ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (350)
  • Articles: DFG German National Licenses  (350)
  • Yeast  (350)
  • Springer  (350)
  • International Union of Crystallography (IUCr)
  • 1990-1994  (188)
  • 1985-1989  (162)
Collection
  • Articles  (350)
Source
  • Articles: DFG German National Licenses  (350)
Publisher
  • Springer  (350)
  • International Union of Crystallography (IUCr)
  • Wiley-Blackwell  (67)
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 38 (1994), S. 1-17 
    ISSN: 1432-1432
    Keywords: HSP70 ; Heat shock ; Evolution ; Phylogeny ; Yeast ; Multigene family ; Subcellular compartmentalization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Eukaryotic genomes encode multiple 70-kDa heat-shock proteins (HSP70s). The Saccharomyces cerevisiae HSP70 family is comprised of eight members. Here we present the nucleotide sequence of the SSA3 and SSB2 genes, completing the nucleotide sequence data for the yeast HSP70 family. We have analyzed these yeast sequences as well as 29 HSP70s from 24 additional eukaryotic and prokaryotic species. Comparison of the sequences demonstrates the extreme conservation of HSP70s; proteins from the most distantly related species share at least 45% identity and more than one-sixth of the amino acids are identical in the aligned region (567 amino acids) among all proteins analyzed. Phylogenetic trees constructed by two independent methods indicate that ancient molecular and cellular events have given rise to at least four monophyletic groups of eukaryotic HSP70 proteins. Each group of evolutionarily similar HSP70s shares a common intracellular localization and is presumed to be comprised of functional homologues; these include heat-shock proteins of the cytoplasm, endoplasmic reticulum, mitochondria, and chloroplasts. HSP70s localized in mitochondria and plastids are most similar to the DnaK HSP70 homologues in purple bacteria and cyanobacteria, respectively, which is consistent with the proposed prokaryotic origin of these organelles. The analyses indicate that the major eukaryotic HSP70 groups arose prior to the divergence of the earliest eukaryotes, roughly 2 billion years ago. In some cases, as exemplified by the SSA genes encoding the cytoplasmic HSP70s of S. cerevisiae, more recent duplication events have given rise to subfamilies within the major groups. The S. cerevisiae SSB proteins comprise a unique subfamily not identified in other species to date. This subfamily appears to have resulted from an ancient gene duplication that occurred at approximately the same time as the origin of the major eukaryotic HSP70 groups.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0983
    Keywords: DNA repair ; Heat shock ; Hyperthermia ; Mutagenesis ; pso3-1 mutant ; Psoralen ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A putative tolerance, induced by heat shock (HS), to the lethal and mutagenic effects of 8-methoxypsoralen (8-MOP) photoaddition and hyperthermia was analyzed in Saccharomyces cerevisiae using the wild-type strain N123 and the isogenic DNA repair-deficient mutant pso3-1. In wild-type cells, the HS (38°C for 1 h) did not modify either the survival or the mutation frequency observed after 8-MOP photoaddition, even though it conferred protection against the lethal effect of hyperthermia (50°C). In the pso3-1 mutant, HS induced an increase of the survival, and a decrease of the mutation frequency, after 8-MOP photoaddition and it also protected against the lethal effect of hyperthermia. The responses induced by HS were specific for 8-MOP photoaddition, since they were not observed after 254 nm ultraviolet-light damage. These results indicate that the protection conferred by HS depends of the type of lesion, and operates through the induction of different repair processes. In the pso3-1 mutant, HS could channel the repair intermediates to and error-free repair pathway.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 26 (1994), S. 281-284 
    ISSN: 1432-0983
    Keywords: Ofloxacin ; Mitochondria ; Mutation ; Recombination ; Topoisomerase ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Ofloxacin, a specific inhibitor of bacterial topoisomerase II, is known to inhibit the growth of yeast cells and to induce rho − mutants in the yeast S. cerevisiae. The frequency of ofloxacin-induced petite mutants under non-growth conditions was found to be strongly diminished when the cells were depleted in intramitochondrial ATP. Under optimal conditions of mitochondrial mutagenesis the drug induced mitotic recombination and reverse mutation in diploid strains but failed to cure either killer plasmids or the 2 μm DNA of dividing cells. The sensitivity to ofloxacin of the strains deficient in the DNA strandbreak repair pathway (rad52) was significantly higher then that of the wild-type strains and of the mutants deficient in excision or mutagenic DNA repair. The results are compatible with the idea that the cytotoxic and genetic activity of ofloxacin in yeast probably results from the inhibited DNA ligation function of topoisomerase II creating DNA breaks that are reparable through the recombination repair pathway.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0983
    Keywords: Yeast ; Trehalose synthase ; GGS1/TPS1 gene ; Glycolysis ; Fermentable sugars ; Suppression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Byp1-3 is an amber nonsense allele of the Sacchromyces cerevisiae GGS1/TPS1 gene which encodes the small subunit of the trehalose synthase complex. Mutations in this gene confer an inability to grow on glucose or fructose but the phenotype of byp1-3 mutants is leaky in a strain-dependent manner. Overexpression of the isolated byp1-3 allele suppressed the growth defect of a ggs1/tps1Δ mutant. Expression of an in-vitro-generated mutant allele of GGS1/TPS1 that lacks all the coding sequences downstream from the byp1-3 mutation led to the production of a shortened protein that did not complement the ggs1/tps1Δ mutant. We have isolated, as an allele-specific multi-copy suppressor of the growth defect of the byp1-3 mutant on fructose, the gene for tRNAGLN (CAG). Thus the leaky phenotype of byp1-3 mutants is due to a low level of read through of the internal nonsense codon by tRNAGLN (CAG). Using overexpression of the isolated byp1-3 allele, as well as of the tRNAGLN (CAG) gene, we were able to demonstrate that as little as about 10% of the normal Ggs1/Tps1 protein level is sufficient for slow growth on fructose. We also show a correlation between the level of Ggs1/Tps1, the ability to accumulate trehalose in stationary phase and the ability to grow on fermentable sugars. Sequence analysis of the cloned tRNAGLN (CAG) gene showed that it is located 700 bp upstream of URA10. However, we found considerable differences to the reported sequence of URA10, in particular in the non-coding region.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0983
    Keywords: Small G proteins ; YPT1 ; Yeast ; abGDI ; Mitochondria ; MRS2
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract MRS6 is a newly-identified gene in the yeast Saccharomyces cerevisiae. Its product Mrs6p shows significant homology to the mammalian GDP dissociation inhibitor (GDI) of Rab/Ypt-type small G proteins and to the human choroideraemia protein (CHM), the component A of Rab-specific GGTase II. The interaction of Mrs6p with G proteins is indicated by our observation that the MRS6 gene suppresses the effect of a temperature-sensitive ypt1 mutation. Disruption of the MRS6 gene is lethal to haploid yeast cells. This is consistent with the notion that Mrs6p is interacting with Rab/Ypt-type small G proteins, which are known to have essential functions in vesicular transport. Unexpeciedly, the MRS6 gene product also affects mitochondrial functions as revealed by the facts that highcopy numbers of MRS6 (1) suppress the pet - phenotype of mrs2-1 mutant strains and (2) cause a weak pet - phenotype in wild-type strains. We conclude from these results that the MRS6 gene product has a vital function in connection with Rab/Ypt-type proteins in the cytoplasm and, in addition, affects mitochondrial functions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 25 (1994), S. 24-29 
    ISSN: 1432-0983
    Keywords: Yeast ; Yarrowia lipolytica ; Lysine acetyl transferase ; Lysine catabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In the yeastYarrowia lipolytica, theLYC1 locus controls the first step of the lysine degradation pathway which is catalyzed by lysine N-6-acetyl transferase (LAT). This gene was cloned by complementation of thelyc1-100 mutation. Its position in the cloned insert was determined by conversion mapping and by complementation. TheLYC1 gene encodes a 391 amino-acid polypeptide which has no homolog in protein databases. The required upstream region extends over 960 bp. When placed under the control of theGAL10 promoter inSaccharomyces cerevisiae, LYC1 drives the expression of lysine acetyl transferase activity, thus providing strong evidence that it is the structural gene encoding this enzyme.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 25 (1994), S. 30-33 
    ISSN: 1432-0983
    Keywords: Plasmid exchange ; ras/Ras gene ; Basidiomycete ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract It was shown by a plasmid exchange procedure that the Ras-encoding cDNA of the basidiomyceteLentinus edodes (namedLeras cDNA) can functionally replace its homolog genes (ScRAS1 andScRAS2) in the yeastSaccharomyces cerevisiae to maintain the viability of an yeast strain containing genetic disruptions of bothRAS genes. The strain replaced by aLeras−cDNA-carrying plasmid, however, grew slower than the strains replaced by aScRAS1− or aScRAS2−carrying plasmid. The intracellular level of cAMP in the strain harboring theLeras−cDNA-carrying plasmid was clearly higher than that of a parental strain which maintains a plasmid carrying theS. cerevisiae cAMP-dependent protein kinase catalytic subunit C1 gene,TPK1, but was lower than that in a strain harboring anScRAS2−carrying plasmid. These results suggest that theLeras cDNA can complement theras1 − ras2− mutation of yeast by virture of the stimulation of adenylate cyclase activity, although the complementation is not as efficient as that obtained by expressing theScRAS2 gene.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 25 (1994), S. 142-149 
    ISSN: 1432-0983
    Keywords: Yeast ; Mitochondria ; DNA recombination ; 5′ exonuclease
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Mitochondrial DNA recombination was reduced in an yeast mutant lacking the NUC1 endo/exonuclease. Between linked markers in either the ω or cob region the frequency of recombination decreased nearly 50% compared to wild-type. Gene conversion frequencies in the var1 gene and in the ω region were also lower in the mutant strain. In particular, the gradient of gene conversion at ω was most affected by the absence of the NUC1 nuclease. In crosses between nuclease-deficient and wild-type strains, gene conversion frequencies at ω were reduced only when the ω+ allele was contributed to the zygote by the nuclease-deficient parent. We propose that the 5′ exonuclease activity of the NUC1 nuclease functions during recombination to enlarge heteroduplex tracts following a double-strand break in DNA. In crosses between nuclease-deficient and wild-type strains, the anisotropy in gene conversion frequencies at ω is hypothesized to be due to the slow mixing of parental motochondrial membranes as they fuse in the zygote.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0983
    Keywords: Yeast ; Citrate synthase ; Transcriptional regulation ; HAP2,3,4
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The yeast CIT1 (mitochondrial citrate synthase) gene is subject to glucose repression and is further repressed by glucose plus glutamate. Based on deletion analysis of a CIT1-lacZ gene fusion, DNA sequences between -548 and -273 are required for full expression of CIT1. The region of transcription initiation and the putative TATA element are located at -150 to -100 and -195 respectively. A restriction fragment containing DNA sequences between -457 and -211 conferred activation and glucose-glutamate regulation when placed in either orientation upstream of a USA-less heterologous yeast gene. Deletion of DNA sequences between -291 and -273 specifically eliminated derepression of CIT1, and destroyed one of two closely-spaced, potential binding sites for the HAP2,3,4 transcriptional activator protein. Tenbase-pair block substitutions in the region -367 to -348 reduced glucose-repressed expression. Thus, it appears that distinct DNA sequences upstream of CIT1 activate expression in glucose-repressed and derepressed cells. Possible mechanisms of regulation by glutamate plus glucose, are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 25 (1994), S. 196-201 
    ISSN: 1432-0983
    Keywords: Yeast ; Flocculation ; Cloning ; Expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A yeast flocculation gene was isolated from a genomic library of an FLO5 strain of S. cerevisiae on the basis of its ability to trigger flocculation in a non-flocculent strain. Characterization of the cloned gene by restriction mapping, Southern analysis, and chromosome mapping have shown that it corresponds to a FLO5 gene previously located on chromosome I and that this gene is related to the already described. FLO1 gene. A study of gene expression in different yeast strains has indicated that, while this gene is dominant, its expression can be suppressed in some genetic backgrounds. A Northern-blot analysis has demonstrated that the same 5000-nt transcript was present in an FLO5 and an FLO1 strain. A gene disruption experiment has led to the conclusion that another flocculation gene is present and can be active in the FLO5 strain we used.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    ISSN: 1432-0983
    Keywords: Yeast ; PET111 ; Translation ; COX2
