ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (1,564)
  • NASA Technical Reports  (1,564)
  • Spacecraft Design, Testing and Performance  (1,564)
  • 2015-2019  (670)
  • 2010-2014  (876)
  • 1955-1959  (17)
  • 1945-1949  (1)
Collection
  • Other Sources  (1,564)
Source
  • NASA Technical Reports  (1,564)
Years
Year
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2017-07-01
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-37381-3 , 2016 Tri-Lateral Safety and Mission Assurance Conference; 13-15 Sep. 2016; Sagamihara; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2017-08-18
    Description: DSG will be placed in halo orbit around themoon- Platform for international/commercialpartners to explore lunar surface- Testbed for technologies needed toexplore Mars Habitat module used to house up to 4crew members aboard the DSG- Launched on EM-3- Placed inside SLS fairing Habitat Module - Task Habitat Finite Element Model Re-modeled entire structure in NX2) Used Beam and Shell elements torepresent the pressure vessel structure3) Created a point cloud of centers of massfor mass components- Can now inspect local moments andinertias for thrust ring application8/ Habitat Structure Docking Analysis Problem: Artificial Gravity may be necessary forastronaut health in deep spaceGoal: develop concepts that show how artificialgravity might be incorporated into a spacecraft inthe near term Orion Window Radiant Heat Testing.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-40342 , Summer Intern Final Presentation; * Aug. 2017; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-08-17
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-40261 , NASA's Space Technology Mission Directorate (STMD) ESI Parachute FSI Workshop; 12-13 Oct. 2017; virtual; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-11
    Description: Launched June 18, 2009 on an Atlas V rocket, NASA's Lunar Reconnaissance Orbiter (LRO) is the first step in NASA's Vision for Space Exploration program and for a human return to the Moon. The spacecraft (SC) carries a wide variety of scientific instruments and provides an extraordinary opportunity to study the lunar landscape at resolutions and over time scales never achieved before. The spacecraft systems are designed to enable achievement of LRO's mission requirements. To that end, LRO's mechanical system employed two two-axis gimbal assemblies used to drive the deployment and articulation of the Solar Array System (SAS) and the High Gain Antenna System (HGAS). This paper describes the design, development, integration, and testing of Gimbal Control Electronics (GCE) and Actuators for both the HGAS and SAS systems, as well as flight testing during the on-orbit commissioning phase and lessons learned.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Proceedings of the 40th Aerospace Mechanisms Symposium; 133-146; NASA/CP-2010-216272
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-06
    Description: The Global Microwave Imager (GMI) instrument must spin at a constant rate of 32 rpm continuously for the 3-year mission life. Therefore, GMI must be very precisely balanced about the spin axis and center of gravity (CG) to maintain stable scan pointing and to minimize disturbances imparted to the spacecraft and attitude control on-orbit. The GMI instrument is part of the core Global Precipitation Measurement (GPM) spacecraft and is used to make calibrated radiometric measurements at multiple microwave frequencies and polarizations. The GPM mission is an international effort managed by the National Aeronautics and Space Administration (NASA) to improve climate, weather, and hydro-meteorological predictions through more accurate and frequent precipitation measurements. Ball Aerospace and Technologies Corporation (BATC) was selected by NASA Goddard Space Flight Center to design, build, and test the GMI instrument. The GMI design has to meet a challenging set of spin balance requirements and had to be brought into simultaneous static and dynamic spin balance after the entire instrument was already assembled and before environmental tests began. The focus of this contribution is on the analytical and test activities undertaken to meet the challenging spin balance requirements of the GMI instrument. The novel process of measuring the residual static and dynamic imbalances with a very high level of accuracy and precision is presented together with the prediction of the optimal balance masses and their locations.
    Keywords: Spacecraft Design, Testing and Performance
    Type: The 42nd Aerospace Mechanism Symposium; 303-318; NASA/CP-2014-217519
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: The ISS External Survey integrates the requirements for photographic and video imagery of the International Space Station (ISS) for the engineering, operations, and science communities. An extensive photographic survey was performed on all Space Shuttle flights to the ISS and continues to be performed daily, though on a level much reduced by the limited available imagery. The acquired video and photo imagery is used for both qualitative and quantitative assessments of external deposition and contamination, surface degradation, dynamic events, and MMOD strikes. Many of these assessments provide important information about ISS surfaces and structural integrity as the ISS ages. The imagery is also used to assess and verify the physical configuration of ISS structure, appendages, and components.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARES Biennial Report 2012 Final; 122-124; JSC-CN-30442
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-11
    Description: In response to the planned retirement of the Space Shuttle Program, International Space Station (ISS) management began stockpiling spare parts on the ISS. Many of the larger orbital replacement units were stored on the Expedite the Processing of Experiments to Space Station (EXPRESS) Logistics Carriers (ELCs) mounted on the end of the S3 and P3 truss segments, immediately outboard of the Thermal Radiator Rotary Joints (TRRJs) and their attached radiators. In an August 2009 computer-aided design (CAD) assessment, it was determined that mounting the Cargo Transport Container (CTC) 2 on the inboard face of ELC4 as planned would create insufficient clearance between the CTC2 and the rotational envelope of the radiators when the TRRJs were rotated to a gamma angle of 35.0 degrees. The true clearance would depend on how the Unpressurized Cargo Carrier Attachment System (UCCAS) was mounted to the S3 truss and how the ELC4 was attached to it. If the plane of the UCCAS attachment points were tilted even slightly inboard, it would significantly change the clearance between CTC2 and the Starboard TRRJ (S-TRRJ) radiators. Additionally, since CTC2 would be covered in multilayer insulation (MLI), the true outer profile of CTC2 was not captured in the CAD models used for the clearance assessment. It was possible that, even if the S-TRRJ radiators cleared CTC2, they could snag the MLI covering. In the fall of 2010, the Image Science and Analysis Group (ISAG) was asked to perform an on-orbit clearance analysis to determine the location of CTC2 on ELC4 and the S-TRRJ radiators at the angle of closest approach so that a positive clearance could be assured. To provide the measurements as quickly as possible to aid in the assessment, it was decided that the clearance analysis would be broken into two phases. Phase I: The location and orientation of the UCCAS fittings, which support and hold the ELC4 in place, would be measured relative to the ISS Analytical Coordinate System (ISSACS) as defined by nine preexisting Space Vision System (SVS) targets affixed to the forward/zenith side of the S1 and S3 truss segments. The location of the outboard edge of the S-TRRJ radiator would also be measured when positioned at the angle of closest approach to CTC2 (gamma = 35.0 degrees). This data would allow the Digital Pre-Assembly Group to predict how the ELC4 would sit on the UCCAS and how that would translate into the clearance between CTC2 and the S-TRRJ radiators. Phase II: After the ELC4 was delivered and installed into the UCCAS, the position of the CTC2 mounting plate on the inboard face of ELC4, would be measured in the ISSACS coordinate system relative to the SVS control points used in Phase I. Although CTC2 would not yet be mounted on ELC4, the working envelope of CTC2 could be mathematically added to the measured position of ELC4 to produce a best estimate for CTC2's mounted location. Comparing CTC2's best estimated location to the S-TRRJ radiator (measured in Phase I); relative to the ISSACS coordinate system, would provide a direct measurement of the expected clearance. Due to the impending delivery of ELC4 (scheduled for January 2011), planning for the Phase I clearance analysis began immediately. Using the Dynamic Onboard Ubiquitous Graphics (DOUG) program, ISAG designed a way to acquire images of the SVS control points on truss segments S1 and S3, the aft facing edge of the S-TRRJ Heat Rejection Subsystem (HRS) radiator, and the three UCCAS latch mechanisms mounted on the zenith face of the S3 truss using the Space Station Remote Manipulator System (SSRMS). To minimize the number of SSRMS movements, the Special Purpose Dexterous Manipulator (SPDM) would be attached to the SSRMS. This would make it possible to park the SPDM in one position and acquire multiple images by changing the viewing orientation of the SPDM body cameras using the pan/tilt units on which they are mounted. Using this implementation concept, ISAG identified four SSRMS/SPDM positions from which the majority of the needed imagery could be acquired. Five additional images would be acquired using the CP-3 external ISS camera mounted on the S1 truss immediately inboard of ELC4. Based on a photogrammetric simulation, it was estimated that the measured location of the HRS radiator and UCCAS latch points would be accurate to about 0.3 in. in each of the three axes relative to ISSACS. Working with ROBO, ISAG collected 78 images of the ISS December 29, 2010. From this imagery, the best 40 were selected for use in the analysis process. The images were radiometrically enhanced to improve color and contrast and loaded into the FotoG analysis software along with the camera parameters and control data, which consisted of the coordinates for the nine SVS targets on the S1 and S3 trusses in the ISSACS coordinate system.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARES Biennial Report 2012 Final; 117-122; JSC-CN-30442
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-06
    Description: For more than a decade, several teams have assessed designs for a long-duration free-space human habitat beyond low-Earth orbit (LEO), building upon years of hard-won experience with the International Space Station (ISS). These systems would enable multiple achievements for science and human space flight. Most were intended to be deployed using available or near-future capabilities within about a decade after funding begins and serve as the first major human "stepping stone" beyond LEO. Last year, Thronson and Talay summarized work up to that time on expandable or inflatable concepts for deployment at an Earth-Moon (E-M) L1 or L2 location. Here we summarize our team's more recent work both on a long-duration human habitat that could be deployed beyond LEO within a decade and on the priority goals that such a habitat might accomplish. Particulars of this and other concepts for human operations in cis-lunar space are posted on the web and will be presented at professional conferences, and detailed in future publications by our group.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-06
    Description: The importance of accurately pointing spacecraft to our daily lives is pervasive, yet somehow escapes the notice of most people. In this section, we will summarize the processes and technologies used in designing and operating spacecraft pointing (i.e. attitude) systems.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-29
    Description: The Compass Final Report: Europa Tunnelbot, is a summary of three Compass concurrent engineering team designs for penetrating the ice of Europa and reaching the ocean, while sampling for biomarkers and communicating back to the surface. These conceptual designs, while providing complete conceptual layouts for these penetrators, or 'Tunnelbots' along with the associated communication 'Repeaters' primarily focused on the power and thermal systems needed for these devices. Trades for these systems will provide advantages and challenges for each option. These results will be used to guide power technology development.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TP—2019-220054 , E-19649 , GRC-E-DAA-TN61831
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2015-09-22
    Description: Spacecraft modularity has been a topic of interest at NASA since the 1970s, when the Multi-Mission Modular Spacecraft (MMS) was developed at the Goddard Space Flight Center. Since then, modular concepts have been employed for a variety of spacecraft and, as in the case of the Hubble Space Telescope (HST) and the International Space Station (ISS), have been critical to the success of on-orbit servicing. Modularity is even more important for future robotic servicing. Robotic satellite servicing technologies under development by NASA can extend mission life and reduce life-cycle cost and risk. These are optimized when the target spacecraft is designed for servicing, including advanced modularity. This paper will explore how spacecraft design, as demonstrated by the Reconfigurable Operational spacecraft for Science and Exploration (ROSE) spacecraft architecture, and servicing technologies can be developed in parallel to fully take advantage of the promise of both.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN26106-2 , AIAA Space and Astronautics Forum and Exposition 2015 (AIAA Space 2015); 31 Aug. - 2 Sep. 2015; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-09-22
    Description: Spacecraft modularity has been a topic of interest at NASA since the 1970s, when the Multi-Mission Modular Spacecraft (MMS) was developed at the Goddard Space Flight Center. Since then, modular concepts have been employed for a variety of spacecraft and, as in the case of the Hubble Space Telescope (HST) and the International Space Station (ISS), have been critical to the success of on- orbit servicing. Modularity is even more important for future robotic servicing. Robotic satellite servicing technologies under development by NASA can extend mission life and reduce lifecycle cost and risk. These are optimized when the target spacecraft is designed for servicing, including advanced modularity. This paper will explore how spacecraft design, as demonstrated by the Reconfigurable Operational spacecraft for Science and Exploration (ROSE) spacecraft architecture, and servicing technologies can be developed in parallel to fully take advantage of the promise of both.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN26106-1 , AIAA Space and Astronautics Forum and Exposition 2015 (AIAA SPACE 2015); 31 Aug. - 2 Sep. 2015; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2017-07-01
