage size, and engine size. This iteration continues until the optimum performance index is found which satisfies all the constraint functions. The analyst interacts with OPDOT by varying the input parameters to either the constraint functions or the design constants. Note that the optimization of aircraft geometry parameters is equivalent to finding the ideal aircraft size, but with more degrees of freedom than classical design procedures will allow.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Recent Experiences in Multidisciplinary Analysis and Optimization, Part 1; 15 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2016-06-07
    Description: The structural design process for large transport aircraft is described. Critical loads must be determined from a large number of load cases within the flight maneuver envelope. The structural design is also constrained by considerations of producibility, reliability, maintainability, durability, and damage tolerance, as well as impact dynamics and multiple constraints due to flutter and aeroelasticity. Aircraft aeroelastic design considerations in three distinct areas of product development (preliminary design, advanced design, and detailed design) are presented and contrasted. The present state of the art is challenged to solve the practical difficulties associated with design, analysis, and redesign within cost and schedule constraints. The current practice consists of largely independent engineering disciplines operating with unorganized data interfaces. The need is then demonstrated for a well-planned computerized aeroelastic structural design optimization system operating with a common interdisciplinary data base. This system must incorporate automated interfaces between modular programs. In each phase of the design process, a common finite-element model for static and dynamic optimization is required to reduce errors due to modeling discrepancies. As the design proceeds from the simple models in preliminary design to the more complex models in advanced and detailed design, a means of retrieving design data from the previous models must be established.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center Recent Experiences in Multidisciplinary Analysis and Optimization, Part 1; 12 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2016-06-07
    Description: A Program for an Iterative Aeroelastic Solution (PIAS) is discussed. This will be a modular computer program that combines the use of a finite-element structural analysis code with any linear or nonlinear aerodynamic code. At this point in time, PIAS has been designed but the software has not been written. The idea for this development originated with P. J. (Bud) Bobbitt of the NASA Langley Research Center. There was initial interest in an aeroelastic solution for a separation-induced leading-edge vortex. Some examples of the flow patterns for a low aspect ratio wing are shown. The Leading-Edge Vortex Program, which calculates pressure distributions including the effects of a separation-induced leading-edge vortex, uses an iterative solution method. This led to the concept of an iteration cycle on configuration shape external to the aerodynamic code.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center Recent Experiences in Multidisciplinary Analysis and Optimization, Part 1; 15 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2016-06-07
    Description: Military aircraft research opportunities for the future are briefly surveyed. Aircraft control theory, design analysis, systems integration and flight characteristics are discussed.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA. Langley Research Center NASA Aircraft Controls Research, 1983; p 559-569
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2011-08-19
    Description: A research study was initiated to systematically determine the impact of selected blade tip geometric parameters on conformable rotor performance and loads characteristics. The model articulated rotors included baseline and torsionally soft blades with interchangeable tips. Seven blade tip designs were evaluated on the baseline rotor and six tip designs were tested on the torsionally soft blades. The designs incorporated a systemmatic variation in geometric parameters including sweep, taper, and anhedral. The rotors were evaluated in the NASA Langley Transonic Dynamics Tunnel at several advance ratios, lift and propulsive force values, and tip Mach numbers. A track sensitivity study was also conducted at several advance ratios for both rotors. Based on the test results, tip parameter variations generated significant rotor performance and loads differences for both baseline and torsionally soft blades. Azimuthal variation of elastic twist generated by variations in the tip parameters strongly correlated with rotor performance and loads, but the magnitude of advancing blade elastic twist did not. In addition, fixed system vibratory loads and rotor track for potential conformable rotor candidates appears very sensitive to parametric rotor changes.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2011-08-19
    Description: Various papers on helicopter rotor technology are presented. The subjects considered include: ground resonance analysis using a substructure modelling approach, aerolastic stability of a bearingless rotor, experimentally determined flutter from two and three-bladed model bearingless rotors in hover, lifting surface theory for a helicopter rotor in forward flight, aeroelastic considerations for torsionally soft rotors, and restructuring of a rotor analysis program. Also discussed are: dynamic inflow and its effect on experimental correlations, flap-lag-torsion instability in forward flight, dynamic stability of a bearingless circulation control rotor blade in hover, dynamic response characteristics of a circulation control rotor model pneumatic system, the relations between vibratory loads and airframe vibrations, coupled rotor body vibrations with in-plane degrees of freedom, helicopter vibration reduction concepts.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2011-08-19
    Description: The combined effects of blade torsion and dynamic inflow on the aeroelastic stability of an elastic rotor blade in forward flight are studied. The Helicopter Equations for Stability and Loads (HESL) program is extended to derive the governing equations of motion for the blade, and a Lagrangian formulation is used to obtain the equations in generalized coordinates. The program generates the steady-state and linearized perturbation equations in symbolic form and then codes them into FORTRAN subroutines. The coefficients for each equation and for each mode are identified through a numerical program; the latter can also be used to obtain the harmonic balance equations. The governing multiblade equations are derived explicitly using HESL. These equations can accommodate any number of elastic blade modes. Stability results are presented for several hingeless rotor blade structural models, and the influence of dynamic inflow in forward flight with an elastic hingeless rotor is investigated.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2011-08-19