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The nuclear gene PET112 was originally identified by a mutation (pet112-1) that specifically blocked accumulation of cytochrome c oxidase subunit II. The mutation causes a post-transcriptional defect since the level of COX2 mRNA in the mutant is the same as in the wildtype. However, PET112 does not have a function similar to that of PET111, a COX2 mRNA-specific translational activator: while pet111 mutations are suppressed by chimeric COX2 mRNAs bearing 5′ leaders of other mitochondrial mRNAs, pet112-1 is not. The PET112 gene was isolated and shown to code a protein of 541 residues (62 kDa) with no significant homology to known amino-acid sequences. By hybridization to defined genomic clones the gene was mapped to chromosome II between cdc25 and ilsl. Disruption of the PET112 open reading frame destabilized the mitochondrial genome, causing cells to become rho-. This finding suggests that PET112 has an important general function in mitochondrial gene expression, probably in translation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1432-0983
    Keywords: Yeast ; GSH ; DNA alkylation ; MNNG
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The MNNG hyper-resistance of yeast transformants containing multiple copies of the SNQ3/YAP1 yeast gene is not caused by lowered MNNG activation due to depleted pools of glutathione. On the contrary, the SNQ3/YAP1-encoded protein stimulates production of GSH, apparently by promoter activation due to the AP-1 recognition element. Expression of at least one further gene, encoding a protein with a strong detoxifying activity, must also be stimulated to explain the MNNG hyper-resistance phenotype.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    ISSN: 1432-0983
    Keywords: Yeast ; S. douglasii ; mtDNA evolution ; ATPase subunit 9
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have determined the nucleotide sequence of a region of the mitochondrial genome of the yeast Saccharomyces douglasii which contains the ATPase subunit 9 gene and part of the intergenic sequences that surround it. The gene is 228 nucleotides long and encodes a polypeptide of 76 aa. A comparison of the coding sequence with that of S. cerevisiae reveals the presence of three silent transitions. A high level of similarity is also found between regions involved in the initiation of transcription and mRNA processing. More interestingly, a region of similarity situated outside the known regulatory regions has been identified. As the intergenic regions are generally highly divergent, the remarkable conservation of these non-coding sequences suggests that their structure may be relevant to the expression of this region of the mitochondrial DNA.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    ISSN: 1432-0983
    Keywords: Sulfite ; Yeast ; Drug resistance ; Thioredoxin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Sulfite-resistant and sulfite-sensitive mutants of Saccharomyces cerevisiae were isolated and characterized. Genetic analysis indicated that one and four genes were responsible for the resistant and sensitive responses, respectively, and suggested that defects in methionine and cysteine metabolism were not involved. Some resistant alleles, all of which were dominant, conferred greater resistance than others. Mutations conferring sensitivity were recessive and one co-segregated with impaired respiration. Two of the sensitive mutants exhibited cross-sensitivity to other metabolic inhibitors: sulfometuron methyl, cycloheximide, oligomycin, and antimycin A. A 50% glutathione deficiency in one sensitive mutant was not sufficient in itself to account for its sensitivity. Screening of other relevant mutants revealed that relative to wild-type, met8 and a thioredoxin null mutant are sensitive, and met3 and met14 mutants are not. Reduced production of extracellular acetaldehyde, a compound that detoxifies sulfite, was observed in three of the four sensitive mutants. However, acetaldehyde was also underproduced in the resistant mutant. Because sulfite is a reducing agent, cells were tested for coincident sensitivity or resistance to ascorbate, selenite, dithiothreitol, nitrite, thiosulfate, reduced glutathione, and cysteine. No consistent pattern of responses to these agents emerged, suggesting that the response to sulfite is not a simple function of redox potential.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    ISSN: 1432-0983
    Keywords: Yeast ; Sequence ; Amino-Acid Permease ; Carboxypeptidase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have analysed two new genes, YBR1007 and YBR1015, discovered during the systematic sequencing of chromosome II of S. cerevisiae. YBR1007 shows strong similarities to amino-acid permeases, in particular the high-affinity proline permeases of S. cerevisiae and A. nidulans. The number and position of the predicted membrane-spanning domains suggest a conserved structure for these proteins, with 12 trans-membrane domains. YBR1015 shows strong similarities to serine carboxypeptidases; all three residues of the “catalytic triad” typical of this family of enzymes are conserved in the YBR1015 protein. In a preliminary functional analysis we have created a null allele of the YBR1015 gene, and shown that it is not essential for cellular viability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    ISSN: 1432-0983
    Keywords: Recombination ; Yeast ; Cross-over ; Gene conversion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The region of yeast chromosome III between the HIS4 and LEU2 genes has an unusually high frequency of meiotic recombination. In order to determine the pattern of cross-over and gene conversion events, we constructed a strain with a number of heterozygous markers in this 25-kb interval. We found that very high levels of reombination are localized to regions of DNA near HIS4. In addition, analysis of the patterns of co-conversion of adjacent markers suggests that there is more than one initiation site contributing to recombination of HIS4.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 26 (1994), S. 54-61 
    ISSN: 1432-0983
    Keywords: Transformation ; Minichromosome ; Yeast ; Cryptococcus neoformans
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A minichromosome of approximately 270 kilobases was generated following complementation of a ura5 mutant strain of C. neoformans with the plasmid pURA5g2. This is the first report of the in-vivo generation of a minichromosome by the method of electroporative transformation. The minichromosome occurred at a relatively high (〉20%) frequency in transformants that were stable for uracil protoprophy. The minichromosome was maintained in linear form as a large extrachromosomal element of the normal karyotype. Gel-purified DNA from the minichromosome readily transformed the ura5 mutant of C. neoformans. Southern-blot analysis of the minichromosome revealed the presence of multiple copies of the URA5 gene and ribosomal DNA sequences in addition to containing telomere-like sequence repeats. The minichromosome was transmitted through mitosis and meiosis with extremely-high fidelity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 26 (1994), S. 187-189 
    ISSN: 1432-0983
    Keywords: Mapping ; Yeast ; Schizosaccharomyces pombe
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The following genes of the fission yeast Schizosaccharomyces pombe have been mapped by tetrad analysis — chromosome arm I-L: mfm2, rad24, rad25; I-R: abc1, fus1, mfm1; II-L: mfm3; II-R: mam1, rad13. A hotspot of meiotic recombination although not quite so active as suggested by previous maps, may be located between rad25 and aro5 on I-L.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    ISSN: 1432-0983
    Keywords: Topoisomerase ; Mitochondria ; Nucleotides ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Yeast mitochondria were found to contain a novel topoisomerase-like activity which required nucleoside di- or tri-phosphates as a cofactor. ADP supported activity as effectively as ATP and the optimal concentration for each was approximately 20 μM. None of the other standard ribo- or deoxyrib-onucleotides could fully substitute for either ADP or ATP. The non-hydrolyzable ATP analogs, adenosine-5′-0-(3-thiotriphosphate) (ATP-γ-S), adenylyl (β, γ-methylene) (AMP-PCP), and andenyl-imidodiphosphate (AMP-PNP) also supported activity suggesting that the nucleotide cofactor regulated topoisomerase activity rather than serving as an energy donor in the reaction. The mitochondrial topoisomerase activity relaxed both positively and negatively supercoiled DNA. It was not inhibited by concentrations of ethidium bromide up to 2 μg/ml nor by either nalidixic or oxolinic acids; novobiocin, coumermycin, and berenil inhibited the activity. Genetic and biochemical analysis of the mitochondrial topoisomerase activity indicated that it was not encoded by the nuclear TOP1, TOP2, and TOP3 genes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    ISSN: 1432-0983
    Keywords: Yeast ; Regulation ; UAS
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The systematic sequencing of the yeast genome reveals the presence of many potential genes of unknown function. One way to approach their function is to define which regulatory system controls their transcription. This can also be accomplished by the detection of an upstream activation sequence (UAS). Such a detection can be done by computer, provided that the definition of a UAS includes sufficient and precise rules. We have established such rules for the UASs of the GAL4, RAP1 (RPG box), GCN4, and the HAP2/HAP3/HAP4 regulatory proteins, as well as for a motif (PAC) frequently found upstream of the genes of the RNA polymerase A and C subunits. These rules were applied to the chromosome III DNA sequence, and gave precise predictions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    ISSN: 1432-0983
    Keywords: Yeast ; DNA replication ; mcm ; Chromosome
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have studied the effects of ARS addition and deletion on the maintenance of a 61-kb ring derivative of chromosome III in a minichromosome maintenance mutant of yeast carrying the mcm2-1 mutation. When this ring chromosome, CIIIR, had either of its two strong origins deleted, the resultant chromosome showed a much greater instability in the mutant as compared to that of the wild-type strain. Integration of more ARSs improved the maintenance of CIIIR in the mutant but not in the wild-type strain. Increase in the size of CIIIR, without any ARS addition, did not improve the stability in either strain. A spontaneous revertant for improved growth at 35°C also co-reverted for minichromosome and CIIIR maintenance. The results suggest that ARS malfunctioning leads to minichromosome and chromosome loss from mutant cells, affecting their growth at higher temperatures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    ISSN: 1432-0983
    Keywords: Small GTP-binding proteins ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract DNA sequence analysis upstream of the yeast DNA repair gene SNM1 revealed gene GTP1 with an ORF of 573 bp on chromosome XIII. The putative amino-acid sequence of the encoded protein shows homology to proteins of the ARF-class of small GTP-binding proteins. Homology within GTP-binding motifs is highly conserved. Gene disruption showed that GTP1 is not an essential gene and that it has no influence on the expression of the DNA repair gene SNM1 with which it shares a 191-bp promoter region.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 25 (1994), S. 89-94 
    ISSN: 1432-0983
    Keywords: cif1 ; Suppressor ; Trehalose ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The cif1 mutation of Saccharomyces cerevisiae causes inability to grow on glucose and related fermentable carbon sources. We have isolated two different suppressor mutations that allow growth on glucose of yeasts carrying the cif1 mutation. One of them, sci1-1, is recessive and caused inability to grow on non-fermentable carbon sources and to de-repress fructose-1,6-bisphosphatase. The other suppressor mutation, SCI2-1, is dominant and diminished the capacity to phosphorylate glucose or fructose. The SCI2-1 mutation decreased sporulation efficiency by 70% in heterozygosis and by more than 90% in homozygosis. In a CIF1 background, cells carrying the mutation SCI2-1 accumulated trehalose during the logarithmic phase of growth and hyperaccumulated it during the stationary phase. Genetic tests showed that SCI2 was either allelic, or else closely linked, to HXK2. The concentrations of the glycolytic metabolites measured during growth on glucose in cells carrying the cif1 mutation and any of the suppressor mutations were similar to those of a wild-type. Both types of suppressor mutations restored the transient cAMP response to glucose to cif1 mutants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    ISSN: 1432-0983
    Keywords: Acetyl-CoA carboxylase ; Polyketide antibiotic ; Soraphen A ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Soraphen A, a polyketide isolated from the myxobacterium Sorangium cellulosum, is a potent inhibitor of fungal growth. We have used a genetic approach to localize the target of this drug, employing Saccharomyces cerevisiae as a model organism. We have isolated soraphen A-resistant mutants and found that all of them map at the same genetic locus and exhibit a broad range of semidominant phenotypes. Data from genetic crosses of soraphen A-resistant clones with an acc1 mutant revealed that ACC1, coding for acetyl-CoA carboxylase (E.C. 6.4.1.2), is tightly linked to soraphen A resistance. Partially-purified enzyme extracts containing acetyl-CoA carboxylase were prepared and assayed for their soraphen A sensitivity. Our experiments showed that the catalytic activity of the wild-type enzyme is inhibited in vitro by soraphen A while the mutant enzyme remains catalytically active. Taken together these data strongly suggest that the ACC1 gene product is the primary target for soraphen A in vivo.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 25 (1994), S. 178-179 
    ISSN: 1432-0983
    Keywords: Yeast ; Secretion ; Vesicle fusion ; Rabproteins
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Yeast rgs1 cells accumulate secretory vesicles in the cytoplasm and stop the secretion of proteins at the restrictive temperature. The ts mutation rgs1 may be suppressed by several different genes; the S. cerevisiae SEC4 gene, encoding the small G-protein involved in the late secretory stage, is one of them. Synthetic lethality of the double rgs1 sec4 mutant is demonstrated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    ISSN: 1432-072X