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-37381-2 , 2016 Tri-Lateral Safety and Mission Assurance Conference; 13-15 Sep. 2016; Sagamihara; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-05-25
    Description: A study has been made of a flare-cylinder configuration to investigate its feasibility as a reentry body of an intermediate range ballistic missile. Factors considered were heating, weight, stability, and impact velocity. A series of trajectories covering the possible range of weight-drag ratios were computed for simple truncated nose shapes of varying pointedness, and hence varying weight-drag ratios. Four trajectories were chosen for detailed temperature computation from among those trajectories estimated to be possible. Temperature calculations were made for both "conventional" (for example, copper, Inconel, and stainless steel) and "unconventional" (for example, beryllium and graphite) materials. Results of the computations showed that an impact Mach number of 0.5 was readily obtainable for a body constructed from conventional materials. A substantial increase in subsonic impact velocity above a Mach number of 0.5 was possible without exceeding material temperature limits. A weight saving of up to 134 pounds out of 822 was possible with unconventional materials. This saving represents 78 percent of the structural weight. Supersonic impact would require construction of the body from unconventional materials but appeared to be well within the range of attainability.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NACA-RM-L58C21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-06-06
    Description: The Lunar Reconnaissance Orbiter (LRO), a spacecraft designed and built at the National Aeronautics and Space Administration s (NASA) Goddard Space Flight Center (GSFC) in Greenbelt, MD, was launched on June 18, 2009 from Cape Canaveral. It is currently in orbit about the Moon taking detailed science measurements and providing a highly accurate mapping of the suface in preparation for the future return of astronauts to a permanent moon base. Onboard the spacecraft is a complex set of algorithms designed by the attitude control engineers at GSFC to control the pointig for all operational events, including anomalies that require the spacecraft to be put into a well known attitude configuration for a sufficiently long duration to allow for the investigation and correction of the anomaly. GSFC level requirements state that each spacecraft s control system design must include a configuration for this pointing and lso be able to maintain a thermally safe and power positive attitude. This stable control algorithm for anomalous events is commonly referred to as the safe mode and consists of control logic thatwill put the spacecraft in this safe configuration defined by the spacecraft s hardware, power and environment capabilities and limitations. The LRO Sun Safe mode consists of a coarse sun-pointing set of algorithms that puts the spacecraft into this thermally safe and power positive attitude and can be achieved wihin a required amount of time from any initial attitude, provided that the system momentum is within the momentum capability of the reaction wheels. On LRO the Sun Safe mode makes use of coarse sun sensors (CSS), an inertial reference unit (IRU) and reaction wheels (RW) to slew the spacecraft to a solar inertial pointing. The CSS and reaction wheels have some level of redundancy because of their numbers. However, the IRU is a single-point-failure piece of hardware. Without the rate information provided by the IRU, the Sun Safe control algorithms could not maintain the required pointing, so a sub-mode of the Sun Safe mode that does not use the IRU was designed. This submode, referred to as the Sun Safe Gyroless control mode, consists of an algorithm that estimates rate information from the CSS and the RW measurements. RW momentum information is used to estimate the body rate parallel to the target sunline, which CSS alone would not be able to observe. Sun Safe can be autonomously, or via ground command, entered from any other control mode and in the event the IRU is not providing rate information, the control mode is switched to the gyroless submode. This paper looks at the design of the Sun Safe modes and discusses the constraints placed on the algorithm and how the mode wored around these constraints. Items of particular interest include CSS placement on the Solar Array (SA) and its implications to design, estimation of body rate information for the Sun Safe Gyroless control mode, and the effect of solar eclipse on each of the Sun Safe modes. Placing CSS on the SA was necessary for the means to put the Sun along the targeted sun-line, nominally normal to the SA panels, for all operational considerations. This had design implications for determining a sun vector during normal SA operations, if one or both gimbals become inoperable and when the SA is in a stowed configuration. The ability of body rate estimation in Sun Safe Gyroless not only uses CSS sun vector data but requires RW momentum measuremens to estimate rates parallel to the sun-line. LRO encounters solar eclipses of some length for most of its orbits about the Moon. With the lack of CSS measurement data a design was implemented in both Sun Safe and Sun Safe Gyroless, they differ because of having or not having IRU measurement data, to carry the spacecraft through these eclipse periods. This paper also includes some discussion of sun avoidance and how it affected design decisions during nominal and eclipse perids for each of the Sun Safe modes.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-27
    Description: This presentation provides examples of research and development that has recently or is currently being conducted at NASA, with a special emphasis on the application of structural health monitoring (SHM) of aerospace vehicles. SHM applications on several vehicle programs are highlighted, including Space Shuttle Orbiter, International Space Station, Uninhabited Aerial Vehicles, and Expandable Launch Vehicles. Examples of current and previous work are presented in the following categories: acoustic emission impact detection, multi-parameter fiber optic strain-based sensing, wireless sensor system development, and distributed leak detection.
    Keywords: Spacecraft Design, Testing and Performance
    Type: DFRC-E-DAA-TN11709 , International Workshop on Structural Health Monitoring; 10-13 Sept. 2013; Stanford, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-27
    Description: A consortium of innovative experts in additive manufacturing (AM) comprising Northrup Grumman Technical Services, University of Texas at El Paso (UTEP), Configurable Space Microsystems Innovations & Applications Center (COSMIAC), NASA Glenn Research Center (GRC), and Youngstown State University, have made significant breakthroughs in the goal of creating the first complete 3D printed small satellite. Since AM machines are relatively inexpensive, this should lead to many entrepreneurial opportunities for the small satellite community. Our technology advancements are focused on the challenges of embedding key components within the structure of the article. We have demonstrated, using advanced fused deposition modeling techniques, complex geometric shapes which optimize the spacecraft design. The UTEP Keck Center has developed a method that interrupts the printing process to insert components into specific cavities, resulting in a spacecraft that has minimal internal space allocated for what traditionally were functional purposes. This allows us to increase experiment and instrument capability by provided added volume in a confined small satellite space. Leveraging initial progress made on a NASA contract, the team investigated the potential of new materials that exploit the AM process, producing candidate compositions that exceed the capabilities of traditional materials. These "new materials" being produced and tested include some that have improved radiation shielding, increased permeability, enhanced thermal properties, better conductive properties, and increased structural performance. The team also investigated materials that were previously not possible to be made. Our testing included standard mechanical tests such as vibration, tensile, thermal cycling, and impact resistance as well as radiation and electromagnetic tests. The initial results of these products and their performance will be presented and compared with standard properties. The new materials with the highest probability to disrupt the future of small satellite systems by driving down costs will be highlighted, in conjunction with the electronic embedding process.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GRC-E-DAA-TN15788 , E-18939 , AIAA/USU Conference on Small Satellites; 4-7 Aug.; Logan, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-27
    Description: With three missions outstanding, the Shuttle Hypervelocity Impact Database has nearly 3000 entries. The data is divided into tables for crew module windows, payload bay door radiators and thermal protection system regions, with window impacts compromising just over half the records. In general, the database provides dimensions of hypervelocity impact damage, a component level location (i.e., window number or radiator panel number) and the orbiter mission when the impact occurred. Additional detail on the type of particle that produced the damage site is provided when sampling data and definitive analysis results are available. Details and insights on the contents of the database including examples of descriptive statistics will be provided. Post flight impact damage inspection and sampling techniques that were employed during the different observation campaigns will also be discussed. Potential enhancements to the database structure and availability of the data for other researchers will be addressed in the Future Work section. A related database of returned surfaces from the International Space Station will also be introduced.
    Keywords: Spacecraft Design, Testing and Performance
    Type: IAC-11.A6.3.7 , JSC-CN-24630 , 62nd International Astronautical Congress; 3-7, Oct. 2011; Cape Town; South Africa
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-27
    Description: Considered both a stepping-stone to deep space and a key to unlocking the mysteries of planetary formation, the Moon offers a unique opportunity for scientific study. Robotic precursor missions are being developed to improve technology and enable new approaches to exploration. Robots, lunar landers, and satellites play significant roles in advancing science and technologies, offering close range and in-situ observations. Science and exploration data gathered from these nodes and a lunar science satellite is intended to support future human expeditions and facilitate future utilization of lunar resources. To attain a global view of lunar science, the nodes will be distributed over the lunar surface, including locations on the far side of the Moon. Given that nodes on the lunar far side do not have direct line-of-sight for Earth communications, the planned presence of such nodes creates the need for a lunar communications relay satellite. Since the communications relay capability would only be required for a small portion of the satellite s orbit, it may be possible to include communication relay components on a science spacecraft. Furthermore, an integrated satellite has the potential to reduce lunar surface mission costs. A SCience Hybrid Orbiter and Lunar Relay (SCHOLR) is proposed to accomplish scientific goals while also supporting the communications needs of landers on the far side of the Moon. User needs and design drivers for the system were derived from the anticipated needs of future robotic and lander missions. Based on these drivers and user requirements, accommodations for communications payload aboard a science spacecraft were developed. A team of interns identified and compared possible SCHOLR architectures. The final SCHOLR architecture was analyzed in terms of orbiter lifetime, lunar surface coverage, size, mass, power, and communications data rates. This paper presents the driving requirements, operational concept, and architecture views for SCHOLR within a lunar surface nodal network. Orbital and bidirectional link analysis, between lunar nodes, orbiter, and Earth, as well as a conceptual design for the spacecraft are also presented
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-2011-216894 , AIAA Paper 2010-813610 , E-17473 , Space 2010 Conference and Exposition; 30 Aug. 2 Sep. 2010; Anaheim, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-27
    Description: The Ares I rocket is the first launch vehicle scheduled for manufacture under the National Aeronautic and Space Administration s (NASA s) Constellation program. A series of full-scale Ares I development articles have been constructed on the Robotic Weld Tool at the NASA George C. Marshall Space Flight Center in Huntsville, Alabama. The Robotic Weld Tool is a 100 ton, 7-axis, robotic manufacturing system capable of machining and friction stir welding large-scale space hardware. This presentation will focus on the friction stir welding of 5.5m diameter cryogenic fuel tank components; specifically, the liquid hydrogen forward dome (LH2 MDA) and the common bulkhead manufacturing development articles (CBMDA). The LH2 MDA was the first full-scale, flight-like Ares I hardware produced under the Constellation Program. It is a 5.5m diameter elliptical dome assembly consisting of eight gore panels, a y-ring stiffener and a manhole fitting. All components are made from aluminum-lithium alloy 2195. Conventional and self-reacting friction stir welding was used on this article. Manufacturing solutions will be discussed including the implementation of photogrammetry, an advanced metrology technique, as well as fixtureless welding. The LH2 MDA is the first known fully friction stir welded dome ever produced. The completion of four Common Bulkhead Manufacturing Development Articles (CBMDA) will also be highlighted. Each CBMDA consists of a 5.5m diameter spun-formed dome friction stir welded to a y-ring stiffener. The domes and y-rings are made of aluminum 2014 and 2219 respectively. An overview of CBMDA manufacturing processes and the effect of tooling on weld defect formation will be discussed.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M11-0234
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-27
    Description: Motivation: For large system level random vibration tests, there may be some concerns about the shaker's capability for the overturning moment. It is the test conductor's responsibility to predict and monitor the overturning moment during random vibration tests. If the predicted moment is close to the shaker's capability, test conductor must measure the instantaneous moment at low levels and extrapolate to higher levels. That data will be used to decide whether it is safe to proceed to the next test level. Challenge: Kistler analog formulation for computing the real-time moment is only applicable to very limited cases in which we have 3 or 4 load cells installed at shaker interface with hardware. Approach: To overcome that limitation, a simple procedure was developed for computing the overturning moment time histories using the measured time histories of the individual load cells.