    Description: A convenient and versatile procedure for modeling and analyzing ground resonance phenomena is described and illustrated. A computer program is used which dynamically couples differential equations with nonlinear and time dependent coefficients. Each set of differential equations may represent a component such as a rotor, fuselage, landing gear, or a failed damper. Arbitrary combinations of such components may be formulated into a model of a system. When the coupled equations are formed, a procedure is executed which uses a Floquet analysis to determine the stability of the system. Illustrations of the use of the procedures along with the numerical examples are presented.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2011-08-19
    Description: The Rotor Systems Research Aircraft (RSRA) is a unique research aircraft designed to flight test advanced helicopter rotor system. Its principal flight test configuration is as a compound helicopter. The fixed wing configuration of the RSRA was primarily considered an energy fly-home mode in the event it became necessary to sever an unstable rotor system in flight. While it had always been planned to flight test the fixed wing configuraion, the selection of the RSRA as the flight test bed for the x-wing rotor accelerated this schedule. This paper discusses the build-up to, and the test of, the RSRA fixed wing configuration. It is written primarily from the test pilot's perspective.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2011-08-19
    Description: The Rotor Systems Research Aircraft helicopter technology demonstration test bed incorporates an active isolator system which reduces the rotor vibrations that are transmitted to the airframe and allows the simultaneous measurement of all six forces and moments generated by the rotor. The first full system calibration was performed in 1983 to verify the system's static load measurement capabilities; the analysis of the data encompassed multiple linear regressions to determine calibration matrices for different data sets, and a hysteresis removal algorithm for the estimation of in-flight measurement errors. The results obtained indicate that the active isolator system meets most performance predictions.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2011-08-19
    Description: Wind-tunel testing of a properly scaled aeroelastic model helicopter rotor is considered a necessary phase in the design development of new or existing rotor systems. For this reason, extensive testing of aeroelastically scaled model rotors is done in the Transonic Dynamics Tunnel (TDT) located at the NASA Langley Research Center. A unique capability of this facility, which enables proper dynamic scaling, is the use of Freon as a test medium. A description of the TDT and a discussion of the benefits of using Freon as a test medium are presented. A description of the model test bed used, the Aeroelastic Rotor Experimental System (ARES), is also provided and examples of recent rotor tests are cited to illustrate the advantages and capabilities of aeroelastic model rotor testing in the TDT. The importance of proper dynamic scaling in identifying and solving rotorcraft aeroelastic problems, and the importance of aeroelastic testing of model rotor systems in the design of advanced rotor systems are demonstrated.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2011-08-18
    Description: This paper describes a method for systematic analysis and optimization of large engineering systems, e.g., aircraft, by decomposition of a large task into a set of smaller, self-contained subtasks that can be solved concurrently. The subtasks may be arranged in many hierarchical levels with the assembled system at the top level. Analyses are carried out in each subtask using inputs received from other subtasks, and are followed by optimizations carried out from the bottom up. Each optimization at the lower levels is augmented by analysis of its sensitivity to the inputs received from other subtasks to account for the couplings among the subtasks in a formal manner. The analysis and optimization operations alternate iteratively until they converge to a system design whose performance is maximized with all constraints satisfied. The method, which is still under development, is tentatively validated by test cases in structural applications and an aircraft configuration optimization. It is pointed out that the method is intended to be compatible with the typical engineering organization and the modern technology of distributed computing.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2011-08-18
    Description: Two sets of wind tunnel tests were performed to examine the relative merits of wing-canard, wing-tail and tailless configurations for advanced fighters. Both sessions focused on variable camber using automated, prescheduled leading and trailing edge flap positioning. The trials considered a modified F-16 tail and canard configuration at subsonic, transonic and supersonic speeds, a 60 deg delta wing sweep, a 44 deg leading edge trapezoidal wing at subsonic and supersonic speeds, vortex flow effects, and flow interactions in the canard-wing-tail-tailless variations. The results showed that large negative stabilities would need to be tolerated in wing-canard arrangements to make them competitive with wing-tail arrangements. Subsonic polar shapes for canard and tailless designs were more sensitive to static design margins than were wing-tail arrangements. Canards provided better stability at supersonic speeds. The static margin limits were a critical factor in control surface selection. Finally, a tailless delta wing configuration exhibited the lowest projected gross take-off weight and drag values.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2011-08-18
    Description: NASA has undertaken development and test programs in collaboration with the large transport aircraft construction industry, in order to remove existing barriers to the use of composite material primary structures and to assess their advantages in terms of both acquisition cost and mission performance. These programs are expected to reach design technology readiness for wing and fuselage structures by 1988, paving the way for the validation of design and manufacturing methods in the early 1990s. While composites promise a reduction in fuselage manufacturing costs, it is judged that the relative cost of a metallic wing will be more difficult to surpass. Nevertheless, a 40 percent wing weight saving may more than compensate for increased wing structure cost.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Aerospace America (ISSN 0740-722X); 22; 58-62
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2011-08-18
    Description: Technologies developed through NASA's Energy Efficient Transport Program are described. The program was charged with research in advanced aerodynamics and active controls, with the goal of increasing the fuel efficiency of transport aircraft by 15 to 20 percent. Research in aerodynamics was directed toward the development of high-aspect-ratio supercritical wings, winglets, computational design methodology, high-lift devices, propulsion airframe integration, and surface coatings. The active control portion of the program investigated Wing Load Alleviation (WLA) through the use of active controls, drag reduction, and the effect of active pitch controls on fuel consumption. It was found that applying active control functions at the beginning of the aircraft design cycle brings the best benefit, and that if active control and advanced aerodynamic airframe configurations are applied to transport aircraft design concurrently with new lightweight materials, fuel consumption can be reduced by as much as 40 percent.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Aerospace America (ISSN 0740-722X); 22
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...