    Keywords: Rylux BSU ; Fluorescent brightener ; Cell walls ; Chitin synthase ; Glucan synthase ; Yeast ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Rylux BSU, a new fluorescent brightener from the family of 4,4′-diaminostilbene-2,2′disulfonic acid derivatives, inhibited growth and cytokinesis of the yeast Saccharomyces cerevisiae. In the presence of 0.1–1 mg/ml Rylux BSU the cells grew in clumps, had irregular shape and were larger than controls. They formed apparently normal primary septa but their secondary septa and lateral cell walls, especially those in older cells, were abnormally thick with large deposits of amorphous wall material in the periplasmic spaces all over the cell surface. Chitin content in the cell walls of cells grown in the presence of Rylux BSU was increased 2 to 5 times in comparison to that of the controls and glucan content was reduced by up to 30%. In the in vitro assays with particulate membrane fractions, Rylux BSU acted as a non-competitive inhibitor of β-1,3-glucan synthase with inhibitory constant K i=1.75 mg/ml whereas the chitin synthase was inhibited to a much lesser extent. From the difference of the effects of Rylux BSU on the synthesis of chitin in vivo and in vitro it is concluded that the brightener interacts with chitin synthase only indirectly, possibly by influencing the properties of integral plasma membrane.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 13 (1994), S. 17-23 
    ISSN: 1476-5535
    Keywords: Yeast ; Glycerol production ; Low alcohol content wine ; Enology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Mutants partially resistant to the repressive effect of glucose have been isolated from aSaccharomyces cerevisiae strain totally deficient in phosphoglycerate mutase activity (EC 5.4.2.1) by a selection procedure involving the catabolite-repressive effect of 5-thio-d-glucose (5TG). These mutants are able to resist glucose concentrations up to 15 g L−1 and exhibit several non-repressed metabolic pathways such as gluconeogenesis, glyoxylic shunt or mitochondrial respiratory chain. Moreover, when these mutants are grown in aerobiosis on ethanol and glucose as sole substrates, glucose is mainly converted into glycerol in order to maintain a normal redox balance. Optimal glucose and oxygen concentrations have been defined for resting cells in order to obtain a glycerol yield from glucose close to 100%. The physiological characteristics of one of these mutants led us to consider an application of this yeast strain in reducing the ethanol content of wines previously lowered in ethanol content by physical processes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 13 (1994), S. 172-176 
    ISSN: 1476-5535
    Keywords: Immobilization ; Hydrophobic ; Hydrophilic ; Polymers ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Biotransformation of benzaldehyde to benzyl alcohol bySaccharomyces cerevisiae immobilized in different support matrices was investigated. Polymers with intrinsic hydrophobic and/or hydrophilic nature as well as mixed hydrophobic and hydrophilic supports were examined both in aqueous and bisphasic aqueous-organic systems. The hydrophobic support material ENTP-2000 or mixed silicone:alginate (50-25∶50-75) proved to be most suitable not only for nonconventional media but also for conventional aqueous media for production of benzyl alcohol. With ENTP-2000, catalytic activity and maximum yield were 159 μmol h−1 g−1 dry weight catalyst and 0.89 mM, respectively, in hexane containing 2% moisture. Corresponding values in aqueous media were 246 μmol h−1 g−1 dry weight catalyst and 1.53 mM. With 50∶50 silicone:alginate, catalytic activity and maximum yield were 177 μmol h−1 g−1 dry weight catalyst and 1.18 mM, respectively, in hexane containing 2% moisture. Corresponding values in aqueous media were 192 μmol h−1 g−1 dry weight catalyst and 0.8 mM.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 138 (1994), S. 29-35 
    ISSN: 1432-1424
    Keywords: H+ symports ; Plasma membrane ATPase ; Local vs. delocalized protons ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Acidification of the external medium of the yeast Saccharomyces cerevisiae, mainly caused by proton extrusion by plasma membrane H+-ATPase, was inhibited to different degrees by D2O, diethylstilbestrol, suloctidil, vanadate, erythrosin B, cupric sulfate and dicyclohexylcarbodiimide. The same pattern of inhibition was found with the uptake of amino acids, adenine, uracil, and phosphate and sulfate anions. An increase of the acidification rate by dioctanoylglycerol also increased the rates of uptake of adenine and of glutamic acid. In contrast, a decrease of the membrane potential at pH 4.5 from a mean of -40 to -20 mV caused by 20 mm KC1 had no effect on the transport rates. The ATPase-deficient mutant S. cerevisiae pmal-105 showed a markedly lower uptake of all the above solutes as compared with the wild type, while its membrane potential and ΔpH were unchanged. Other types of acidification (spontaneous upon suspension; K+ stimulated) did not affect the secondary uptake systems. A partially competitive inhibition between some individual transport systems was observed, most pronouncedly with adenine as the most avidly transported solute. These observations, together with the earlier results that inhibition of H+-ATPase activity affects more the acidic than the basic amino acids and that it is more pronounced at higher pH values and at greater solute concentrations, support the view that it is the protons in or at the membrane, as they are extruded by the ATPase, that govern the rates of uptake by secondary active transport systems in yeast.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 276 (1994), S. 213-221 
    ISSN: 1432-0878
    Keywords: Gut-associated lymphoid tissue (GALT) ; M(membranous)-cells ; Immunohistochemistry ; Cytokeratins ; Yeast ; Pig (Minipig, Göttingen)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The intermediate filaments of the dome epithelium of porcine Peyer's patches were studied by immunohistochemistry. The labelling patterns of monospecific antibodies directed against cytokeratins 8, 18 and 19 differed considerably. About 40% of the dome epithelial cells were intensely labelled by three different anti-cytokeratin 18 antibodies, indicating that large amounts of cytokeratin 18 are present in these cells. In order to verify that these cytokeratin-18-immunoreactive cells were M-cells, uptake studies using fluorescein-labelled yeast particles were performed. Numerous yeast particles were found exclusively in dome epithelial cells that were highly positive for cytokeratin 18, thus representing M-cells. In contrast, the content of cytokeratin 19 in M-cells was lower than that in neighbouring enterocytes. The labelling intensity of cytokeratin 8 did not differ between M-cells and enterocytes. In addition, the absence of vimentin and desmin from the dome epithelium of porcine Peyer's patches was demonstrated. The results show (1) that porcine M-cells differ from enterocytes in the composition of their cytoskeleton, (2) that cytokeratin 18 is a useful marker for detecting porcine M-cells and (3) that this marker directly correlas with M-cell function.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    ISSN: 1617-4623
    Keywords: DNA deletions ; Reciprocal exchange ; Non-conservative recombination ; Yeast ; hpr1 Δ mutation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Null hprl Δ strains show a large increase (up to 2000-fold) over wild type in the frequency of occurrence of deletions between direct repeats on three different chromosomes. However, we show that hprl Δ mutations have little or no effect on reciprocal exchange, gene conversion or unequal sister chromatid exchange, as determined using intrachromosomal, interchromosomal and plasmid-chromosome assay systems. A novel intrachromosomal recombination system has allowed us to determine that over 95% of deletions in hpr1 Δ strains do not occur by reciprocal exchange. On the other hand, hpr1 Δ strains show chromosome loss frequencies of up to 100 times the wild-type level. Our results suggest that yeast cells have a very efficient non-conservative recombination mechanism, dependent on RADI and RAD52, that causes deletions between direct DNA repeats, and this mechanism is strongly stimulated in hpr1 Δ strains. The results indicate that the Hpr1 protein is required for stability of DNA repeats and chromosomes. We propose that in the absence of the Hprl protein the cell destabilizes the genome by allowing the initiation of events that lead to deletions of sequences between repeats, and to chromosome instability. We discuss the roles that proteins such as Hprl have in maintaining direct repeats and in preventing non-conservative recombination and consider the importance of these functions for chromosome stability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 243 (1994), S. 63-70 
    ISSN: 1617-4623
    Keywords: Radiation ; Reciprocal translocations ; MAT ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Both ultraviolet (UV) and ionizing radiation were observed to stimulate mitotic, ectopic recombination between his3 recombinational substrates, generating reciprocal translocations in Saccharomyces cervisiae (yeast). The stimulation was greatest in diploid strains competent for sporulation and depends upon both the ploidy of the strain and heterozygosity at the MAT locus. The difference in levels of stimulation between MATa/MATα diploid and MATα haploid strains increases when cells are exposed to higher levels of UV radiation (sevenfold at 150 J/m2), whereas when cells are exposed to higher levels of ionizing radiation (23.4 krad), only a twofold difference is observed. When the MATα gene was introduced by DNA transformation into a MATa/matα::LEU2 + diploid, the levels of radiation-induced ectopic recombination approach those obtained in a strain that is heterozygous at MAT. Conversely, when the MATA gene was introduced by DNA transformation into a MATα haploid, no enhanced stimulation of ectopic recombination was observed when cells were irradiated with ionizing radiation but a threefold enhancement was observed when cells were irradiated with UV The increase in radiation-stimulated ectopic recombination resulting from heterozygosity at MAT correlated with greater spontaneous ectopic recombination and higher levels of viability after irradiation. We suggest that MAT functions that have been previously shown to control the level of mitotic, allelic recombination (homolog recombination) also control the level of mitotic, radiation-stimulated ectopic recombination between short dispersed repetitive sequences on non-homologous chromosomes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 243 (1994), S. 158-165 
    ISSN: 1617-4623
    Keywords: Yeast ; Cell cycle ; Size control ; cAMP G1 cyclin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In the budding yeast Saccharomyces cerevisiae, passage through START, which commits cells to a new round of cell division, requires growth to a critical size. To examine the effect of hyperactivation of the cAMP pathway on cell size at START, a strain was constructed that is able to respond to exogenously added cAMP. In the presence of cAMP, this strain showed increased cell volume at bud emergence, suggesting that the critical cell size necessary for START is increased. In addition, a mutation that results in unregulated cAMP-dependent protein kinase (bcy1) caused increased cell size at START. These results indicate that hyperactivation of the cAMP pathway causes increases in cell size through cAMP-dependent protein kinase. Cells carrying a hyperactive allele of CLN3 (CLN3-2) also showed increased size at START in the presence of cAMP. These cells retained resistance to α factor, however, suggesting that increases in cell size by cAMP are not due to a reduction of Cln3 activity. The observed increases in cell size due to hyperactivation of the cAMP pathway suggest that cell size modulation by nutrient conditions may be associated with a change of the activity of the cAMP pathway.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 243 (1994), S. 532-539 
    ISSN: 1617-4623
    Keywords: Yeast ; prp2 ; Intron ; Genome
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Relatively few genes in the yeast Saccharornyces cerevisiae are known to contain intervening sequences. As a group, yeast ribosomal protein genes exhibit a higher prevalence of introns when compared to non-ribosomal protein genes. In an effort to quantify this bias we have estimated the prevalence of intron sequences among non-ribosomal protein genes by assessing the number of prp2-sensitive mRNAs in an in vitro translation assay. These results, combined with an updated survey of the GenBank DNA database, support an estimate of 2.5% for intron-containing non-ribosomal protein genes. Furthermore, our observations reveal an intriguing distinction between the distributions of ribosomal protein and non-ribosomal protein intron lengths, suggestive of distinct, gene class-specific evolutionary pressures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 244 (1994), S. 303-311 
    ISSN: 1617-4623