    Keywords: Spacecraft Design, Testing and Performance
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-27
    Description: One of the key design objectives of NASA's Orion Exploration Flight Test 1 (EFT-1) is to execute a guided entry trajectory demonstrating GN&C capability. The focus of this paper is the ight control authority of the vehicle throughout the atmospheric entry ight to the target landing site and its impacts on GN&C, parachute deployment, and integrated performance. The vehicle's attitude control authority is obtained from thrusting 12 Re- action Control System (RCS) engines, with four engines to control yaw, four engines to control pitch, and four engines to control roll. The static and dynamic stability derivatives of the vehicle are determined to assess the inherent aerodynamic stability. The aerodynamic moments at various locations in the entry trajectory are calculated and compared to the available torque provided by the RCS system. Interaction between the vehicle's RCS engine plumes and the aerodynamic conditions are considered to assess thruster effectiveness. This document presents an assessment of Orion's ight control authority and its effectiveness in controlling the vehicle during critical events in the atmospheric entry trajectory.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-26676 , 2012 AIAA Guidance, Navigation and Control Conference; 13-16 Sept. 2012; Minneapolis, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-06-22
    Description: A hypersonic flowfield model that treats electronic levels of the dominant afterbody radiator, N, as individual species is presented. This model allows electron-ion recombination rate and two-temperature modeling improvements, the latter which are shown to decrease afterbody radiative heating by up to 30%. This increase is primarily due to the addition of the electron-impact-excitation energy-exchange term to the energy equation governing the vibrational-electronic-electron temperature. This model also allows the validity of the often applied quasi-steady state (QSS) approximation to be assessed. The QSS approximation is shown to fail throughout most of the afterbody region for lower electronic states, although this impacts the radiative intensity reaching the surface by less than 15%. By computing the electronic state populations of N within the flowfield solver, instead of through the QSS approximation in the radiation solver, the coupling of nonlocal radiative transition rates to the species continuity equations becomes feasible. Implementation of this higher- fidelity level of coupling between the flowfield and radiation solvers is shown to increase the afterbody radiation by up to 50% relative to the conventional model.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NF1676L-28417 , Physical Review Fluids (e-ISSN 2469-990X); 3; 1; 013402
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-08-01
    Description: In 2012 during the entry, descent, and landing of the Mars Science Laboratory (MSL), the MSL Entry, Descent, and Landing Instrumentation (MEDLI) sensor suite was collecting in-flight heatshield pressure and temperature data. The data collected by the MEDLI instruments has since been used for reconstruction of vehicle aerodynamics, atmospheric conditions, aerothermal heating, and Thermal Protection System (TPS) performance as well as material response model validation and refinement. The Mars Entry, Descent, and Landing Instrumentation 2 (MEDLI2) sensor suite for the Mars 2020 heatshield and backshell is being designed to expand on the measurements and knowledge gained from MEDLI. Similar to MEDLI, MEDLI2 will measure the pressure and temperature of the heatshield. MEDLI2 will additionally measure the temperature, pressure, total heat flux, and radiative heat flux on the backshell.Since the backshell instrumentation is new to MEDLI2, Do No Harm (DNH) testing was conducted on instrumented backshell TPS (SLA-561V) panels. The panels consisted of four pressure port holes, one Mars Entry Atmospheric Data System (MEADS) pressure port plug, one MEDLI2 Integrated Sensor Plug (MISP) thermal plug, and one heat flux sensor. DNH testing was conducted to ensure the performance of the TPS was not degraded due to sensor integration and to characterize any TPS performance changes. The testing consisted of environmental testing vibration, shock, thermal vacuum (TVAC) cycling and bounding aerothermal (arc jet) testing. During arc jet testing, the heat flux sensors embedded in the SLA-561V panels exhibited an unexpected temporary reduction in the heat flux sensor temperature and response. After review of the test results, it was determined that this unexpected response was confined to the two heat flux sensors that experienced the greatest thermal shock condition. This condition consisted of a liquid nitrogen (LN2) bath that induced temperatures of approximately -190C, and then a transition (thermal shock) to an arc jet test at a heat rate of approximately 21 W/cm2. Both heat flux sensors that were exposed to this thermal shock experienced a blister in the thermal coating during the arc jet test.Two heat flux sensor thermal shock test series were performed to investigate the cause of the blistering and subsequent energy release. In these tests, the heat flux sensor was first cold soaked in either a dry ice or LN2 bath to induce temperatures of approximately -78C or -190C, respectively. Then the sensors were thermally shocked using two propane torches with a heat rate of either approximately 8 W/cm2 or 21 W/cm2. The key findings indicated that there is a correlation between thermal shock and the blistering observed in the DNH test series, and that the cause appeared to be rooted in the heat flux sensor epoxy that encapsulates the sensor thermopile.Since the heat flux sensors are required to measure heat fluxes up to 15 W/cm2 during the Mars 2020 entry, a third test series was designed to determine if blistering is an issue at this maximum expected flight heat flux. Results from all three thermal shock test series and a discussion about whether or not blistering of the heat flux sensor thermal coating could be an issue for the Mars 2020 mission will be presented.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN70038 , International Planetary Probe Workshop (IPPW) 2019; Jul 08, 2019 - Jul 12, 2019; Oxford; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-27
    Description: NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a LOX/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. From the beginning, one of goals for the Morpheus Project was to streamline agency processes and practices. The Morpheus project accepted a challenge to tailor the traditional NASA systems engineering approach in a way that would be appropriate for a lower cost, rapid prototype engineering effort, but retain the essence of the guiding principles. The team has produced innovative ways to create an infrastructure and approach that would challenge existing systems engineering processes while still enabling successful implementation of the current Morpheus Project. This paper describes the tailored systems engineering approach for the Morpheus project, including the processes, tools, and amount of rigor employed over the project's multiple lifecycles since the project began in FY11. Lessons learned from these trials have the potential to be scaled up and improve efficiency on a larger projects or programs.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-29415 , AIAA Space 2013 Conference and Exposition; 10-12 Sept. 2013; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-27
    Description: Hypervelocity impacts were performed on six unstressed and six stressed titanium coupons with aluminium: shielding in order to assess the effects of the partial penetration damage on the post impact micromechanical properties of titanium and on the residual strength after impact. This work is performed in support of the defInition of the penetration criteria of the propellant and oxidizer tanks dome surfaces for the service module of the crew exploration vehicle where such a criterion is based on testing and analyses rather than on historical precedence. The objective of this work is to assess the effects of applied biaxial stress on the damage dynamics and morphology. The crater statistics revealed minute differences between stressed and unstressed coupon damage. The post impact residual stress analyses showed that the titanium strength properties were generally unchanged for the unstressed coupons when compared with undamaged titanium. However, high localized strains were shown near the craters during the tensile tests.
    Keywords: Spacecraft Design, Testing and Performance
    Type: 11th Hypervelocity Impact Symposium; 11-15 Apr. 20120; Frieburg; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-27
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-23823 , 8th International Planetary Probe Workshop (IPPW-8); 10-Jun; Portsmouth, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-27
    Description: The James Webb Space Telescope (JWST) is a large, infrared-optimized space telescope consisting of the following elements: (1) Optical telescope element (OTE) (2) Integrated science instrument module (ISIM) (3) Spacecraft (4) Sunshield The Integrated Science Instrument Module (ISIM) consists of the JWST science instruments (NIRCam, MIRI, NIRSpec), a fine guidance sensor (FGS), the ISIM Structure, and thermal and electrical subsystems. JWST's instruments are designed to work primarily in the infrared range of the electromagnetic spectrum, and the instruments and telescope operate at cryogenic temperatures (approximately 35 K for the instruments). The development and validation of a thermal distortion modeling and analysis capability for the JWST ISIM Structure was successfully completed. The modeling and analysis approach was grounded in initial constituent materials testing and benchmarked to test results at the composite bonded joint, subassembly, and fullscale flight hardware levels. Comparison of analysis predictions and test results from this series of incremental cryogenic thermal distortion tests demonstrates that the model validation goals are achieved.
    Keywords: Spacecraft Design, Testing and Performance
    Type: 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; 4-7 Aprl 2011; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-27
    Description: Helium leak tests were completed to characterize the leak rate of a 54 in. diameter composite space docking seal design in support of the National Aeronautics and Space Administration s (NASA's) Low Impact Docking System (LIDS). The evaluated seal design was a candidate for the main interface seal on the LIDS, which would be compressed between two vehicles, while docked, to prevent the escape of breathable air from the vehicles and into the vacuum of space. Leak tests completed at nominal temperatures of -30, 20, and 50 C on untreated and atomic oxygen (AO) exposed test samples were examined to determine the influence of both test temperature and AO exposure on the performance of the composite seal assembly. Results obtained for untreated seal samples showed leak rates which increased with increased test temperature. This general trend was not observed in tests of the AO exposed specimens. Initial examination of collected test data suggested that AO exposure resulted in higher helium leak rates, however, further analysis showed that the differences observed in the 20 and 50 C tests between the untreated and AO exposed samples were within the experimental error of the test method. Lack of discernable trends in the test data prevented concrete conclusions about the effects of test temperature and AO exposure on helium leak rates of the candidate seal design from being drawn. To facilitate a comparison of the current test data with results from previous leak tests using air as the test fluid, helium leak rates were converted to air leak rates using standard conversion factors for viscous and molecular flow. Flow rates calculated using the viscous flow conversion factor were significantly higher than the experimental air leakage values, whereas values calculated using the molecular flow conversion factor were significantly lower than the experimentally obtained air leak rates. The difference in these sets of converted flow rates and their deviation from the experimentally obtained air leak rate data suggest that neither conversion factor can be used alone to accurately convert helium leak rates to equivalent air leak rates for the test seals evaluated in this study; other leak phenomena, including permeation, must also be considered.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/CR-2011-216830 , AIAA Paper 2010-6986 , E-17458
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-27
    Description: The "Stardust" heat shield, composed of a PICA (Phenolic Impregnated Carbon Ablator) Thermal Protection System (TPS), bonded to a composite aeroshell, contains important features which chronicle its time in space as well as re-entry. To guide the further study of the Stardust heat shield, NASA reviewed a number of techniques for inspection of the article. The goals of the inspection were: 1) to establish the material characteristics of the shield and shield components, 2) record the dimensions of shield components and assembly as compared with the pre-flight condition, 3) provide flight infonnation for validation and verification of the FIAT ablation code and PICA material property model and 4) through the evaluation of the shield material provide input to future missions which employ similar materials. Industrial X-Ray Computed Tomography (CT) is a 3D inspection technology which can provide infonnation on material integrity, material properties (density) and dimensional measurements of the heat shield components. Computed tomographic volumetric inspections can generate a dimensionally correct, quantitatively accurate volume of the shield assembly. Because of the capabilities offered by X-ray CT, NASA chose to use this method to evaluate the Stardust heat shield. Personnel at NASA Johnson Space Center (JSC) and Lawrence Livermore National Labs (LLNL) recently performed a full scan of the Stardust heat shield using a newly installed X-ray CT system at JSC. This paper briefly discusses the technology used and then presents the following results: 1. CT scans derived dimensions and their comparisons with as-built dimensions anchored with data obtained from samples cut from the heat shield; 2. Measured density variation, char layer thickness, recession and bond line (the adhesive layer between the PICA and the aeroshell) integrity; 3. FIAT predicted recession, density and char layer profiles as well as bondline temperatures Finally suggestions are made as to future uses of this technology as a tool for non-destructively inspecting and verifying both pre and post flight heat shields.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN1350
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-20
    Description: Seeker is an automated extravehicular free-flying inspector CubeSat designed and built in-house at the Johnson Space Center (JSC). As a Class 1E project funded by the International Space Station (ISS) Program, Seeker had a streamlined process to flight certification, but the vehicle had to be designed, developed, tested, and delivered within approximately one year after authority to pro-ceed (ATP) and within a $1.8 million budget. These constraints necessitated an expedited Guidance, Navigation, and Control (GNC) development schedule, development began with a navigation sensor trade study using Linear Covariance (LinCov) analysis and a rapid sensor downselection process, resulting in the use of commercial off-the-shelf (COTS) sensors which could be procured quickly and subjected to in-house environmental testing to qualify them for flight. A neural network was used to enable a COTS camera to provide bearing measurements for visual navigation. The GNC flight software (FSW) algorithms utilized lean development practices and leveraged the Core Flight Software (CFS) architecture to rapidly develop the GNC system, tune the system parameters, and verify performance in simulation. This pace was anchored by several Hardware-Software Integration (HSI) milestones, which forced the Seeker GNC team to develop the interfaces both between hardware and software and between the GNC domains early in the project and to enable a timely delivery.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AAS 19-065 , JSC-E-DAA-TN64897 , AAS Guidance and Control Conference; Feb 01, 2019 - Feb 06, 2019; Breckenridge, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN48936 , The International Conference for High Performance Computing, Networking, Storage and Analysis (SC17); Nov 12, 2017 - Nov 17, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-20
    Description: The Orion Crew Module is a component of NASAs Multi-Purpose Crew Vehicle that will be used for future missions to low Earth orbit and beyond. Ten water impact tests of the Orion Ground Test Article (GTA) were conducted at the Hydro Impact Basin at NASA Langley Research Center in 2016 and were designed to provide data for the validation of the LS-DYNA model used to determine the Crew Module structural loads during ocean splashdown, and the determination of an acceptable Model Uncertainty Factor to apply to simulation results used to drive the design. Post-test data obtained from the onboard sensors were used to reconstruct the GTA trajectories both before and after water impact. Results from one vertical test and two swing tests are presented and compared to videos taken for each test.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NF1676L-27423 , AIAA SciTech 2018; Jan 08, 2018 - Jan 12, 2018; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-19
    Description: Eight "Expedite the Processing of Experiments to Space Station" (EXPRESS) Rack facilities are located within the International Space Station (ISS) laboratories to provide standard resources and interfaces for the simultaneous and independent operation of multiple experiments within each rack. Each EXPRESS Rack provides eight Middeck Locker Equivalent locations and two drawer locations for powered experiment equipment, also referred to as sub-rack payloads. Payload developers may provide their own structure to occupy the equivalent volume of one, two, or four lockers as a single unit. Resources provided for each location include power (28 Vdc, 0-500 W), command and data handling (Ethernet, RS-422, 5 Vdc discrete, +/- 5 Vdc analog), video (NTSC/RS 170A), and air cooling (0-200 W). Each rack also provides water cooling for two locations (500W ea.), one vacuum exhaust interface, and one gaseous nitrogen interface. Standard interfacing cables and hoses are provided on-orbit. One laptop computer is provided with each rack to control the rack and to accommodate payload application software. Four of the racks are equipped with the Active Rack Isolation System to reduce vibration between the ISS and the rack. EXPRESS Racks are operated by the Payload Operations Integration Center at Marshall Space Flight Center and the sub-rack experiments are operated remotely by the investigating organization. Payload Integration Managers serve as a focal to assist organizations developing payloads for an EXPRESS Rack. NASA provides EXPRESS Rack simulator software for payload developers to checkout payload command and data handling at the development site before integrating the payload with the EXPRESS Functional Checkout Unit for an end-to-end test before flight. EXPRESS Racks began supporting investigations onboard ISS on April 24, 2001 and will continue through the life of the ISS.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M16-5396 , American Society for Gravitational and Space Research (ASGSR); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-19
    Description: The NASA Space Launch System (SLS) vehicle is composed of four RS-25 liquid oxygen- hydrogen rocket engines in the core-stage and two 5-segment solid rocket boosters and as a result six hot supersonic plumes interact within the aft section of the vehicle during ight. Due to the complex nature of rocket plume-induced ows within the launch vehicle base during ascent and a new vehicle con guration, sub-scale wind tunnel testing is required to reduce SLS base convective environment uncertainty and design risk levels. This hot- re test program was conducted at the CUBRC Large Energy National Shock (LENS) II short-duration test facility to simulate ight from altitudes of 50 kft to 210 kft. The test program is a challenging and innovative e ort that has not been attempted in 40+ years for a NASA vehicle. This presentation discusses the various trends of base convective heat ux and pressure as a function of altitude at various locations within the core-stage and booster base regions of the two-percent SLS wind tunnel model. In-depth understanding of the base ow physics is presented using the test data, infrared high-speed imaging and theory. The normalized test design environments are compared to various NASA semi- empirical numerical models to determine exceedance and conservatism of the ight scaled test-derived base design environments. Brief discussion of thermal impact to the launch vehicle base components is also presented.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M16-5594 , AIAA Young Professionals Symposium; Oct 20, 2016 - Oct 21, 2016; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-19
    Description: The NASA Engineering and Safety Center (NESC) has sponsored a Pathfinder Study to investigate how Model Based Systems Engineering (MBSE) and Model Based Engineering (MBE) techniques can be applied by NASA spacecraft development projects. The objectives of this Pathfinder Study included analyzing both the products of the modeling activity, as well as the process and tool chain through which the spacecraft design activities are executed. Several aspects of MBSE methodology and process were explored. Adoption and consistent use of the MBSE methodology within an existing development environment can be difficult. The Pathfinder Team evaluated the possibility that an "MBSE Template" could be developed as both a teaching tool as well as a baseline from which future NASA projects could leverage. Elements of this template include spacecraft system component libraries, data dictionaries and ontology specifications, as well as software services that do work on the models themselves. The Pathfinder Study also evaluated the tool chain aspects of development. Two chains were considered: 1. The Development tool chain, through which SysML model development was performed and controlled, and 2. The Analysis tool chain, through which both static and dynamic system analysis is performed. Of particular interest was the ability to exchange data between SysML and other engineering tools such as CAD and Dynamic Simulation tools. For this study, the team selected a Mars Lander vehicle as the element to be designed. The paper will discuss what system models were developed, how data was captured and exchanged, and what analyses were conducted.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-36119 , AIAA Space 2016 Conference; Sep 13, 2016 - Sep 16, 2016; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-19
    Description: Orbital debris in the millimeter size range can pose a hazard to current and planned spacecraft due to the high relative impact speeds in Earth orbit. Fortunately, orbital debris has a relatively short life at lower altitudes due to atmospheric effects; however, at higher altitudes orbital debris can survive much longer and has resulted in a band of high flux around 700 to 1,500 km above the surface of the Earth. While large orbital debris objects are tracked via ground based observation, little information can be gathered about small particles except by returned surfaces, which until the Orion Exploration Flight Test number one (EFT-1), has only been possible for lower altitudes (400 to 500 km). The EFT-1 crew module backshell, which used a porous, ceramic tile system with surface coatings, has been inspected post-flight for potential micrometeoroid and orbital debris (MMOD) damage. This paper describes the pre- and post-flight activities of inspection, identification and analysis of six candidate MMOD impact craters from the EFT-1 mission.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-35493 , AIAA Annual Technical Symposium; May 06, 2016; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-19
    Description: Existing DoD and NASA satellite breakup models are based on a key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), which has supported many applications and matched on-orbit events involving older satellite designs reasonably well over the years. In order to update and improve the break-up models and the NASA Size Estimation Model (SEM) for events involving more modern satellite designs, the NASA Orbital Debris Program Office has worked in collaboration with the University of Florida to replicate a hypervelocity impact using a satellite built with modern-day spacecraft materials and construction techniques. The spacecraft, called DebriSat, was intended to be a representative of modern LEO satellites and all major designs decisions were reviewed and approved by subject matter experts at Aerospace Corporation. DebriSat is composed of 7 major subsystems including attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. All fragments down to 2 mm is size will be characterized via material, size, shape, bulk density, and the associated data will be stored in a database for multiple users to access. Laboratory radar and optical measurements will be performed on a subset of fragments to provide a better understanding of the data products from orbital debris acquired from ground-based radars and telescopes. The resulting data analysis from DebriSat will be used to update break-up models and develop the first optical SEM in conjunction with updates into the current NASA SEM. The characterization of the fragmentation will be discussed in the subsequent presentation.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-34253 , Non-Resolves Space Object Identification Workshop; Sep 21, 2015 - Sep 22, 2015; Maui, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-19
    Description: The Exploration Flight Test 1 (EFT-1) was the first flight of the Orion Multi-Purpose Crew Vehicle (MPCV). The flight was launched on December 5, 2014, by a Delta IV Heavy rocket and lasted 4.5 hours. The EFT-1 trajectory involved one low altitude orbit and one high altitude orbit with an apogee of almost 6000 km. As a result of this particular flight profile, the Orion MPCV passed through intense regions of trapped protons and electron belts. In support of the radiation measurements aboard the EFT-1, the Space Radiation Analysis Group (SRAG) provided a Battery-operated Independent Radiation Detector (BIRD) based on Timepix radiation monitoring technology similar to that employed by the ISS Radiation Environmental Monitors (REM). In addition, SRAG provided a suite of optically and thermally stimulated luminescence detectors, with 2 Radiation Area Monitor (RAM) units collocated with the BIRD instrument for comparison purposes, and 6 RAM units distributed at different shielding configurations within the Orion MPCV. A summary of the EFT-1 Radiation Area Monitors (RAM) mission dose results obtained from measurements performed in the Space Radiation Dosimetry Laboratory at the NASA Johnson Space Center will be presented. Each RAM included LiF:Mg,Ti (TLD-100), (6)LiF:Mg,Ti (TLD-600), (7)LiF:Mg,Ti (TLD-700), Al2O3:C (Luxel trademark), and CaF2:Tm (TLD-300). The RAM mission dose values will be compared with the BIRD instrument total mission dose. In addition, a similar comparison will be shown for the ISS environment by comparing the ISS RAM data with data from the six Timepix-based REM units deployed on ISS as part of the NASA REM Technology Demonstration.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-34218 , Workshop on Radiation Monitoring for the International Space Station; Sep 08, 2015 - Sep 10, 2015; Cologne; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-19
    Description: Evaluating spacecraft charging behavior of a vehicle in the space environment requires knowledge of the material properties relevant to the charging process. Implementing surface and internal charging models requires a user to specify a number of material electrical properties including electrical resistivity parameters (dark and radiation induced), dielectric constant, secondary electron yields, photoemission yields, and breakdown strength in order to correctly evaluate the electric discharge threat posed by the increasing electric fields generated by the accumulating charge density. In addition, bulk material mass density and/or chemical composition must be known in order to analyze radiation shielding properties when evaluating internal charging. We will first describe the physics of spacecraft charging and show how uncertainties in material properties propagate through spacecraft charging algorithms to impact the results obtained from charging models. We then provide examples using spacecraft charging codes to demonstrate their sensitivity to material properties. The goal of this presentation is to emphasize the importance in having good information on relevant material properties in order to best characterize on orbit charging threats.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M15-4255 , International Symposium on Materials in the Space Environment (ISMSE); Jun 22, 2015 - Jun 26, 2015; Pau; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: How crews get into or out of their ascent vehicle has profound implications for Mars surface architecture. Extravehicular Activity (EVA) hatches and Airlocks have the benefit of relatively low mass and high Technology Readiness Level (TRL), but waste consumables with a volume depressurization for every ingress/egress. Perhaps the biggest drawback to EVA hatches or Airlocks is that they make it difficult to keep Martian dust from being tracked back into the ascent vehicle, in violation of planetary protection protocols. Suit ports offer the promise of dust mitigation by keeping dusty suits outside the cabin, but require significant cabin real estate, are relatively high mass, and current operational concepts still require an EVA hatch to get the suits outside for the first EVA, and back inside after the final EVA. This is primarily because current designs don't provide enough structural support to protect the suits from ascent/descent loads or potential thruster plume impingement. For architectures involving more than one surface element-such as an ascent vehicle and a rover or surface habitat-a retractable tunnel is an attractive option. By pushing spacesuit don/doff and EVA operations to an element that remains on the surface, ascended vehicle mass and dust can be minimized. What's more, retractable tunnels provide operational flexibility by allowing surface assets to be re-configured or built up over time. Retractable tunnel functional requirements and design concepts being developed as part of the National Aeronautics and Space Administration's (NASA) Evolvable Mars Campaign (EMC) work will add a new ingress/egress option to the surface architecture trade space.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-33760 , IEEE Aerospace Conference; Mar 05, 2016 - Mar 12, 2016; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-19
    Description: While orbital debris of ten centimeters or more are tracked and catalogued, the difficulty of finding and accurately accounting for forces acting on the objects near the ten centimeter threshold results in both uncertainty of their presence and location. These challenges result in difficult decisions for operators balancing potential costly operational approaches with system loss risk. In this paper, numerical simulations and an experiment using the multishock shield system is described for a cylindrical projectile composed of Nylon, aluminum and void that is approximately 8 cm in diameter and 10 cm in length weighing 670 g impacting the multishock shield normal to the surface with approximately 16.5 MJ of kinetic energy. The multishock shield system has been optimized to facilitate the fragmentation, spread and deceleration of the projectile remnants using hydrodynamic simulations of the impact event. The characteristics and function of each of the layers of the multishock system will be discussed along with considerations for deployment and improvement.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-30655 , International Astronautical Congress 2014; Sep 29, 2014 - Oct 03, 2014; Toronto, Ontario, Canada; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-19