    Keywords: Metal homeostasis ; Metal resistance ; Transport ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The COT1 and ZRC1 genes of Saccharomyces cerevisiae are structurally related dosage-dependent suppressors of metal toxicity. COT1 confers increased tolerance to high levels of cobalt; ZRC1 confers increased tolerance to high levels of zinc. The two genes are not linked and have been mapped; COT1 to chromosome XV and ZRC1 to chromosome XIII. Phenotypes related to metal homeostasis have been examined in strains with varied COT1 and ZRC1 gene doses. Overexpression of COT1 confers tolerance to moderately toxic levels of zinc and ZRC1 confers tolerance to moderately toxic levels of cobalt. Strains that carry null alleles at both loci are viable. The metal-hypersensitive phenotypes of mutations in either gene are largely unaffected by changes in dosage of the other. COT1 and ZRCI function independently in conferring tolerance to their respective metals, yet the uptake of cobalt ions by yeast cells is dependent on the gene dosage of ZRC1 as well as of COT1 Strains that overexpress ZRC1 have increased uptake of cobalt ions, while ZRCI null mutants exhibit decreased cobalt uptake. The defects in cobalt uptake due to mutations at COT1 and ZRC1 are additive, suggesting that the two genes are responsible for the majority of cobalt and zinc uptake in yeast cells. The function of either gene product seems to be more important in metal homeostasis than is the GRR1 gene product, which is also involved in metal metabolism. Mutations in the GRR1 gene have no effect on the cobalt-related phenotypes of strains that have altered gene dosage of either COT1 or ZRC1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 242 (1994), S. 383-390 
    ISSN: 1617-4623
    Keywords: Mitochondria ; Translation ; Yeast ; PET111 ; PET2858
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have changed the translation initiation codon of the COX2 mRNA of Saccharomyces cerevisiae from AUG to AUA, generating a mutation termed cox2-10. This mutation reduced translation of the COX2 mRNA at least five-fold without affecting the steady-state level of the mRNA, and produced a leaky nonrespiratory growth phenotype. To address the question of whether residual translation of the cox2-10 mRNA was initiating at the altered initiation codon or at the next AUG codon downstream (at position 14), we took advantage of the fact that the mature coxll protein is generated from the electrophoretically distinguishable coxII precursor by removal of the amino-terminal 15 residues, and that this processing can be blocked by a mutation in the nuclear gene PET2858. We constructed a pet2858, cox2-10 double mutant strain using a pet2858 allele from our mutant collection. The double mutant accumulated low levels of a polypeptide which comigrated with the coxII precursor protein, not the mature species, providing strong evidence that residual initiation was occurring at the mutant AUA codon. Residual translation of the mutant mRNA required the COX2 mRNA-specific activator PET111. Furthermore, growth of cox2-10 mutant strains was sensitive to alterations in PET111 gene dosage: the respiratory-defective growth phenotype was partially suppressed in haploid strains containing PET111 on a high-copy-number vector, but became more severe in diploid strains containing only one functional copy of PET111.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    ISSN: 1617-4623
    Keywords: Acetyl-CoA synthetase ; Mitochondrial carriers ; Sequence ; Disruption ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The utilization of ethanol via acetate by the yeast Saccharomyces cerevisiae requires the presence of the enzyme acetyl-coenzyme A synthetase (acetyl-CoA synthetase), which catalyzes the activation of acetate to acetyl-coenzyme A (acetyl-CoA). We have isolated a mutant, termed acr1, defective for this activity by screening for mutants unable to utilize ethanol as a sole carbon source. Genetic and biochemical characterization show that, in this mutant, the structural gene for acetyl-CoA synthetase is not affected. Cloning and sequencing demonstrated that the ACR1 gene encodes a protein of 321 amino acids with a molecular mass of 35 370 Da. Computer analysis suggested that the ACR1 gene product (ACR1) is an integral membrane protein related to the family of mitochondrial carriers. The expression of the gene is induced by growing yeast cells in media containing ethanol or acetate as sole carbon sources and is repressed by glucose. ACR1 is essential for the utilization of ethanol and acetate since a mutant carrying a disruption in this gene is unable to grow on these compounds.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 242 (1994), S. 100-104 
    ISSN: 1617-4623
    Keywords: Chromatin ; Nystatin ; DNA topoisomerase I ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In vivo DNA-protein interactions are usually studied at the molecular level using DNA-degrading agents of low molecular weight. In order to be useful, macromolecular probes of chromatin structure, such as enzymes must first cross the cell membrane. In this paper we describe the introduction and evaluation of macromolecules with enzymatic activity into yeast spheroplasts treated with the polyene antibiotic nystatin. We report the low resolution analysis of chromatin structure in the promoter region of the Saccharomyces cerevisiae gene encoding DNA topoisomerase I by this technique using micrococcal nuclease and restriction enzymes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 244 (1994), S. 160-167 
    ISSN: 1617-4623
    Keywords: p51ferT ; Yeast ; Meiosis ; Phosphotyrosine Kinase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The FER locus of the mouse encodes two mRNA species: one is constitutively transcribed, giving rise to a 94 kDa tyrosine kinase (p94ferT); the second is a meiosis-specific RNA that gives rise to a 51 kDa tyrosine kinase (p51ferT). The p51ferT RNA and protein accumulate in primary spermatocytes that are in prophase of the first meiotic division. By using polyclonal antibodies directed against synthetic peptides derived from the unique amino-terminus of the mouse p51ferT, a 51 kDa phosphotyrosyl protein — p51y — was identified in Saccharomyces cerevisiae. The p51y protein is constitutively expressed in yeast, but in meiotic cells, concomitantly with commitment to meiotic recombination, its level of phosphorylation on tyrosine residues is increased. A different pattern of phosphorylation is observed on serine residues: at early meiotic times the level is decreased, while in later meiotic time the level increases, reaching the vegetative level. When p51ferT is ectopically expressed in yeast, it is active, leading to preferential phosphorylation of an approx. 65 kDa protein. A similar pattern of phosphorylation by p51ferT is seen in mammalian cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    ISSN: 1617-4623
    Keywords: Bacterio-opsin ; Expression ; Yeast ; Saccharomyces cerevisiae ; Membranes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The bop gene codes for the membrane protein bacterio-opsin (BO), which on binding all-trans-retinal, constitutes the light-driven proton pump bacteriorhodopsin (BR) in the archaebacterium Halobacterium salinarium The designation H. salinarium instead of the former designation H. halobium is used throughout this paper following the classification of Tindall (1992) . This gene was cloned in a yeast multi-copy vector and expressed in Saccharomyces cerevisiae under the control of the constitutive ADH1 promoter. Both the authentic gene and a modified form lacking the precursor sequence were expressed in yeast. Both proteins are incorporated into the membrane in S. cerevisiae. The presequence is thus not required for membrane targeting and insertion of the archaebacterial protein in budding yeast, or in the fission yeast Schizosaccharomyces pombe, as has been shown previously. However, in contrast to S. pombe transformants, which take on a reddish colour when all-trans-retinal is added to the culture medium as a result of the in vivo regeneration of the pigment, S. cerevisiae cells expressing BO do not take on a red colour. The precursor of BO is processed to a protein identical in size to the mature BO found in the purple membrane of Halobacterium. The efficiency of processing in S. cerevisiae is dependent on growth phase, as well as on the composition of the medium and on the strain used. The efficiency of processing of BR is reduced in S. pombe and in a retinal-deficient strain of H. salinarium, when retinal is present in the medium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 245 (1994), S. 686-693 
    ISSN: 1617-4623
    Keywords: Yeast ; Saccharomyces cerevisiae ; Poly(ADP-ribose) polymerase ; DNA repair
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The coding sequence for human poly(ADP-ribose) polymerase was expressed inducibly in Saccharomyces cerevisiae from a low-copy-number plasmid vector. Cell free extracts of induced cells had poly(ADPribose) polymerase activity when assayed under standard conditions; activity could not be detected in non-induced cell extracts. Induced cells formed poly(ADP-ribose) in vivo, and levels of these polymers increased when cells were treated with the alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). The cytotoxicity of this agent was increased in induced cells, and in vivo labelling with [3H]adenine further decreased their viability. Increased levels of poly(ADP-ribose) found in cells treated with the alkylating agent were not accompanied by lowering of the NAD concentration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    ISSN: 1617-4623
    Keywords: Yeast ; Transcriptional regulation ; SIN3 STE12 ; SWI1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract SIN3 was first identified by a mutation which suppresses the effects of an swi5 mutation on expression of the HO gene in Saccharomyces cerevisiae. We now show that a sin3 mutation also partially suppresses the effects of swi1 on HO transcription, and partially suppresses the growth defect and inositol requirement observed in swi1 mutants. This suggests that SIN3 and SWI1 may play opposite regulatory roles in controlling expression of many yeast genes. Yeast SIN3 has been shown to function as a negative transcriptional regulator of a number of yeast genes. However, expression of the yeast STE6 gene is reduced in a sin3 mutant strain. This suggests that SIN3 functions as a positive regulator for STE6 transcription, although this apparent activation function could be indirect. In order to understand how SIN3 functions in STE6 regulation, we have performed a genetic analysis. It has been previously demonstrated that MCM1 and STE12 are transcriptional activators of a-specific genes such as STE6, and we now show that SWI1 is also required for STE6 expression. Our data suggest that STE12 and SWI1 function in different pathways of activation, and that STE12 is epistatic to SIN3 and SWI1. We show that the activities of the Mcmlp and Stel2p activators are modestly reduced in a sin3 mutant strain, and that phosphorylation of the Stel2p activator is decreased in a sin3 mutant. Thus, it is possible that the decreased transcription of STE6 in sin3 mutants is due to the combined effect of the diminished activities of Mcmlp and Stel2p.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    ISSN: 1617-4623
    Keywords: Yeast ; Arginine ; Cell-type regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract ArgRIIIp (Arg82p), together with ArgRIp (Arg80p), ArgRIIp (Arg81p) and Mcmlp, regulates the expression of arginine anabolic and catabolic genes. An argRIII mutant constitutively expresses five anabolic enzymes and is impaired in the induction of the synthesis of two catabolic enzymes. A genomic disruption of the ARGRIII gene not only leads to an argR phenotype, but also prevents cell growth at 37°C. The disrupted strain is sterile especially in an α background and transcription of α- and a-specific genes (MFα1 and STE2) is strongly reduced. By gel retardation assays we show that the binding of the Mcmlp present in a crude protein extract from an argRIII mutant strain to the P(PAL) sequence is impaired. Sporulation of α/a argRIII:: URA3 homozygous diploids is also affected. Overexpression of Mcm1p in an argRIII-disrupted strain restores the mating competence of the strain, the ability to form a protein complex with P(PAL) DNA in vitro, and the regulation of arginine metabolism. However, overexpression of Mcm1p does not complement the sporulation deficiency of the argRIII-disrupted strain, nor does it complement its growth defect at 37°C. Western blot analysis indicates that Mcm1p is less abundant in a strain devoid of ArgRIIIp than in wild type.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    ISSN: 1573-0832
    Keywords: Ergosterol synthesis ; Polyenic antifungal agents ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The S-adenosylmethionine: Δ 24-sterol methyltransferase (24 SMT) primarily considered as a mitochondrial enzyme, was recently mainly detected in lipid particles of yeasts. It catalyses the methylation of zymosterol which is an essential reaction for the synthesis of ergosterol. We have investigated in cellular extracts of twoKluyveromyces lactis strains the action of polyenic antifungal agents on the activity of this enzyme. Low concentrations of amphotericin B, candicidin and pimaricin strongly stimulate this activity, while high concentrations inhibit it or have no effect. Whatever the doses used, nystatin and filipin had no significant influence on this activity. According to the molar ratio amphotericin B/total sterols of the enzyme preparation, the interference of amphotericin B on the 24 SMT activity may result of two mechanisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 24 (1993), S. 21-25 
    ISSN: 1432-0983
    Keywords: Yeast ; Glycerol kinase ; GUT1 ; ADR1 control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The GUT1 gene of Saccharomyces cerevisiae, encoding glycerol kinase, was cloned and sequenced. The cloned genomic DNA fragment contains an open reading frame potentially coding for a protein of 709 amino acids with homology to bacterial glycerol kinases (40.8% identity over 502 amino acids, and 42.1% identity over 496 amino acids, in comparison to the smaller E. coli and B. subtilis enzymes). Disruption of GUT1 showed that the gene is required for growth on glycerol, but not on glucose or ethanol media. No glycerol kinase activity was detected in the disruption mutant. According to enzyme activity and transcript analysis, synthesis of glycerol kinase is repressed by glucose, and derepression is ADR1-dependent.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    ISSN: 1432-0983
    Keywords: Yeast ; FLP ; Phase variation-type expression ; Gene replacement
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Expression of a neomycin phosphotransferase II (NPTII) gene has been designed to be regulated by an FLP-mediated switching of the orientation of the NPTII coding region located on the invertible DNA segment in episomal yeast plasmids. Inversion of the segment from inverted to direct orientation with respect to the promoter resulted in a dramatic increase in G418 resistance. FLP also promoted a double reciprocal exchange between the transforming and the resident 2-μm plasmid, leading to insertion of the FLP and REP2 genes into the transforming plasmid. The results demonstrate a possible use of FLP recombinase for ‘phase variation’-type regulation of gene expression and gene replacement in eukaryotic cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    ISSN: 1432-0983
    Keywords: AEP1 ; Yeast ; Mitochindria ; ATP synthase ; PET gene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Due to mutation in a single nuclear locus, AEP1, the temperature-conditional pet mutant ts1860 of Saccharomyces cerevisiae fails to synthesize mitochondrial ATP synthase subunit 9 at the restrictive temperature of 36°C. The presence at this temperature of near-normal levels of the cognate oli1 mRNA in mutant ts1860 indicates that, as previously shown, the product of the AEP1 gene is required for translation of the mitochondrial oli1 transcript. In this study the AEP1 gene has been cloned from a wild-type yeast genomic library by genetic complementation of a temperature-conditional aep1 strain at the restrictive temperature. A 2,330-bp genomic fragment which restores subunit 9 synthesis in aep1 mutant strains was characterized. This fragment encoded five open reading frames: the longest of these, at 1,554 nucleotides, was identified as the AEP1 gene, since disruption of this reading frame generated a non-conditional pet strain unable to synthesize subunit 9. The predicted product of AEP1 is a basic, hydrophilic protein of 59,571 Da which possesses a putative mitochondrial address sequence. Hybridization studies with AEP1-specific probes indicate that the gene is located on chromosome XIII and produces several poly(A)+ transcripts ranging in size from 0.9 to 2.7 kb. None of the identified reading frames share significant homologies with entries of several data bases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 24 (1993), S. 179-180 
    ISSN: 1432-0983
    Keywords: Mapping ; Yeast ; Schizosaccharomyces pombe
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The genetic map of the fission yeast Schizosaccharomyces pombe has been revised in the distal region of chromosome arm IIR. The spo4 locus, hitherto considered the outermost marker, has been moved to an intermediate position. As a result, and in accordance with recent physical mapping data, the order of the entire distal subgroup of some 12 genetic markers is reversed relative to previously published gene maps.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    ISSN: 1432-0983
    Keywords: 2-Oxoglutarate dehydrogenase ; Molecular cloning ; Saccharomyces cerevisiae ; Sequencing ; Suppressor ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The activity of mitochondrial 2-oxoglutarate dehydrogenase in S. cerevisiae can be impaired either by the ogd1 or the kgd1 mutation. The OGD1 gene and two suppressor genes were isolated by complementation of the ogd1 mutant. The complementation of the kdg1 mutant by the OGD1 gene, an allelism test, and meiotic mapping, revealed that the ogd1 and kgd1 mutations are allelic. The two mutations were differentiated by the cloned suppressor gene which was able to partially complement ogd1, but not kgd1. The molecular analysis of the suppressor gene revealed its identity with the natural tRNA CAG Gln gene found in the upstream region of URA10.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    ISSN: 1432-0983
    Keywords: Yeast ; Cell cycle ; Sporulation ; Glycoprotein gp115
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The GGP1 (GAS1) gene encodes an exocellular 115-kDa glycoprotein (gp115) of the yeast Saccharomyces cerevisiae. We have monitored the changes in GGP1 mRNA levels under different conditions of G1 arrest. Transcript levels rapidly decrease during transition from exponential growth to stationary phase. They also decrease in the ts cdc25 and cdc28 START mutants when brought to the restrictive temperature. In cells arrested in G1 by αF treatment, the GPP1 mRNA level undergoes a threefold reduction. During release from the G1 block the mRNA level rapidly increases with a maximum at the onset of budding. During sporulation GGP1 mRNA level steadily decreases. These results indicate that the accumulation of the GGP1 transcript is inhibited during arrest in the G1 phase and during entry into the differentiative pathway of meiosis and sporulation. The induction of expression upon entry into the mitotic cycle suggest that GGP1 could be one of the genes whose transcription is activated at START.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    ISSN: 1432-0983
    Keywords: Yeast ; Saccharomyces cerevisiae ; Sporulation mutants ; Reporter genes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Reporter genes consisting of sporulation-specific promoters fused to lacZ were used as markers to monitor the sporulation pathway of the yeast Saccharomyces cerevisiae. Strains transformed with these lacZ gene fusions expressed β-galactosidase (assayable on plates using the substrate 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside, X-gal) in a sporulation-dependent manner. Mutagenesis experiments performed on transformed strains resulted in the recovery of a number of novel sporulation mutants. Three classes of mutants were obtained: those which overexpressed the reporter gene under sporulation conditions, those which did not express the gene under any conditions, and those which expressed the gene in vegetative cells not undergoing sporulation. On the basis of the blue colony-colour produced in the presence of X-gal these have been described as superblue, white, and blue vegetative mutants, respectively. These were further characterised using earlier reporter genes and other marker systems. This study established that the multicopy reporter plasmids chosen do not interfere with sporulation; they are valid tools for monitoring the pathway and they provide a way to isolate mutations not readily selected by other markers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    ISSN: 1432-0983
    Keywords: Yeast ; Saccharomyces cerevisiae ; Transformation ; Plasmid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have compared a number of procedures for the transformation of whole cells of the yeast Saccharomyces cerevisiae and assessed the effects of dimethylsulphoxide (DMSO) or ethanol, both of which have been reported to enhance transformation efficiency. We find that simplified methods benefit from the addition of one of these compounds, and although differences are observed between strains as to the more beneficial reagent, peak transformation efficiency is, in general obtained with 10% DMSO or 10% EtOH. Increases of between six- and 50-fold are observed, despite a reduction in cell viability, and at this concentration the two compounds are not additive in their effects. The optimum level appears to depend on a balance between improved DNA uptake and reduced cell viability. As a result of this work we present a straightforward and rapid transformation procedure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 24 (1993), S. 481-486 
    ISSN: 1432-0983
    Keywords: Mitotic recombination ; RAD3 gene ; Nucleotide excision repair ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have tested the ability of mutants of three additional genes in the excision repair pathway of Saccharomyces cerevisiae to suppress the hyper-recombination and rad52 double-mutant lethality phenotypes of the rad3-102 (formerly rem1-2) mutation. Such suppression has previously been been observed with mutant alleles of RAD1 and RAD4. We had hypothesized that the rad3-102 mutation created elevated levels of DNA lesions which could be processed by the products of the RAD1 and RAD4 genes into recombinogenic double-strand breaks requiring the RAD52 product for repair. In this report, we show that the RAD2, RAD7, and RAD10 genes are also necessary for this processing. We discuss our observations of varying levels of mitotic crossingover in Rem- rad double-mutant strains.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 23 (1993), S. 15-18 
    ISSN: 1432-0983
    Keywords: Yeast ; Rat ; Ribosomal protein ; 60S Ribosomal subunit
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary This communication reports on a single-copy gene of Saccharomyces cerevisiae which is homologous to the rat ribosomal protein gene L21. The yeast and the rat genes show 59% identity in DNA sequences and in the predicted protein sequences. This yeast gene is, therefore, assumed to code for an as yet unassigned ribosomal protein (URP1). The URP1 open reading frame is 480 nucleotides long and can encode a protein of about Mr 18 200. Like most of the other known ribosomal protein genes, URP1 is interrupted by an intron in its 5′ terminal part and it is preceeded by upstream sequence elements which usually regulate transcription of these genes. Northern blot analysis reveals that the URP1 gene is actually expressed in vivo.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    ISSN: 1432-0983
    Keywords: Yeast ; Mitochondria ; Cytochrome c oxidase ; Assembly ; PET gene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The nuclear genes PET117 and PET191 are required for the assembly of active cytochrome c oxidase in S. cerevisiae, yet their gene products are not subunits of the final assembled cytochrome c oxidase complex. Plasmids bearing PET117 or PET191 were isolated by their ability to complement the pet117-1 or pet191-1 mutations, respectively. By restriction mapping, subcloning, and deletion analysis of yeast DNA fragments that complement these mutations, the PET117 and PET191 genes were localized to smaller regions of DNA, which were then sequenced from both strands. The PET117 open reading frame is of 107 codons and the PET191 open reading frame is of 108 codons. Neither the PET191 nor PET117 DNA sequences have been reported previously, and the derived amino-acid sequences of the PET191 and PET117 open reading frames exhibit no significant primary amino-acid sequence similarity to other protein sequences available in the NBRF data base, or from translated Genbank sequences. By hybridization of PET117 or PET191 probes first to a chromosome blot and next to a library of physically mapped fragments of yeast genomic DNA, the map locations of the PET191 and PET117 genes were determined. PET117 is located on chromosome V near the HIS1 gene and PET191 is located on chromosome X near the CYC1 gene.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    ISSN: 1432-0983
    Keywords: Recombination ; Yeast ; radmutants ; Endo/exonuclease
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Extracts of S. cerevisiae cells can catalyze homologous recombination between plasmids in vitro. Extracts prepared from rad50, rad52 or rad54 disruption mutants all have reduced recombinational activity compared to wild-type. The rad52 and rad54 extracts are more impaired in the recombination of plasmids containing double-strand breaks than of intact plasmids, whereas rad50 extracts are deficient equally for both types of substrate. The nuclease RhoNuc (previously designated yNucR), encoded by the RNC1 (previously designated NUC2) gene and regulated by the RAD52 gene, is not required for recombination when one substrate is single-stranded but is essential for the majority of recombination events when both substrates are double-stranded. Furthermore, elimination of this nuclease restores recombination in rad52 extracts to levels comparable to those in wild-type extracts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    ISSN: 1432-0983
    Keywords: Yeast ; Mitochondria ; In-vitro translation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In an attempt to reconstitute an homologous in-vitro translation system for yeast mitochondrial mRNAs, we have isolated ribosomes, supernatant factors, and tRNAs from mitochondria of Saccharomyces carlsbergensis. While poly(U) is translated faithfully in this system, no translation of in-vitro synthesised cytochrome c oxidase subunit II (COX2) mRNA could be detected. Formation of formylmethionyl-puromycin on mitochondrial ribosomes is stimulated by ApUpG, but not by COX2 mRNA, although mitochondrial small ribosomal subunits bind to this mRNA in vitro, even without added tRNA and initiation factors. We conclude, therefore, that the inability to faithfully translate mitochondrial mRNAs in vitro may be the result of an inability of mitochondrial ribosomes to recognize the initiation codon.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    ISSN: 1432-0983
    Keywords: Yeast ; Open reading frames ; Database ; Genetic nomenclature ; Codon bias ; Duplicated genes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The amount of nucleotide sequence data is increasing exponentially. We therefore continued our effort to make a comprehensive database for the yeast Saccharomyces cerevisiae. In this database (ListA2) we have compiled 1001 protein coding sequences from this organism. Each sequence has been attributed a single genetic name and in the case of allelic duplicated sequences, synonyms are given, if necessary. For the nomenclature we have introduced a standard principle for naming gene sequences based on priority rules. We have also applied a simple method to distinguish duplicated sequences of one and the same gene from non-allelic sequences of duplicated genes. By using these principles we have sorted out a lot of confusion in the literature and databanks. Along with the genetic name, the mnemonic from the EMBL databank, the codon bias, reference of the publication of the sequence and the EMBL accession numbers are included for each entry. The database is available on request.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    ISSN: 1432-0983