    Description: Low Earth orbit is usually considered a relatively benign environment for internal charging threats due to the low flux of penetrating electrons with energies of a few MeV that are encountered over an orbit. There are configurations, however, where insulators and ungrounded conductors used on the outside of a spacecraft hull may charge when exposed to much lower energy electrons of some 100's keV in a process that is better characterized as internal charging than surface charging. For example, the minimal radiation shielding afforded by thin thermal control materials such as metalized polymer sheets (e.g., aluminized Kapton or Mylar) and multilayer insulation may allow electrons of 100's of keV to charge underlying materials. Yet these same thermal control materials protect the underlying insulators and ungrounded conductors from surface charging currents due to electrons and ions at energies less than a few keV as well as suppress the photoemission, secondary electron, and backscattered electron processes associated with surface charging. We investigate the conditions required for this low Earth orbit "internal charging" to occur and evaluate the environments for which the process may be a threat to spacecraft. First, we describe a simple one-dimensional internal charging model that is used to compute the charge accumulation on materials under thin shielding. Only the electron flux that penetrates exposed surface shielding material is considered and we treat the charge balance in underlying insulation as a parallel plate capacitor accumulating charge from the penetrating electron flux and losing charge due to conduction to a ground plane. Charge dissipation due to conduction can be neglected to consider the effects of charging an ungrounded conductor. In both cases, the potential and electric field is computed as a function of time. An additional charge loss process is introduced due to an electrostatic discharge current when the electric field reaches a prescribed breakdown strength. For simplicity, the amount of charge lost in the discharge is treated as a random percentage of the total charge between a set maximum and minimum amount so a user can consider partial discharges of insulating materials (small loss of charge) or arcing from a conductor (large loss of charge). We apply the model to electron flux measurements from the NOAA-19 spacecraft to demonstrate that charging can reach levels where electrostatic discharges occur and estimate the magnitude of the discharge.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M14-3266 , Spacecraft Charging and Technology Conference (13th SCTC, 2014); Jun 23, 2014 - Jun 27, 2014; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-19
    Description: With the goal of lower cost (simplified manufacturing and lower part count) and higher performance (higher strength to weight alloys) the NASA Technical Maturation Program in 2006 funded a proposal to investigate spin forming of space launch vehicle cryogenic tank domes. The project funding continued under the NASA Exploration Technology Development Program through completion in FY12. The first phase of the project involved spin forming of eight, 1 meter diameter "path finder" domes. Half of these were processed using a concave spin form process (MT Aerospace, Augsburg Germany) and the other half using a convex process (Spincraft, Boston MA). The convex process has been used to produce the Ares Common Bulkhead and the concave process has been used to produce dome caps for the Space Shuttle light weight external tank and domes for the NASDA H2. Aluminum Lithium material was chosen because of its higher strength to weight ratio than the Aluminum 2219 baseline. Aluminum lithium, in order to obtain the desired temper (T8), requires a cold stretch after the solution heat treatment and quench. This requirement favors the concave spin form process which was selected for scale up. This paper describes the results of processing four, 5.5 meter diameter (upper stage scale) net shaped spin formed Aluminum Lithium domes. In order to allow scalability beyond the limits of foundry and rolling mills (about 12 foot width) the circular blank contained one friction stir weld (heavy lifter scales require a flat blank containing two welds). Mechanical properties data (tensile, fracture toughness, stress corrosion, and simulated service testing) for the parent metal and weld will also be discussed.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M12-2202 , JANNAF 60th JPM/9th MSS/7th LPS/6th SPS/Joint Subcommittee Meeting; Apr 29, 2013 - May 03, 2013; Colorado Springs CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-19
    Description: The pool of three Minus Eighty Laboratory freezer for ISS (MELFI) units continues providing the scientific community with robust and permanent freezer and refrigeration capabilities for life science experiments on the International Space Station (ISS). Launched in 2006, the first unit will complete, by summer 2013, seven years of continuous operations without intervention on the internal Nitrogen gas cycle, while all necessary hardware and operations were initially planned for preventive maintenance every two years. This unit has demonstrated outstanding performance on orbit and proved the technical decisions made during the development program. Current utilization of MELFI units in the ISS is taking full benefit of the initial specifications, which allows for wide adaptations to cope with the mission scenario imposed by the life extension in orbit. The two other MELFI units, launched respectively in 2008 and 2009, are supporting the first unit providing additional conditioned volume necessary for the science on board, and also for preparing thermal mass used to protect the samples on their way down to earth. The MELFI pool is outfitted with all supporting hardware to allow for extended operation on orbit including preventive and corrective maintenance. The internal components were designed to allow for easy on board maintenance. Spare equipment was installed in the MELFI rack on ISS and specific maintenance means were developed which required crew training before the cold gas cycle could be accessed. The paper will present first how the design choices made for the initial missions are identifying features necessary for extended duration missions, and will then give highlights on the utilization of the MELFI refrigeration pool during the recent years in ISS.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-28216 , 64th International Astronautical Congress; Sep 23, 2013 - Sep 27, 2013; Beijing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-19
    Description: Access to space for satellites in the 50-100 kg class is a challenge for the small satellite community. Rideshare opportunities are limited and costly, and the small sat must adhere to the primary payloads schedule and launch needs. Launching as an auxiliary payload on an Expendable Launch Vehicle presents many technical, environmental, and logistical challenges to the small satellite community. To assist the community in mitigating these challenges and in order to provide the community with greater access to space for 50-100 kg satellites, the NASA International Space Station (ISS) and Engineering communities in collaboration with the Department of Defense (DOD) Space Test Program (STP) is developing a dedicated 50-100 kg class ISS small satellite deployment system. The system, known as Cyclops, will utilize NASA's ISS resupply vehicles to launch small sats to the ISS in a controlled pressurized environment in soft stow bags. The satellites will then be processed through the ISS pressurized environment by the astronaut crew allowing satellite system diagnostics prior to orbit insertion. Orbit insertion is achieved through use of the Japan Aerospace Exploration Agency's Experiment Module Robotic Airlock (JEM Airlock) and one of the ISS Robotic Arms. Cyclops' initial satellite deployment demonstration of DOD STP's SpinSat and UT/TAMU's Lonestar satellites will be toward the end of 2013 or beginning of 2014. Cyclops will be housed on-board the ISS and used throughout its lifetime. The anatomy of Cyclops, its concept of operations for satellite deployment, and its satellite interfaces and requirements will be addressed further in this paper.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-27979 , AIAA Small Satellite Conference; Aug 10, 2013 - Aug 15, 2013; Logan, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-19
    Description: In this paper we will discuss a new mass-efficient and innovative way of protecting high-mass spacecraft during planetary Entry, Descent & Landing (EDL). Heat shields fabricated in situ can provide a thermal-protection system (TPS) for spacecraft that routinely enter a planetary atmosphere. By fabricating the heat shield with space resources from regolith materials available on moons and asteroids, it is possible to avoid launching the heat-shield mass from Earth. Two regolith processing and manufacturing methods will be discussed: 1) Compression and sintering of the regolith to yield low density materials; 2) Formulations of a High-temperature silicone RTV (Room Temperature Vulcanizing) compound are used to bind regolith particles together. The overall positive results of torch flame impingement tests and plasma arc jet testing on the resulting samples will also be discussed.
    Keywords: Spacecraft Design, Testing and Performance
    Type: KSC-2012-078 , KSC-2012-078R , KSC-2012-078RR , Pioneering Planetary Surface Systems Technologies and Capabilities (PICES) 2012; Nov 11, 2012 - Nov 15, 2012; Waikoloa, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-19
    Description: The JEM-EUSO mission has been planned for launch on JAXA's H2 Launch Vehicle. Recently, the SpaceX Dragon spacecraft has emerged as an alternative payload carrier for JEM-EUSO. This paper will discuss a concept for the re-design of JEM-EUSO so that it can be launched on Dragon.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M13-2474 , International Cosmic Ray Conference (ICRC) 2013; Jul 02, 2013 - Jul 09, 2013; Rio di Janeiro; Brazil
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-19
    Description: The Orion Multi Purpose Crew Vehicle (MPCV) is the first crew transport vehicle to be developed by the National Aeronautics and Space Administration (NASA) in the last thirty years. Orion is currently being developed to transport the crew safely beyond Earth orbit. This year, the vehicle focused on building the Exploration Flight Test 1 (EFT1) vehicle to be launched in 2014. The development of the Orion Environmental Control and Life Support (ECLS) System, focused on the completing the components which are on EFT1. Additional development work has been done to keep the remaining component progressing towards implementation for a flight tests in of EM1 in 2017 and in and EM2 in 2020. This paper covers the Orion ECLS development from April 2012 to April 2013.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-27502 , ICES Conference; Jul 14, 2012 - Jul 18, 2012; Aspen, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-19
    Description: Exploration beyond Earth orbit will be an enduring legacy for future generations, as it provides a platform for science and exploration that will define new knowledge and redefine known boundaries. NASA s Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is responsible for designing and developing the first exploration-class rocket since the Apollo Program s Saturn V that sent Americans to the Moon in the 1960s and 1970s. The SLS offers a flexible design that may be configured for the Orion Multi-Purpose Crew Vehicle with associated life-support equipment and provisions for long journeys or may be outfitted with a payload fairing that will accommodate flagship science instruments and a variety of high-priority experiments. Building on legacy systems, facilities, and expertise, the SLS will have an initial lift capability of 70 tonnes (t) in 2017 and will be evolvable to 130 t after 2021. While commercial launch vehicle providers service the International Space Station market, this capability will surpass all vehicles, past and present, providing the means to do entirely new missions, such as human exploration of Mars. Building on the foundation laid by over 50 years of human and scientific space flight and on the lessons learned from the Apollo, Space Shuttle, and Constellation Programs the SLS team is delivering both technical trade studies and business case analyses to ensure that the SLS architecture will be safe, affordable, reliable, and sustainable. This panel will address the planning and progress being made by NASA s SLS Program.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M11-1312 , 2012 Global Space Exploration Conference; May 22, 2012 - May 24, 2012; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-19
    Description: During the 31st shuttle mission to the International Space Station, STS-129, there was a clogging event in the shuttle wastewater tank. A routine wastewater dump was performed during the mission and before the dump was completed, degraded flow was observed. In order to complete the wastewater dump, flow had to be rerouted around the dump filter. As a result, a basic chemical and microbial investigation was performed to understand the shuttle wastewater system and perform mitigation tasks to prevent another blockage. Testing continued on the remaining shuttle flights wastewater and wastewater tank cleaning solutions. The results of the analyses and the effect of the mitigation steps are detailed in this paper.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-25307 , 42nd International Conference on Environmental Systems (ICES); Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-19
    Description: Storing wastewater in the event of a system anomaly is a necessity for closed loop water recovery systems. The temporary urine and brine stowage system (TUBSS) is an assembly used to store and transfer pre-treated urine (PTU) and brine for processing or disposal at a later date. This paper describes the selection and testing of several candidate materials from both a chemical and material strength standpoint. In addition, this paper will provide results of testing as well as lessons learned from the project, culminating in the successful launch of the hardware.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-25098 , 42nd International Conference on Environmental Systems (ICES); Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-19
    Description: Nearly all exploration missions envisioned by NASA provide the capability to view deep space and thus to reject heat to a very low temperature environment. Environmental sink temperatures approach as low as 4 Kelvin providing a natural capability to support separation and heat rejection processes that would otherwise be power and hardware intensive in terrestrial applications. For example, radiative heat transfer can be harnessed to cryogenically remove atmospheric contaminants such as carbon dioxide (CO2). Long duration differential temperatures on sunlit versus shadowed sides of the vehicle could be used to drive thermoelectric power generation. Rejection of heat from cryogenic propellant could avoid temperature increase thus avoiding the need to vent propellants. These potential uses of deep space cooling will be addressed in this paper with the benefits and practical considerations of such approaches.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-25080 , 42nd International Conference on Environmental Systems (ICES); Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-19
    Description: The Orion Multi Purpose Crew Vehicle (MPCV) is the first crew transport vehicle to be developed by the National Aeronautics and Space Administration (NASA) in the last thirty years. Orion is currently being developed to transport the crew safely from the Earth beyond Earth orbit. This year, the vehicle focused on building the Orion Flight Test 1 (OFT1) vehicle to be launched in 2013. The development of the Orion Environmental Control and Life Support (ECLS) System, focused on the components which are on OFT1 which includes pressure control and active thermal control systems, is progressing through the design stage into manufacturing. Additional development work was done to keep the remaining component progressing towards implementation for a flight test in 2017. This paper covers the Orion ECLS development from April 2011 to April 2012.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-25199 , 42nd International Conference on Environmental Systems (ICES); Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: The GOES Type III Loop Heat Pipe (LHP) was built as a life test unit for the loop heat pipes on the GOES N-Q series satellites. This propylene LHP was built by Dynatherm Corporation in 2000 and tested continuously for approximately 14 months. It was then put into storage for 3 years. Following the storage period, the LHP was tested at Swales Aerospace to verify that the loop performance hadn t changed. Most test results were consistent with earlier results. At the conclusion of testing at Swales, the LHP was transferred to NASA/GSFC for continued periodic testing. The LHP has been set up for testing in the Thermal Lab at GSFC since 2006. A group of tests consisting of start-ups, power cycles, and a heat transport limit test have been performed every six to nine months since March 2006. Tests results have shown no change in the loop performance over the five years of testing. This presentation will discuss the test hardware, test set-up, and tests performed. Test results to be presented include sample plots from individual tests, along with conductance measurements for all tests performed.
    Keywords: Spacecraft Design, Testing and Performance
    Type: 15th Conference on Thermophysics Applications in Microgravity; Mar 07, 2011 - Mar 08, 2011; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-19
    Description: Freezable radiators offer an attractive solution to the issue of thermal control system scalability. As thermal environments change, a freezable radiator will effectively scale the total heat rejection it is capable of as a function of the thermal environment and flow rate through the radiator. Scalable thermal control systems are a critical technology for spacecraft that will endure missions with widely varying thermal requirements. These changing requirements are a result of the space craft s surroundings and because of different thermal loads during different mission phases. However, freezing and thawing (recovering) a radiator is a process that has historically proven very difficult to predict through modeling, resulting in highly inaccurate predictions of recovery time. This paper summarizes efforts made to correlate a Thermal Desktop (TM) model with empirical testing data from two test articles. A 50-50 mixture of DowFrost HD and water is used as the working fluid. Efforts to scale this model to a full scale design, as well as efforts to characterize various thermal control fluids at low temperatures are also discussed.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-22090 , International Conference on Environmental Systems (ICES) conference; Jul 17, 2011 - Jul 21, 2011; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-19
    Description: The Internal Active Thermal Control System (IATCS) aboard the International Space Station (ISS) is primarily responsible for the removal of heat loads from payload and system racks. The IATCS is a water based system which works in conjunction with the EATCS (External ATCS), an ammonia based system, which are interfaced through a heat exchanger to facilitate heat transfer. On-orbit issues associated with the aqueous coolant chemistry began to occur with unexpected increases in CO2 levels in the cabin. This caused an increase in total inorganic carbon (TIC), a reduction in coolant pH, increased corrosion, and precipitation of nickel phosphate. These chemical changes were also accompanied by the growth of heterotrophic bacteria that increased risk to the system and could potentially impact crew health and safety. Studies were conducted to select a biocide to control microbial growth in the system based on requirements for disinfection at low chemical concentration (effectiveness), solubility and stability, material compatibility, low toxicity to humans, compatibility with vehicle environmental control and life support systems (ECLSS), ease of application, rapid on-orbit measurement, and removal capability. Based on these requirements, ortho-phthalaldehyde (OPA), an aromatic dialdehyde compound, was selected for qualification testing. This paper presents the OPA qualification test results, development of hardware and methodology to safely apply OPA to the system, development of a means to remove OPA, development of a rapid colorimetric test for measurement of OPA, and the OPA on-orbit performance for controlling the growth of microorganisms in the ISS IATCS since November 3, 2007.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-22218 , International Conference on Environmental Systems; Jul 17, 2011 - Jul 21, 2011; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-19
    Description: In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for all five missions studied. The cost and schedule growth was not found to be the result of technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the systemwide impacts necessary to implement an advanced technology for space flight applications. The paper summarizes the study s lessons learned in more detail and offers suggestions for improving the project s ability to identify and manage the technology and heritage risks inherent in the design solution.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M10-0393 , Space 2010 Conference and Exposition: Space Systems Engineering and Space Economics Track; Aug 31, 2010 - Sep 02, 2010; Anaheim, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-19
    Description: NASA s Constellation Program (CxP) was developed to successfully return humans to the Lunar surface prior to 2020. The CxP included several different project offices including Altair, which was planned to be the next generation Lunar Lander. The Altair missions were architected to be quite different than the Lunar missions accomplished during the Apollo era. These differences resulted in a significantly dissimilar Thermal Control System (TCS) design. The current paper will summarize the Altair mission architecture and the various operational phases associated with the planned mission. In addition, the derived thermal requirements and the TCS designed to meet these unique and challenging thermal requirements will be presented. During the past year, the design team has focused on developing a vehicle architecture capable of accessing the entire Lunar surface. Due to the widely varying Lunar thermal environment, this global access requirement resulted in major changes to the thermal control system architecture. These changes, and the rationale behind the changes, will be detailed throughout the current paper.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-22247 , 41st International Conference on Environmental Systems; Jul 17, 2011 - Jul 21, 2011; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-19
    Description: Improving structural efficiency while reducing manufacturing costs are key objectives when making future heavy-lift launchers more performing and cost efficient. The main enabling technologies are the application of advanced high performance materials as well as cost effective manufacture processes. This paper presents the status and main results of a joint industrial research & development effort to demonstrate TRL 6 of a novel manufacturing process for large liquid propellant tanks for launcher applications. Using high strength aluminium-lithium alloy combined with the spin forming manufacturing technique, this development aims at thinner wall thickness and weight savings up to 25% as well as a significant reduction in manufacturing effort. In this program, the concave spin forming process is used to manufacture tank domes from a single flat plate. Applied to aluminium alloy, this process allows reaching the highest possible material strength status T8, eliminating numerous welding steps which are typically necessary to assemble tank domes from 3D-curved panels. To minimize raw material costs for large diameter tank domes for launchers, the dome blank has been composed from standard plates welded together prior to spin forming by friction stir welding. After welding, the dome blank is contoured in order to meet the required wall thickness distribution. For achieving a material state of T8, also in the welding seams, the applied spin forming process allows the required cold stretching of the 3D-curved dome, with a subsequent ageing in a furnace. This combined manufacturing process has been demonstrated up to TRL 6 for tank domes with a 5.4 m diameter. In this paper, the manufacturing process as well as test results are presented. Plans are shown how this process could be applied to future heavy-lift launch vehicles developments, also for larger dome diameters.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M10-0423 , International Astronautical Congress (LAC) 2010; Sep 27, 2010 - Oct 01, 2010; Prague; Czech Republic
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-19
    Description: Node 1 flew to the International Space Station (ISS) on Flight 2A during December 1998. To date the National Aeronautics and Space Administration (NASA) has learned a lot of lessons from this module based on its history of approximately two years of acceptance testing on the ground and currently its twelve years on-orbit. This paper will provide an overview of the ISS Environmental Control and Life Support (ECLS) design of the Node 1 Temperature and Humidity Control (THC) subsystem and it will document some of the lessons that have been learned to date for this subsystem and it will document some of the lessons that have been learned to date for these subsystems based on problems prelaunch, problems encountered on-orbit, and operational problems/concerns. It is hoped that documenting these lessons learned from ISS will help in preventing them in future Programs. 1
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-22064 , International Conference on Environmental Systems; Jul 17, 2011 - Jul 21, 2011; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: The Hayabusa (originally known as MUSES-C) engineering spacecraft was launched by the 5th Mu V launch vehicle on May 9, 2003 by the Japan Aerospace Exploration Agency (JAXA). It was designed to acquire samples from the surface of near-Earth asteroid 25143 Itokawa (1998 SF36) and return them to Earth. The main objectives of the mission were to demonstrate the performance of various technologies such as ion engine performance, autonomous navigation and control, asteroid surface sampling, and recovery of the return capsule after high speed re-entry. Hayabusa successfully returned a small capsule to Earth in June 2010 with a parachute assisted landing in Woomera, Australia. Details of the Hayabusa mission and the recovery operation will be presented for discussion.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-21712
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-19
    Description: Many earth observing sensors depend on white diffuse reflectance standards to derive scales of radiance traceable to the St Despite the large number of Earth observing sensors that operate in the reflective solar region of the spectrum, there has been no direct method to provide NIST traceable BRDF measurements out to 2500 rim. Recent developments in detector technology have allowed the NIST reflectance measurement facility to expand the operating range to cover the 250 nm to 2500 nm range. The facility has been modified with and additional detector using a cooled extended range indium gallium arsenide (Extended InGaAs) detector. Measurements were made for two PTFE white diffuse reflectance standards over the 1100 nm to 2500 nm region at a 0' incident and 45' observation angle. These two panels will be used to support the OLI calibration activities. An independent means of verification was established using a NIST radiance transfer facility based on spectral irradiance, radiance standards and a diffuse reflectance plaque. An analysis on the results and associated uncertainties will be discussed.