    Keywords: Yeast ; Cell wall ; Chitin synthase ; Septum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Chitin is a component of the yeast cell wall which is localized to the septum between mother and daughter cells. Previous work in Saccharomyces cerevisiae has shown that this organism possesses three chitin synthases, 1, 2, and 3. Disruption experiments have shown that loss of chitin synthase 2 has a more profound effect on cell viability than loss of either of the other two and is lethal in complete media. We report here the finding of an S. cerevisiae strain which does not require the chitin synthase 2 structural gene for viability. We present evidence that there is a gene in this strain which suppresses the lethality of disruption of the chitin synthase 2 structural gene and is genetically distinct from the structural genes for chitin synthase 1 and chitin synthase 2. We show that an S. cerevisiae mutant containing the suppressor and lacking both structural genes for chitin synthase 1 and 2 has normal amounts of chitin in its cell wall. We hypothesize that the suppressor gene encodes or controls the expression of chitin synthase 3.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    ISSN: 1432-0983
    Keywords: Polyadenylation ; RNA 3′-end formation ; Transcription termination ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have tested the functioning of the human c-myc polyadenylation signal in Saccharomyces cerevisiae. A DNA fragment containing the two AATAAA polyadenylation signals of the c-myc gene was inserted into a plasmid designed for the in-vivo testing of polyadenylation signals in yeast. The c-myc fragment had a partial capacity for directing mRNA 3′-end formation in yeast. The 3′-endpoints were 50–100 bp distant from the mRNA 3′-ends mapped in humans. This human DNA fragment is therefore unspecifically functional in yeast, indicating that other sequence elements than the human polyadenylation signal, AATAAA, are necessary for 3′-end formation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    ISSN: 1432-0983
    Keywords: Yeast ; Glycolysis ; Glucose sensor ; Hexokinase ; Trehalose ; Signalling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Yeast cells defective in the GGS1 (FDP1/BYP1) gene are unable to adapt to fermentative metabolism. When glucose is added to derepressed ggs1 cells, growth is arrested due to an overloading of glycolysis with sugar phosphates which eventually leads to a depletion of phosphate in the cytosol. Ggs1 mutants lack all glucose-induced regulatory effects investigated so far. We reduced hexokinase activity in ggs1 strains by deleting the gene HXK2 encoding hexokinase PII. The double mutant ggs1Δ, hxk2Δ grew on glucose. This is in agreement with the idea that an inability of the ggs1 mutants to regulate the initiation of glycolysis causes the growth deficiency. However, the ggs1Δ, hxk2Δ double mutant still displayed a high level of glucose-6-phosphate as well as the rapid appearance of free intracellular glucose. This is consistent with our previous model suggesting an involvement of GGS1 in transport-associated sugar phosphorylation. Glucose induction of pyruvate decarboxylase, glucoseinduced cAMP-signalling, glucose-induced inactivation of fructose-1,6-bisphosphatase, and glucose-induced activation of the potassium transport system, all deficient in ggs1 mutants, were restored by the delection of HXK2. However, both the ggs1Δ and the ggs1Δ, hk2Δ mutant lack detectable trehalose and trehalose-6-phosphate synthase activity. Trehalose is undetectable even in ggs1Δ strains with strongly reduced activity of protein kinase A which normally causes a very high trehalose content. These data fit with the recent cloning of GGS1 as a subunit of the trehalose-6-phosphate synthase/phosphatase complex. We discuss a possible requirement of trehalose synthesis for a metabolic balance of sugar phosphates and free inorganic phosphate during the transition from derepressed to fermentative metabolism.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 23 (1993), S. 305-314 
    ISSN: 1432-0983
    Keywords: Recombination ; DNA repair ; Gene conversion ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The HO endonuclease was used to introduce a site-specific double-strand break (DSB) in an interval designed to monitor mitotic recombination. The interval included the trp1 and his3 genes inserted into chromosome III of S. cerevisiae between the CRY1 and MAT loci. Mitotic recombination was monitored in a diploid carrying heteroalleles of trp1 and his3. The normal recognition sites for the HO endonuclease were mutated at the MAT alleles and a synthetic recognition site for HO endonuclease was placed between trp1 and his3 on one of the chromosomes. HO-induced cleavage resulted in efficient recombination in this interval. Most of the data can be explained by double-strand gap repair in which the cut chromosome acts as the recipient. However, analysis of some of the recombinants indicates that regions of heteroduplex were generated flanking the site of the cut, and that some recombinants were the result of the cut chromosome acting as the genetic donor.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    ISSN: 1432-0983
    Keywords: Yeast ; Fructose 1,6-biphosphatase structural gene ; Hybrid protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Mutations in the yeast fructose 1,6 biphosphatase structural gene severely reduced expression of a fructose 1,6 biphosphatase-endoglucanase A hybrid protein introduced into yeast on multicopy or centromeric vectors. Upon glucose limitation the mutant yeasts were incapable of de-repressing endoglucanase A synthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 23 (1993), S. 388-391 
    ISSN: 1432-0983
    Keywords: Yeast ; Pseudohyphae ; Development
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Pseudohyphal growth in Saccharomyces cerevisiae has been postulated to be an adaptation to foraging for nitrogen during nitrogen starvation. This process was described as a strictly diploid phenomenon which did not occur in haploid yeast cells and was under the genetic control of both the mating-type locus and a group of five genes, the BUD genes, regulating bud formation. We have also observed a dimorphic growth pattern in yeast growing on various nitrogen-limiting synthetic media. However, and in contrast to a previous report, we find that pseudohyphal growth is not precluded in haploid cells. We demonstrate that haploid pseudohyphal growth is strictly oxygen-dependent and is rapidly reversible, defining pseudohyphal growth as a reversible developmental pathway in yeast.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 23 (1993), S. 423-429 
    ISSN: 1432-0983
    Keywords: Recombination ; Mitosis ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The time-dependent appearance of prototrophic recombinants between heterologously located artificial repeats has been studied in Saccharomyces cerevisiae. While initial prototrophic colony numbers from independent cultures were highly variable, additional recombinants were found to arise daily at roughly constant rates irrespective of culture. These late-appearing recombinants could be accounted for neither by detectable growth on the selective media nor by delayed appearance of recombinants present at the time of selective plating. Significantly, at no time did the distributions of recombinants fully match those expected according to the Luria-Delbruck model and, in fact, after the first day, the distributions much more closely approximated a Poisson distribution. Prototrophic recombinants accumulated not only on the relevant selective medium, but also on media unrelated to the acquired prototrophy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    ISSN: 1432-072X
    Keywords: Benzoate ; Sorbate ; Yeast ; Catabolite inactivation ; Fructose 2,6-bisphosphate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Preincubation of yeast cells in the presence of benzoate or sorbate at an extracellular pH value of 6.8 elicited a set of metabolic effects on sugar metabolism, which became apparent after the subsequent glucose addition. They can be summarized as follows: a) reduced glucose consumption; b) inhibition of glucose- and fructose-phosphorylating activities; c) supression of glucose-triggered peak of hexoses monophosphates; d) substantial reduction of glucose-triggered peak of fructose 2,6-bisphosphate; e) block of catabolite inactivation of fructose-1,6-bisphosphatase and phosphoenolpyruvate carboxykinase, but not of cytoplamic malate dehydrogenase. On the whole this pattern resulted in prevention of glucose-induced switch of metabolism from a gluconeogenetic to a glycolytic state. Our data also show that, unlike former assumptions, intracellular acidification is not likely to mediate the bulk of metabolic effects of benzoate and sorbate, since under our working conditions intracellular pH kept close to neutrality.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    ISSN: 1432-072X
    Keywords: Yeast ; Candida utilis ; Collagen gene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Genomic fragments, homologous to chicken A1(1) collagen cDNA encoding triple-helical domain, were revealed by Southern analysis in various fungi. Such a genomic fragment from Candida utilis was cloned and sequenced. Analysis of the obtained DNA sequence revealed the 119 bp segment, which has possibly originated from the 54bp module common for the fibrillar collagen genes of higher eukaryotes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    ISSN: 1617-4623
    Keywords: Heat shock gene ; Heat shock protein ; Secretion ; Yeast ; Transcription
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have cloned and characterized the HSP150 gene of Saccharomyces cerevisiae, which encodes a glycoprotein (hsp150) that is secreted into the growth medium. Unexpectedly, the HSP150 gene was found to be regulated by heat shock and nitrogen starvation. Shifting the cells from 24° C to 37° C resulted in an abrupt increase in the steady-state level of the HSP150 mRNA, and de novo synthesized hsp150 protein. Returning the cells to 24° C caused a rapid decrease in mRNA and protein synthesis to basal levels. The HSP150 5′-flanking region contains several heat shock element-like sequences (HSE). To study the function of these sequences, a strain bearing a disrupted copy of the HSP150 gene was transformed with plasmids in which the coding region of HSP150, or a HSP150-lacZ fusion gene, was preceded by 5′ deletion derivatives of the HSP150 promoter. Site-directed mutagenesis of one HSE-like element, located between the TATA box and transcription initiation sites, abolished heat activation of transcription. In addition to heat shock, the HSP150 gene is regulated by the availability of nutrients in the growth medium. The HSP150 mRNA level was increased by nitrogen limitation at 24° C, even when under the control of a HSP150 promoter region of 137 by carrying the mutagenized HSE.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    ISSN: 1617-4623
    Keywords: Ankyrin repeat ; Phosphatase regulon ; Pho4 binding site ; Regulatory protein ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The PH081 gene encoding one of the regulators of the phosphatase regulon in Saccharomyces cerevisiae was mapped 9.8 centimorgans distal from the ser2 locus on the right arm of chromosome VII. Determination of the nucleotide sequence of cloned PH081 DNA revealed a 3537 by open reading frame encoding a 134 kDa protein. This protein has six repeats of a 33-amino acid sequence homologous to the ankyrin repeat and an asparagine-rich region. Transcription of PH081 is activated by Pho4 protein in cooperation with Pho2 (i.e., Bas2/Grf10) protein under the influence of the inorganic phosphate (Pi) concentration in the medium, through the PHO regulatory system. Major transcription initiation sites of PH081, determined by primer extension analysis, are at nucleotide positions −66 and −65 relative to the ATG codon. Deletion analysis showed that a 95 by region from nucleotide position −385 to −291 is essential for response to the Pi signals. Purified Pho4 protein protected a 19 by region (positions −350 to −332) in the 95 by fragment from DNase I digestion in vitro and the protected region includes the core sequence 5′-CACGTG-3′, which is also observed in other genes of phosphate metabolism.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 240 (1993), S. 36-42 
    ISSN: 1617-4623
    Keywords: Yeast ; Saccharomyces cerevisiae ; DNA synthesis genes ; Cell cycle regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Two mutants have been isolated in Saccharomyces cerevisiae in which transcripts from at least CDC8, CDC9, CDC21 (TMP1) and POL1 genes are expressed constitutively in cells blocked at START by use of either α-pheromone or the cdc28 mutation. The transcripts from these genes also persist in mutant stationary phase cells; however, cell cycle regulation of these four DNA synthesis genes occurs normally in late G1. The mutation therefore does not appear to lie in the MCB-DSC1 (MBF) system that controls the periodic regulation of the genes, but must affect some control mechanism regulating basal levels of expression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    ISSN: 1617-4623
    Keywords: Transport protein ; DNA sequence ; GABA ; Transcription ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Transport of 4-aminobutyric acid (GABA) in Saccharomyces cerevisiae is mediated by three transport systems: the general amino acid permease (GAP1 gene), the proline permease (PUT4 gene), and a specific GABA permease (UGA4 gene) which is induced in the presence of GABA. The UGA4 gene encoding the inducible GABA-specific transporter was cloned and sequenced and its expression analyzed. The predicted amino acid sequence shows that UGA4 encodes a 62 kDa protein having 9–12 putative membrane-spanning regions. The predicted UGA4 protein shares significant sequence similarity with the yeast choline transporter (CTR gene), exhibiting but limited similarity to the previously reported GABA transporters, i.e. the yeast GAP1 and PUT4 permeases and the rat brain GAT-1 transporter. Induction of UGA4 in the presence of GABA is exerted at the level of UGA4 mRNA accumulation, most probably at the level of transcription itself. This induction is conferred by the 5′ flanking region and requires the integrity of two positive regulatory proteins, the inducer-specific factor UGA3 and the pleiotropic factor UGA35/DURL/DAL81. In the absence of the pleiotropic UGA43/DAL80 repressor, UGA4 is constitutively expressed at high level.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    ISSN: 1617-4623