    Keywords: Spacecraft Design, Testing and Performance
    Type: CALCON Technical Conference on Characterization and Radiometric Calibration for Rernote Sensing; Aug 23, 2010 - Aug 26, 2010; Logan, UT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-20
    Description: Space debris poses a major risk to spacecraft. In low earth orbit, impact velocities can be 10 - 11 km/s and as high as 15 km/s. For debris shield design, it would be desirable to be able to launch projectiles of known shape and mass to these velocities. The design of the proposed 10 - 11 km/sec gun uses, as a starting point, the Ames 1.28/0.22 two stage gun, which has achieved muzzle velocities of 10 - 11.3 km/sec. That gun is scaled up to a 0.3125 launch tube diameter. The gun is then optimized with respect to maximum pressures by varying the pump tube length to diameter ratio (L/D), the piston mass and the hydrogen pressure. A pump tube L/D of 36.4 is selected giving the best overall performance. Piezometric ratios for the optimized guns are found to be ~2.3, much more favorable than for more traditional two stage light gas guns, which range from 4 to 6. (The piezometric ratio for a gun is defined as the maximum projectile base pressure divided by the constant projectile base pressure which, acting over the entire barrel length, would produce the same muzzle velocity.) The maximum powder chamber pressures are 20 to 30 ksi. To reduce maximum pressures, the desirable range of the included angle of the cone of the high pressure coupling is found to be 7.3 to 14.6 degrees. Lowering the break valve rupture pressure is found to lower the maximum projectile base pressure, but to raise the maximum gun pressure. For the optimized gun with a pump tube L/D of 36.4, increasing the muzzle velocity by decreasing the projectile mass and increasing the powder loads is studied. It appears that saboted spheres could be launched to 10.25 and possibly as high as 10.8 km/sec, and that disc-like plastic models could be launched to 11.05 km/s. The use of a tantalum liner to greatly reduce bore erosion and increase muzzle velocity is discussed. With a tantalum liner, CFD code calculations predict muzzle velocities as high as 12 to 13 km/s.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN35142 , Aeroballistic Range Association Meeting; Oct 03, 2016 - Oct 06, 2016; Toledo; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-20
    Description: Distributed Spacecraft Missions (DSMs) are gaining momentum in their application to Earth Observation (EO) missions owing to their unique ability to increase observation sampling in spatial, spectral, angular and temporal dimensions simultaneously. DSM design includes a much larger number of variables than its monolithic counterpart, therefore, Model-Based Systems Engineering (MBSE) has been often used for preliminary mission concept designs, to understand the trade-offs and interdependencies among the variables. MBSE models are complex because the various objectives a DSM is expected to achieve are almost always conflicting, non-linear and rarely analytical. NASA Goddard Space Flight Center (GSFC) is developing a pre-Phase A tool called Tradespace Analysis Tool for Constellations (TAT-C) to initiate constellation mission design. The tool will allow users to explore the tradespace between various performance, cost and risk metrics (as a function of their science mission) and select Pareto optimal architectures that meet their requirements. This paper will describe the different types of constellations that TAT-Cs Tradespace Search Iterator is capable of enumerating (homogeneous Walker, heterogeneous Walker, precessing type, ad-hoc) and their impact on key performance metrics such as revisit statistics, time to global access and coverage. We will also discuss the ability to simulate phased deployment of the given constellations, as a function of launch availabilities and/or vehicle capability, and show the impact on performance. All performance metrics are calculated by the Data Reduction and Metric Computation module within TAT-C, which issues specific requests and processes results from the Orbit and Coverage module. Our TSI is also capable of generating tradespaces for downlinking imaging data from the constellation, based on permutations of available ground station networks - known (default) or customized (by the user). We will show the impact of changing ground station options for any given constellation, on data latency and required communication bandwidth, which in turn determines the responsiveness of the space system.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN65923 , International Astronautical Congress (IAC); Sep 25, 2017 - Sep 29, 2017; Adelaide; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN26416 , Composites and Advanced Materials Expo (CAMX); Oct 26, 2015 - Oct 29, 2015; Dallas, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-19
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M19-7384 , International Association for the Advancement of Space Safety (IAASS) Conference; May 15, 2019 - May 17, 2019; El Segundo, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M18-7132
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-20
    Description: NASA STMD Centennial Challenges Program operates government prize programs for the public benefit. Cube Quest Challenge awards prizes to citizen inventors who advance CubeSat state of the art, enabling affordable NASA science and exploration missions. Cube Quest will take place in lunar orbit or at 4M km. CubeSat developers will make advancements in communications, propulsion and radiation tolerance suitable for future deep space missions. Cube Quest may inspire other ambitious government challenges.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN35552 , AIAA Space Forum 2016; Sep 13, 2016 - Sep 16, 2016; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-20
    Description: OuroboroSat (also known as MRMSS: the Modular Rapidly Manufactured Spacecraft System) is a modular instrumentation platform consisting of multiple 3 inch (7.5 centimeter) square printed circuit boards that are mechanically and electrically connected to one another in order to produce a fully- functioning payload facility system. Each OuroboroSat module consists of a microcontroller, a battery, conditioning and monitoring circuitry for the battery, optional space for solar panels, and an expansion area where an experimental payload or specialized functionality (such as wireless communication submodules) can be attached.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA FS-2015-07-05-ARC , ARC-E-DAA-TN25947
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-17
    Description: NASA's Determination of Offgassed Products (Test 7) from materials and assembled articles for spaceflight has evolved since the Apollo program for over 50 years to meet various habitable spacecraft nonmetallic programmatic requirements. Now mandated by NASA STD-6016A, Standard Materials and Processes Requirements for Spacecraft, all nonmetallic materials used in habitable flight compartments, with the exception of ceramics, metal oxides, inorganic glasses, and materials used in sealed containers, must meet the offgassing requirements in NASA-STD-6001B Test 7. This manuscript presents the history of Test 7, beginning with the Apollo spacecraft nonmetallic materials selection guidelines and test requirements in 1967, in which tests were performed in mostly oxygen atmospheres. It progresses through Skylab, Space Shuttle, International Space Station nonmetals testing, and acceptance requirements with milder test environments. This review of the history of Test 7 presents the reader with a perspective on the development and changes undergone since inception to the present. Related NASA standard tests (some now former, discontinued, combined, or supplemental) including Test 6, Odor Assessment, Test 16, Determination of Offgassed Products from Assembled Articles, and Test 12, Total Spacecraft Cabin Offgassing, are discussed in context
    Keywords: Spacecraft Design, Testing and Performance
    Type: ICES-2019-504 , JSC-E-DAA-TN68279 , International Conference on Environmental Systems (ICES 2019); Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-13
    Description: The Mars Science Laboratory (MSL) Multi-Mission Radioisotope Thermoelectric Generator, or MMRTG, was developed by the Department Of Energy to a set of requirements from multiple NASA mission concepts. Those concepts included deep space missions to the outer planets as well as missions to Mars. The synthesis of that diverse set of requirements addressed functional as well as environmental requirements.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Nuclear and Emerging Technologies for Space 2013 (NETS 2013); Feb 25, 2013 - Feb 28, 2013; Albuquerque, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: AIAA Guidance, Navigation, and Control (GNC) Conference; Aug 08, 2011 - Aug 11, 2011; Portland, OR; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: To replicate a hyper-velocity fragmentation event using modern-day spacecraft materials and construction techniques to better improve the existing DoD and NASA breakup models: DebriSat is intended to be representative of modern LEO satellites. Major design decisions were reviewed and approved by Aerospace subject matter experts from different disciplines. DebriSat includes 7 major subsystems. Attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. center dotA key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), supporting the development of the DoD and NASA satellite breakup models was conducted at AEDC in 1992. Breakup models based on SOCIT have supported many applications and matched on-orbit events reasonably well over the years.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-33043 , IADC Meeting; Mar 30, 2015 - Apr 02, 2015; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: NASA's manned spaceflight programs have a rich history of advancing onboard guidance and targeting technology. In order to support future missions, the guidance and targeting architecture for the Orion Multi-Purpose Crew Vehicle must be able to operate in complete autonomy, without any support from the ground. Orion's guidance and targeting system must be sufficiently flexible to easily adapt to a wide array of undecided future missions, yet also not cause an undue computational burden on the flight computer. This presents a unique design challenge from the perspective of both algorithm development and system architecture construction. The present work shows how Orion's guidance and targeting system addresses these challenges. On the algorithm side, the system advances the state-of-the-art by: (1) steering burns with a simple closed-loop guidance strategy based on Shuttle heritage, and (2) planning maneuvers with a cutting-edge two-level targeting routine. These algorithms are then placed into an architecture designed to leverage the advantages of each and ensure that they function in concert with one another. The resulting system is characterized by modularity and simplicity. As such, it is adaptable to the on-orbit phases of any future mission that Orion may attempt.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-32859 , AAS Guidance Navigation and Control Conference; Jan 30, 2015 - Feb 04, 2015; Breckenridege, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: The International Docking Adapter's Peripheral Docking Target (PDT) was designed to allow a docking spacecraft to judge its alignment relative to the docking system. The PDT was designed to be compatible with relative sensors using visible cameras, thermal imagers, or Light Detection and Ranging (LIDAR) technologies. The conceptual design team tested prototype designs and materials to determine the contrast requirements for the features. This paper will discuss the design of the PDT, the methodology and results of the tests, and the conclusions pertaining to PDT design that were drawn from testing.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-32717 , Annual AAS Guidance and Control Conference; Jan 30, 2015 - Feb 04, 2015; Breckenridge, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: The dual-wall, Whipple shield is the shield of choice for lightweight, long-duration flight. The shield uses an initial sacrificial wall to initiate fragmentation and melt an impacting threat that expands over a void before hitting a subsequent shield wall of a critical component. The key parameters to this type of shield are the rear wall and its mass which stops the debris, as well as the minimum shock wave strength generated by the threat particle impact of the sacrificial wall and the amount of room that is available for expansion. Ensuring the shock wave strength is sufficiently high to achieve large scale fragmentation/melt of the threat particle enables the expansion of the threat and reduces the momentum flux of the debris on the rear wall. Three key factors in the shock wave strength achieved are the thickness of the sacrificial wall relative to the characteristic dimension of the impacting particle, the density and material cohesion contrast of the sacrificial wall relative to the threat particle and the impact speed. The mass of the rear wall and the sacrificial wall are desirable to minimize for launch costs making it important to have an understanding of the effects of density contrast and impact speed. An analytic model is developed here, to describe the influence of these three key factors. In addition this paper develops a description of a fourth key parameter related to fragmentation and its role in establishing the onset of projectile expansion.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-32626 , Hypervelocity Impact Symposium; Apr 26, 2015 - Apr 30, 2015; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: While quite a lot is known about the orbital debris environment and how to limit its growth, more remains to be learned. The curent priorities for research and development, from the NASA Goddard Space Flight Center perspective, will be discussed.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN19207 , 2014 Center for Orbital Debris Education and Research Workshop (CODER); Nov 18, 2014 - Nov 20, 2014; College Park, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: The optimization of low-thrust trajectories is tightly coupled with the spacecraft hardware. Trading trajectory characteristics with system parameters ton identify viable solutions and determine mission sensitivities across discrete hardware configurations is labor intensive. Local independent optimization runs can sample the design space, but a global exploration that resolves the relationships between the system variables across multiple objectives enables a full mapping of the optimal solution space. A multi-objective, hybrid optimal control algorithm is formulated using a multi-objective genetic algorithm as an outer loop systems optimizer around a global trajectory optimizer. The coupled problem is solved simultaneously to generate Pareto-optimal solutions in a single execution. The automated approach is demonstrated on two boulder return missions.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN19886 , AAS/AIAA Spaceflight Mechanics Meeting; Jan 11, 2015 - Jan 15, 2015; Williamsburg, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M15-4192 , MSFC Tech Exposition; Oct 27, 2014; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: EXPRESS Racks provide capability for payload access to ISS resources. The successful on-orbit operations and versatility of the EXPRESS Rack has facilitated the operations of many scientific areas, with the promise of continued payload support for years to come. EXPRESS Racks are currently deployed in the US Lab, Columbus and JEM. Process improvements and enhancements continue to improve the accommodations and make the integration and operations process more efficient. Payload Integration Managers serve as the primary interface between the ISS Program and EXPRESS Payload Developers. EXPRESS Project coordinates across multiple functional areas and organizations to ensure integrated EXPRESS Rack and subrack products and hardware are complete, accurate, on time, safe, and certified for flight. NASA is planning to expand the EXPRESS payload capacity by developing new Basic Express Racks expected to be on ISS in 2018.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M15-4161 , Annual Meeting of the American Society for Gravitational and Space Research; Oct 22, 2014 - Oct 26, 2014; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M15-4193 , Marshall Technology Exposition; Oct 27, 2014; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to detect NH3 coolant leaks in the ISS thermal control system.An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations (directionality).The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lbmyr. to about 1 lbmday. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ramwake flows and structural shadowing within low Earth orbit.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN15807 , International Symposium on Rarefied Gas Dynamics; Jul 13, 2014 - Jul 18, 2014; Xian; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: In the development of flight insulation systems for large cryogenic orbital storage (spray on foam and multilayer insulation), testing need include all environments that are experienced during flight. While large efforts have been expended on studying, bounding, and modeling the orbital performance of the insulation systems, little effort has been expended on the ground hold and ascent phases of a mission. Historical cryogenic in-space systems that have flown have been able to ignore these phases of flight due to the insulation system being within a vacuum jacket. In the development phase of the Nuclear Mars Vehicle and the Shuttle Nuclear Vehicle, several insulation systems were evaluated for the full mission cycle. Since that time there had been minimal work on these phases of flight until the Constellation program began investigating cryogenic service modules and long duration upper stages. With the inception of the Cryogenic Propellant Storage and Transfer Technology Demonstration Mission, a specific need was seen for the data and as such, several tests were added to the Cryogenic Boil-off Reduction System liquid hydrogen test matrix to provide more data on a insulation system. Testing was attempted with both gaseous nitrogen (GN2) and gaseous helium (GHe) backfills. The initial tests with nitrogen backfill were not successfully completed due to nitrogen liquefaction and solidification preventing the rapid pumpdown of the vacuum chamber. Subsequent helium backfill tests were successful and showed minimal degradation. The results are compared to the historical data.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GRC-E-DAA-TN15357 , Propulsion and Energy Forum 2014; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-13
    Description: The Morpheus prototype lander is a testbed capable of vertical takeoff and landing developed by NASA Johnson Space Center to assess advanced space technologies. Morpheus completed a series of flight tests at Kennedy Space Center to demonstrate autonomous landing and hazard avoidance for future exploration missions. As a prototype vehicle being tested in Earth's atmosphere, Morpheus requires a robust roll control system to counteract aerodynamic forces. This paper describes the control algorithm designed that commands jet firing and delay times based on roll orientation. Design, analysis, and testing are supported using a high fidelity, 6 degree-of-freedom simulation of vehicle dynamics. This paper also details the wind profiles generated using historical wind data, which are necessary to validate the roll control system in the simulation environment. In preparation for Morpheus testing, the wind model was expanded to create day-of-flight wind profiles based on data delivered by Kennedy Space Center. After the test campaign, a comparison of flight and simulation performance was completed to provide additional model validation.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-32230 , AIAA Guidance, Navigation, and Control Conference (GN and C); Jan 05, 2015 - Jan 09, 2015; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: Relative navigation remains the most challenging part of spacecraft rendezvous and docking. In recent years, flash LIDARs, have been increasingly selected as the go-to sensors for proximity operations and docking. Flash LIDARS are generally lighter and require less power that scanning Lidars. Flash LIDARs do not have moving parts, and they are capable of tracking multiple targets as well as generating a 3D map of a given target. However, there are some significant drawbacks of Flash Lidars that must be resolved if their use is to be of long-term significance. Overcoming the challenges of Flash LIDARs for navigation-namely, low technology readiness level, lack of historical performance data, target identification, existence of false positives, and performance of vision processing algorithms as intermediaries between the raw sensor data and the Kalman filter-requires a world-class testing facility, such as the Lockheed Martin Space Operations Simulation Center (SOSC). Ground-based testing is a critical step for maturing the next-generation flash LIDAR-based spacecraft relative navigation. This paper will focus on the tests of an integrated relative navigation system conducted at the SOSC in January 2014. The intent of the tests was to characterize and then improve the performance of relative navigation, while addressing many of the flash LIDAR challenges mentioned above. A section on navigation performance and future recommendation completes the discussion.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-32220 , 2015 IEEE Aerospace Conference; Mar 07, 2015 - Mar 14, 2015; Big Sky, Montana; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-13
    Description: NASA's Edison program is intending to launch the Edison Demonstration of Smallsat Networks (EDSN) project, a swarm of 8 1.5U cubesats in the fall of 2014 to demonstrate intra-swarm communications and multi-point in situ space physics data acquisition. Due to late changes in the duty cycles of various components, potential overheating issues appeared. In addition, it was determined that capacity loss due to the coldness of the batteries was unacceptable, so mitigation was required. This paper will discuss the thermal modeling, testing, and results of the EDSN mission.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M14-3447 , International Conference on Environmental Systems (ICES) 2014; Jul 13, 2014 - Jul 17, 2014; Tucson, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M14-4020 , Annual Space and Missile Defense Symposium (SMD); Aug 14, 2014; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-13
    Description: Starting in Jan 2012, the Advanced Exploration Systems (AES) Autonomous Mission Operations (AMO) Project began to investigate the ability to create and execute "single button" crew initiated autonomous activities [1]. NASA Marshall Space Flight Center (MSFC) designed and built a fluid transfer hardware test-bed to use as a sub-system target for the investigations of intelligent procedures that would command and control a fluid transfer test-bed, would perform self-monitoring during fluid transfers, detect anomalies and faults, isolate the fault and recover the procedures function that was being executed, all without operator intervention. In addition to the development of intelligent procedures, the team is also exploring various methods for autonomous activity execution where a planned timeline of activities are executed autonomously and also the initial analysis of crew procedure development. This paper will detail the development of intelligent procedures for the NASA MSFC Autonomous Fluid Transfer System (AFTS) as well as the autonomous plan execution capabilities being investigated. Manned deep space missions, with extreme communication delays with Earth based assets, presents significant challenges for what the on-board procedure content will encompass as well as the planned execution of the procedures.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M14-3502 , Space Ops 2014; May 05, 2014 - May 09, 2014; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-13
    Description: There is a heightened interest within NASA for the design, development, and flight implementation of mixed-actuator hybrid attitude control systems for science spacecraft that have less than three functional reaction wheel actuators. This interest is driven by a number of recent reaction wheel failures on aging, but what could be still scientifically productive, NASA spacecraft if a successful hybrid attitude control mode can be implemented. Over the years, hybrid (mixed-actuator) control has been employed for contingency attitude control purposes on several NASA science mission spacecraft. This paper provides a historical perspective of NASA's previous engineering work on spacecraft mixed-actuator hybrid control approaches. An update of the current situation will also be provided emphasizing why NASA is now so interested in hybrid control. The results of the NASA Spacecraft Hybrid Attitude Control Workshop, held in April of 2013, will be highlighted. In particular, the lessons learned captured from that workshop will be shared in this paper. An update on the most recent experiences with hybrid control on the Kepler spacecraft will also be provided. This paper will close with some future considerations for hybrid spacecraft control.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NF1676L-18796 , GNC 2014: International ESA Conference on Guidance, Navigation, and Control Systems; Jun 02, 2014 - Jun 06, 2014; Porto; Portugal
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-13
    Description: The Solar Dynamics Observatory (SDO) includes three advanced instruments, massive science data volume, stringent science data completeness requirements, and a custom ground station to meet mission demands. The strict instrument science requirements imposed a number of challenging drivers on the overall mission system design, leading the SDO team to adopt an integrated systems engineering presence across all aspects of the mission to ensure that mission science requirements would be met. Key strategies were devised to address these system level drivers and mitigate identified threats to mission success. The global systems engineering team approach ensured that key drivers and risk areas were rigorously addressed through all phases of the mission, leading to the successful SDO launch and on-orbit operation. Since launch, SDO's on-orbit performance has met all mission science requirements and enabled groundbreaking science observations, expanding our understanding of the Sun and its dynamic processes.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN9331 , Aerospace Conference, 2012 IEEE; Mar 03, 2012 - Mar 10, 2012; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-31520 , NASA In-Space Inspection Tech Workshop; Jul 15, 2014 - Jul 17, 2014; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-31487 , NASA-In-Space Inspection Technology Workshop; Jul 15, 2014 - Jul 16, 2014; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-13
    Description: The Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project has developed a suite of prototype sensors for enabling autonomous and safe precision land- ing of robotic or crewed vehicles on solid solar bodies under varying terrain lighting condi- tions. The sensors include a Lidar-based Hazard Detection System (HDS), a multipurpose Navigation Doppler Lidar (NDL), and a long-range Laser Altimeter (LAlt). Preparation for terrestrial ight testing of ALHAT onboard the Morpheus free- ying, rocket-propelled ight test vehicle has been in progress since 2012, with ight tests over a lunar-like ter- rain eld occurring in Spring 2014. Signi cant work e orts within both the ALHAT and Morpheus projects has been required in the preparation of the sensors, vehicle, and test facilities for interfacing, integrating and verifying overall system performance to ensure readiness for ight testing. The ALHAT sensors have undergone numerous stand-alone sensor tests, simulations, and calibrations, along with integrated-system tests in special- ized gantries, trucks, helicopters and xed-wing aircraft. A lunar-like terrain environment was constructed for ALHAT system testing during Morpheus ights, and vibration and thermal testing of the ALHAT sensors was performed based on Morpheus ights prior to ALHAT integration. High- delity simulations were implemented to gain insight into integrated ALHAT sensors and Morpheus GN&C system performance, and command and telemetry interfacing and functional testing was conducted once the ALHAT sensors and electronics were integrated onto Morpheus. This paper captures some of the details and lessons learned in the planning, preparation and integration of the individual ALHAT sen- sors, the vehicle, and the test environment that led up to the joint ight tests.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-31442 , AIAA Space 2014 Conference; Aug 04, 2014 - Aug 07, 2014; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: In April 2012, NASA directed Boeing to conduct a study to assess the feasibility of implementing a simplified soft capture system, as a possible replacement for the soft capture system portion of the baseline NASA Docking System (NDS). This paper describes the study conducted and conclusions drawn that supported the selection of the Soft Impact Mating and Attenuation Concept (SIMAC) as the replacement of the International Low Impact Docking System's (iLIDS) soft capture system.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-31396 , AIAA Space and Astronautics Forum and Exposition (SPACE 2014); Jul 14, 2014 - Jul 15, 2014; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-13
    Description: Engineers in the Entry Systems and Technology Division at NASA Ames Research Center developed a fully instrumented, small atmospheric entry probe called SPRITE (Small Probe Reentry Investigation for TPS Engineering). SPRITE, conceived as a flight test bed for thermal protection materials, was tested at full scale in an arc-jet facility so that the aerothermal environments the probe experiences over portions of its flight trajectory and in the arc-jet are similar. This ground-to-flight traceability enhances the ability of mission designers to evaluate margins needed in the design of thermal protection systems (TPS) of larger scale atmospheric entry vehicles. SPRITE is a 14-inch diameter, 45 deg. sphere-cone with a conical aftbody and designed for testing in the NASA Ames Aerodynamic Heating Facility (AHF). The probe is a two-part aluminum shell with PICA (phenolic impregnated carbon ablator) bonded on the forebody and LI-2200 (Shuttle tile material) bonded to the aftbody. Plugs with embedded thermocouples, similar to those installed in the heat shield of the Mars Science Laboratory (MSL), and a number of distributed sensors are integrated into the design. The data from these sensors are fed to an innovative, custom-designed data acquisition system also integrated with the test article. Two identical SPRITE models were built and successfully tested in late 2010-early 2011, and the concept is currently being modified to enable testing of conformable and/or flexible materials.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN4730 , AFOSR/NASA/Sandia Ablation Workshop; Feb 28, 2012 - Mar 01, 2012; Lexington, KY; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M13-3105 , 2013 Geospace Environment Modeling (GEM) Mini-Workshop; Dec 08, 2013; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M14-3329 , Nuclear Emerging Technologies for Space (NETS); Feb 24, 2014 - Feb 26, 2014; Stennis Space Center, MS; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: NASA's Edison program is intending to launch a swarm of at least 8 small satellites in 2013. This swarm of 1.5U Cubesats, the Edison Demonstration of Smallsat Networks (EDSN) project, will demonstrate intra-swarm communications and multi-point in-situ space physics data acquisition. In support of the design and testing of the EDSN satellites, a geometrically accurate thermal model has been constructed. Due to the low duty cycle of most components, no significant overheating issues were found. The predicted mininum temperatures of the external antennas are low enough, however, that some mitigation may be in order. The development and application of the model will be discussed in detail.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M13-2486 , International Conference on Environmental Systems (ICES); Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-28965 , American Physical Society Shock Compressed Matter; Jul 08, 2013 - Jul 12, 2013; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...