    Keywords: Mutagen hyper-resistance ; 4-nitroquinolineN-oxide ; Yeast ; ATP-dependent permease
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The yeast gene SNQ2 confers hyper-resistance to the mutagens 4-nitroquinoline-N-oxide (4-NQO) and Triaziquone, as well as to the chemicals sulphomethuron methyl and phenanthroline when present in multiple copies in transformants of Saccharomyces cerevisiae. Subcloning and sequencing of a 5.5 kb yeast DNA fragment revealed that SNQ2 has an open reading frame of 4.5 kb. The putative encoded polypeptide of 1501 amino acids has a predicted molecular weight of 169 kDa and has several hydrophobic regions. Northern analysis showed a transcript of 5.5 kb. Haploid cells with a disrupted SNQ2 reading frame are viable. The SNQ2-encoded protein has domains believed to be involved in ATP binding and is likely to be membrane associated. It most probably serves as an ATP-dependent permease.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 236 (1993), S. 448-452 
    ISSN: 1617-4623
    Keywords: rRNA genes ; Yeast ; Pulsed field gel electrophoresis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The higher-order organization of rRNA genes was investigated in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. We used pulsed-field gel electrophoresis (PFGE) in combination with frequent cutter endonucleases having no recognition sites within rDNA repeating units to characterize tandem arrays of ribosomal genes in these two species. Large variations in rDNA cluster length were detected in various S. cerevisiae and S. pombe strains commonly used as PFGE molecular weight markers. This wide range of variability implies that the sizes currently assessed for chromosomes bearing rRNA genes in these organisms are unreliable since they may vary within strains by several hundreds of kilobase pairs, depending on the size of the tandem arrays of rRNA genes. Consequently, there is now a lack of reliable PFGE size standards between 1.6 Mb and 4.5 Mb, even when established yeast strains with calibrated chromosomes are used.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 237 (1993), S. 225-232 
    ISSN: 1617-4623
    Keywords: Meiosis-specific gene ; Plant ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary By using as probe a meiosis-specific cDNA clone LIM15 from the monocotyledonous plant, Lilium longiflorum, a clone containing a 2.8 kb DNA fragment was isolated from a genomic library of Saccharomyces cerevisiae. Primary structure analysis revealed that the clone includes two complete open reading frames, designated ISC2 and ISC10, capable of coding for a 36.6 kDa and a 31.6 kDa polypeptide, respectively, with the former frame being interrupted by a 92 by intron. The predicted amino acid sequence of Isc2 was 56% identical with the putative gene product of lily cDNA clone LIM15, and showed limited sequence similarity with the yeast RAD57 gene product. Transcripts of the two genes begin accumulating 2.5 h and 7.5 h after induction of meiosis, respectively, according to a Northern hybridization analysis. Since disruption of either one of these genes had a drastic effect on the ability to form spores, ISC2 and ISC10 are expected to play significant roles in the formation of reproductive cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    ISSN: 1617-4623
    Keywords: Yeast ; Nucleo-mitochondrial intraction ; RNA processing ; RNA stability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The NAM1/MTF2 gene was firstly isolated as a multicopy suppressor of mitochondrial splicing deficiencies and independently as a gene of which a thermosensitive allele affects mitochondrial transcription in organello. To determine which step in mitochondrial RNA metabolism is controlled in vivo by the NAM1 gene, mitochondrial transcripts of seven transcription units from strains carrying an inactive nam1::URA3 gene disruption in various mitochondrial genetic backgrounds were analysed by Northern blot hybridisations. In a strain carrying an intron-containing mitochondrial genome, the inactivation of the NAM1 gene led to a strong decrease in (or total absence of) the mosaic cytb and cox1 mRNAs and in transcripts of the atp6-rf3/ens2 genes, which are co-transcribed with cox1. Neither the accumulation of unspliced cytb or cox1 pre-mRNAs, nor that of excised circular intron molecules of ai1 or ai2 were observed, but the abundance of the bi1 and ai7 lariats was comparable to that observed in the wild-type strain, thus demonstrating that transcription of the cytb and cox1 genes does occur. In strains carrying the intron-less mitochondrial genome with or without the rf3/ens2 sequence, wild-type amounts of cytb and cox1 mRNAs were detected while the amount of the atp6 mRNA was always strongly decreased. The abundance of transcripts from five other genes was either slightly (21S rRNA) or not at all (cox2, cox3, atp9 and 15S rRNA) affected by the nam1 inactivation. This analysis leads to the conclusion that the NAM1 protein is not a general mitochondrial transcription factor, but rather is predominantly and selectively required for the processing and/or for the stability of cytb and cox1 intron-containing pre-mRNAs and of the atp6 transcripts. Since the original intronic mutations suppressed by the amplification of the NAM1 gene are situated in stem-loop rich structures, we propose that the NAM1 protein is a stem-loop RNA-binding protein that plays a role in determining RNA stability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    ISSN: 1617-4623
    Keywords: Feedback ; Yeast ; ATCase ; CPSase ; URA2
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have undertaken an in vivo genetic approach to the analysis of negative feedback control by uridine triphosphate (UTP) of the yeast carbamoylphosphate synthetase-aspartate transcarbamoylase multifunctional protein (CPSase-ATCase). Using an analog of uracil, 5-fluorouracil, we have constructed a screening system leading, in one step, to selection and cloning of a functional aspartate transcarbamoylase that is defective in negative feedback control by UTP. Due to the nature of the screen, spontaneous or UV-induced mutants could be recovered. Well-characterized cloned mutants have been sequenced and reveal one or two modifications in single codons leading to single amino acid replacements. These amino acid changes occurred either in the CPSase or ATCase domains, abolishing their sensitivity to regulation but not their catalytic activities. Hence the regulatory and catalytic sites are distinct. With the same screening system, it may also be possible to enlarge the scope of the molecular study of the feedback processes to include equivalent proteins in fungi as well as higher eukaryotes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    ISSN: 1617-4623
    Keywords: Eukaryotic initiation factor 5A ; o-Phthaldialdehyde amino acid analysis ; Polyamine ; Spermidine ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In Saccharomyces cerevisiae, hypusine-containing proteins are encoded by two closely related genes, HYP1 and HYP2, which are regulated reciprocally by oxygen and heme. We have purified the aerobically expressed hypusine-containing proteins from yeast. The three proteins detected (two isoforms, which differ in their pI values, and a degradation product thereof, lacking the N-terminal 10 amino acid residues) are all encoded by HYP2. The N-terminus of both isoforms is formed by acetylation of a serine residue after cleavage of the first methionine. Cells mutant for hyp2 are unable to grow aerobically. However, under anaerobic conditions these mutants display no obvious phenotype, presumably because the strictly anaerobically expressed HYPI gene product (Hyp1p) is present. This implies that Hyp1p and Hyp2p fulfill very similar functions. In fact, Hyp1p can substitute for Hyp2p under aerobic conditions, when expressed under the control of the GAL1 promoter in hyp2 mutant cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 241 (1993), S. 422-430 
    ISSN: 1617-4623
    Keywords: Glyoxylate cycle ; Fungus ; Yeast ; Peroxisome, glyoxysome ; Gene disruption
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The ICL1 gene encoding isocitrate lyase was cloned from the dimorphic fungus Yarrowia lipolytica by complementation of a mutation (acuA3) in the structural gene of isocitrate lyase of Escherichia coli. The open reading frame of ICL1 is 1668 by long and contains no introns in contrast to currently sequenced genes from other filamentous fungi. The ICL1 gene encodes a deduced protein of 555 amino acids with a molecular weight of 62 kDa, which fits the observed size of the purified monomer of isocitrate lyase from Y. lipolytica. Comparison of the protein sequence with those of known pro- and eukaryotic isocitrate lyases revealed a high degree of homology among these enzymes. The isocitrate lyase of Y. lipolytica is more similar to those from Candida tropicalis and filamentous fungi than to Sacharomyces cerevisiae. This enzyme of Y. lipolytica has the putative glyoxysomal targeting signal S-K-L at the carboxy-terminus. It contains a partial repeat which is typical for eukaryotic isocitrate lyases but which is absent from the E. coli enzyme. Surprisingly, deletion of the ICL1 gene from the genome not only inhibits the utilization of acetate, ethanol, and fatty acids, but also reduces the growth rate on glucose.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    ISSN: 1617-4623
    Keywords: Yeast ; Vacuolar H+-ATPase ; Cu detoxification ; Respiration ; Iron metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Mutations in the GEF2 gene of the yeast Saccharomyces cerevisiae have pleiotropic effects. The gef2 mutants display a petite phenotype. These cells grow slowly on several different carbon sources utilized exclusively or primarily by respiration. This phenotype is suppressed by adding large amounts of iron to the growth medium. A defect in mitochondrial function may be the cause of the petite phenotype: the rate of oxygen consumption by intact gef2 cells and by mitochondrial fractions isolated from gef2 mutants was reduced 60%–75% relative to wild type. Cytochrome levels were unaffected in gef2 mutants, indicating that heme accumulation is not significantly altered in these strains. The gef2 mutants were also more sensitive than wild type to growth inhibition by several divalent cations including Cu. We found that the cup5 mutation, causing Cu sensitivity, is allelic to gef2 mutations. The GEF2 gene was isolated, sequenced, and found to be identical to VMA3, the gene encoding the vacuolar H +-ATPase proteolipid subunit. These genetic and biochemical analyses demonstrate that the vacuolar H +-ATPase plays a previously unknown role in Cu detoxification, mitochondrial function, and iron metabolism.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    ISSN: 1617-4623
    Keywords: Yeast ; Iron-limited growth ; Respiration ; Integral membrane protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have isolated a new class of respiration-defective, i.e petite, mutants of the yeast Saccharomyces cerevisiae. Mutations in the GEF1 gene cause cells to grow slowly on rich media containing carbon sources utilized by respiration. This phenotype is suppressed by adding high concentrations of iron to the growth medium. Gef1 − mutants also fail to grow on a fermentable carbon source, glucose, when iron is reduced to low concentrations in the medium, suggesting that the GEF1 gene is required for efficient metabolism of iron during growth on fermentable as well as respired carbon sources. However, activity of the iron uptake system appears to be unaffected in gef1 − mutants. Fe(II) transporter activity and regulation is normal in gef1 − mutants. Fe(III) reductase induction during iron-limited growth is disrupted, but this appears to be a secondary effect of growth rate alterations. The wild-type GEF1 gene was cloned and sequenced; it encodes a protein of 779 amino acids, 13 possible transmembrane domains, and significant similarity to chloride channel proteins from fish and mammals, suggesting that GEF1 encodes an integral membrane protein. A gef1 − deletion mutation generated in vitro and introduced into wild-type haploid strains by gene transplacement was not lethal. Oxygen consumption by intact gef1 − cells and by mitochondrial fractions isolated from gef1 − mutants was reduced 25–50% relative to wild type, indicating that mitochondrial function is defective in these mutants. We suggest that GEF1 encodes a transport protein that is involved in intracellular iron metabolism.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 241 (1993), S. 616-626 
    ISSN: 1617-4623
    Keywords: SUD1 sequence ; Transcriptional regulator ; Gene expression ; Glucoamylase ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The SUD1 gene was identified during a hunt for mutants that are able to express an sta1 gene (encoding an extracellular glucoamylase) lacking an upstream activation sequence (UAS) for transcription. A null allele of sud1 alleviated the transcriptional defect of the UAS-less sta1 and also suppressed mutations in trans-acting genes (GAM1/SNF2 and GAM3/ADR6) required for transcription of STA1. The mutation also increased expression from various core promoters (CYC1, CUP1, HIS3, PUT1, and PUT2), suggesting that the SUDI protein is a global transcriptional regulator that plays a negative role at or near the TATA element. However, the SUD1 function was ineffective on promoters containing a UAS from either STA1 or GAL10 under derepressed conditions. The sud1 mutation suppressed the salt-sensitive cell growth phenotype caused by elevated levels of the TATA-binding protein (SPT15), further suggesting a transcriptional role for SUD1. sud1 cells showed additional pleiotropic phenotypes: temperature-sensitive (ts) growth, reduced efficiencies of sporulation, and sensitivity to heat shock and nitrogen starvation. The SUD1 gene is predicted to encode a 64 kDa, hydrophilic protein.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 12 (1993), S. 93-98 
    ISSN: 1476-5535
    Keywords: High gravity ; Wheat mash fermentation ; Yeast ; Proline production and excretion ; Osmotic stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary The rate of ethanolic fermentation of high gravity wheat mashes bySaccharomyces cerevisiae was increased by nitrogen sources such as ammonium sulfate or arginine. This stimulation was mediated through increased proliferation of cells. Large quantities of proline, however, were excreted by the yeast into the medium when arginine was added as a nutrient supplement. The amount of proline excreted was proportional to the concentration of arginine supplied. Nitrogen sources such as ammonium sulfate or lysine enhanced the production of proline from arginine and its excretion into the medium. Results show that the stimulation of very high gravity fermentation by arginine is not merely through provision of a source of nitrogen but also because it serves as a precursor for the production of proline, a compound which may play a significant role in alleviating the effects of osmotic stress.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 9 (1992), S. 229-234 
    ISSN: 1476-5535
    Keywords: Heat shock protein (HSP) ; Yeast ; Saccharomyces ; Viability ; Thermotolerance ; Ethanol tolerance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Heat shock and ethanol stress of brewing yeast strains resulted in the induction of a set of proteins referred to as heat shock proteins (HSPs). At least six strongly induced HSPs were identified in a lager brewing strain and four HSPs in an ale brewing strain. Four of these HSPs with molecular masses of approximately 70, 38, 26 and 23 kDa were also identified in two laboratory strains ofSaccharomyces cerevisiae. The appearance of HSPs correlated with increased survival of strains at elevated temperatures and high concentrations of ethanol. These results suggest that HSPs may play a role in the ethanol and thermotolerance of yeasts. The properties of these proteins and membrane fatty acids in relation to heat and ethanol shock are being investigated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 48 (1992), S. 172-178 
    ISSN: 1420-9071
    Keywords: Yeast ; protein degradation ; ubiquitin conjugating enzymes ; signals for proteolysis ; stress response
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Selective degradation of cellular proteins serves to eliminate abnormal proteins and to mediate the turnover of certain short-lived proteins, many of which have regulatory functions. In eukaryotes a major pathway for selective protein degradation is ATP-dependent and is mediated by the ubiquitin system. This pathway involves substrate recognition by components of a ubiquitin-protein ligase system, covalent attachment of ubiquitin moieties to proteolytic substrates, and subsequent degradation of these conjugates by a multicatalytic protease complex. Recent genetic evidence suggests that the remarkable selectivity of this process is largely controlled at the level of substrate recognition by the ubiquitin ligase system. InSaccharomyces cerevisiae, ubiquitin-conjugating enzymes UBC1, UBC4 and UBC5 have been identified as key components of this highly conserved degradation pathway. Genetic analysis indicates that ubiquitin-dependent proteolysis is essential for cell viability and that UBC4 and UBC5 enzymes are essential components of the eukaryotic stress response.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    ISSN: 1432-0983
    Keywords: Yeast ; Mitochondria ; Cytochrome oxidase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have analyzed a mutation in the mitochondrial gene oxi3 coding for subunit I of cytochrome-oxidase in the yeast Saccharomyces cerevisiae. This mutation replaces one of the seven invariant histidines of the polypeptide (position 378) by a tyrosine, and leads to a respiratory deficient phenotype. A total of 157 revertants, which have recovered the ability to grow on a respiratory substrate, have been selected from this mutant (tyrosine 378). The nature of the reversion has been analysed by a rapid screening procedure and 32 of the revertants have been sequenced. They are all true backmutations reintroducing the histidine in position 378. This very exceptional situation suggests that this histidine is a ligand of the redox center of cytochrome oxidase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    ISSN: 1432-0983
    Keywords: Yeast ; DNA-polymerase α ; Cell cycle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The 5′ ACGCGT3′ MluI motif, which is found in the upstream region of several yeast DNA-synthesis genes which are periodically expressed during the mitotic cell-cycle, is present twice in the 5′ non-coding region of the DNA-polymerase α gene (POL1). Deletion, of the most distal repeat does not affect POL1 transcription, while the adjacent 40 base-pair (bp) downstream sequence is necessary both for the proper level and the fluctuation of POL1 mRNA. This region contains the 5′ACGCGTCGCGT3′ sequence, which is sufficient to control periodic transcription of a CYC1-lacZ reporter gene with the same kinetics observed for POL1. The adjacent 29 bp AT-rich region does not show any activity by itself, but it acts synergistically in conjunction with at least one MluI hexamer to stimulate CYC1-lacZ expression. By further deletion analysis, DNA sequences necessary to initiate POL1 transcription at the proper sites have also been identified.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 21 (1992), S. 203-206 
    ISSN: 1432-0983
    Keywords: Yeast ; Galactokinase ; Mutant selection
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The galactose analogue 2-deoxy-galactose (2DG) has been widely used to select for mutations in the gene encoding the galactose pathway enzyme galactokinase (GalK). We have tested the effect of 2DG on Candida albicans to see if it could be used to obtain GalK- mutants in this diploid asexual yeast. 2DG was shown to be toxic to wild-type cells. Enzyme assays demonstrated that 2DG can induce GalK as efficiently as galactose. Examination of the initital rate of galactose uptake indicated that the galactose transport system is constitutive. 2DG-resistant mutants were isolated from mutagenized cultures and shown to have very low levels of GalK activity. The potential genetic applications of this system of direct mutant selection are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    ISSN: 1432-0983
    Keywords: Repressor ; Zinc finger ; Leucine zipper ; GATA-1 ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The UGA43 gene of Saccharomyces cerevisiae is required for repression of inducible genes involved in the utilization of 4-aminobutyric acid (GABA) or urea as nitrogen sources. The UGA43 gene has been cloned by complementation of a uga43 mutation. The N-terminal region of the UGA43 protein is very similar to the DNA-binding zinc-finger region typical of the GATA regulatory factor family in vertebrates. UGA43 is the first reported instance of a GATA protein with a negative regulatory function. The C-terminal region of the predicted UGA43 protein contains a putative leucine zipper. Sequencing of three uga43 mutant alleles suggests that the GATA and putative leucine-zipper regions are both required for the repressive activity of UGA43. UGA43 appears to be a highly regulated gene. On “poor” nitrogen sources, UGA43 transcripts are measured at high levels whereas they are nearly undetectable in conditions of nitrogen catabolite repression. The levels measured on “poor” nitrogen sources are further increased in uga43 mutant cells, suggesting that UGA43 exerts negative autoregulation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    ISSN: 1432-0983
    Keywords: Yeast ; cAMP ; RAS ; GAP
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The ccs1-1 mutation of Saccharomyces cerevisiae, which has been previously described, is associated with an increase in cytochrome content, in respiration, and in ATP synthesis. In addition, this mutation leads to the same phenotype as cells de-regulated in the cAMP pathway. From a yeast genomic library, we have isolated a DNA fragment in a recombinant plasmid pCD1 which complements the ccs1-1 mutation. Homologous integration of this DNA in the genome occurs at the CCS1 locus. An 11 kb of the DNA insert is necessary for complementation. Sequencing part of the fragment identifies CCS1 as the IRA2 gene. The IRA2 gene is known to encode an attenuator of RAS gene product activity which stimulates the GTPase activity of the RAS proteins. This result underlines the involvement of cAMP-dependent phosphorylation in mitochondrial function. We present the sequence of 1 kb DNA upstream of the putative ATG of the IRA2/CCS1 gene product which is devoid of an ORF and could contain several regulatory sites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    ISSN: 1432-0983
    Keywords: Yeast ; Mitochondria ; Aminoacyl-tRNA synthetase ; RNA splicing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The mitochondrial leucyl-tRNA synthetase (mLRS) of Saccharomyces cerevisiae is involved in both mitochondrial protein synthesis and pre-mRNA splicing. We have created mutations in the regions HIGH, GWD and KMSKS, which are involved in ATP-, amino acid-and tRNA-binding respectively, and which have been conserved in the evolution of group I tRNA synthetases. The mutants GRD and NMSKS have no discernible phenotype. The mutants AWD and ARD act as null alleles and lead to the production of 100% cytoplasmic petites. The mutants HIGN, NIGH and KMSNS are unable to grown on glycerol even in the presence of an intronless mitochondrial genome and accumulate petites to a greater extent than the wild-type but less than 40%. Experiments with an imported bI4 maturase indicate that the lesion in these mutations primarily affects the synthetase and not the splicing functions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    ISSN: 1432-0983
    Keywords: Yeast ; 2 μm plasmid ; Mitotic recombination ; Coincident conversion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The influence of the 2 μm plasmid on homologous recombination in the right arm of chromosome XV of the yeast Saccharomyces cerevisiae has been examined. No differences between spontaneous mitotic recombination rates in [cir 0] and [cir +] derivatives of two yeast diploid tester strains were detected. In the course of analysis an unusually high coincident conversion frequency at ADE2, HIS3, and two RFLP loci adjacent to ADE2, was observed. The character of coincident homozygotization of linked markers argues for a “break-and-replicate” mechanism underlying the coincident conversion events.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 22 (1992), S. 277-282 
    ISSN: 1432-0983
    Keywords: Yeast ; DNA-repair ; Mutation-deficient mutant ; Nucleotide-binding consensus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The REV2 gene of Saccharomyces cerevisiae was cloned and sequenced; it contains an open reading frame of 1985 bp with a coding potential of 662 amino acids. Interruption of the chromosomal REV2 gene by integrating the URA3 gene coupled with partial deletion of the 3′ terminal region produced viable haploid rev2Δ mutants. This indicates that the REV2 gene is non-essential for growth. The rev2Δ mutant is slightly more UV-sensitive than strains carrying various rev2 alleles (rev2-1, rev2x, rad5-1, rad5-8). The putative Rev2 protein is probably a globular protein containing a highly conserved nucleotide-binding site and two zinc-finger domains.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 22 (1992), S. 335-336 
    ISSN: 1432-0983
    Keywords: Yeast ; Rapid transformation ; Cell age
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We present a simplified and rapid method for the transformation of yeast cells by electroporation. Stationary cells, scraped off the agar of Petri dish cultures stored in the refrigerator for up to 6 weeks, are suspended in sorbitol buffer, spun down by gentle centrifugation, transferred into the electroporation cuvette, and immediately subjected to transformation via electroporation. Transformation efficiency of this 10-min method, which does not require the preparation of cell cultures, is about 10% of the hitherto best performing transformation procedure using cells of defined growth phase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 21 (1992), S. 241-247 
    ISSN: 1432-0983
    Keywords: Yeast ; Transcription ; Mitochondria ; RNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In yeast (S. cerevisiae) the stringent response is known to include rapid, selective, and severe transcriptional curtailment for genes specifying cytoplasmic rRNAs and r-proteins. We have shown that transcription of the mitochondrial 21S rRNA gene is also congruently and selectively curtailed during the yeast stringent response. Using an in vitro transcription assay with intact organelles from both ϱ+ and ϱ− strains, we show here that the mitochondrial stringent response includes not only transcription of the 21S and 16S rRNA genes, but also that of organellar genes specifying non-mitoribosome-related products. Stringent organellar transcriptional curtailment is identical when cells are starved for a required (marker) amino acid or when they are subjected to nutritional downshift, and the relative level of that transcriptional curtailment following either perturbation is the same in cells growing on fermentative (repressing) or purely respiratory carbon sources. These results confirm that the mechanism governing mitochondrial gene expression during a stringent response is specified outside the organelle, and they show that this transcriptional control mechanism is not immediately subject to glucose repression. In all strains examined, stringent organellar gene expression requires a mitochondrial promoter, suggesting that the regulatory mechanism which functions during the stringent response operates primarily at transcriptional initiation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    ISSN: 1432-0983
    Keywords: Yeast ; Cadmium resistance ; Metallothionein gene ; CUP 1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A cadmium-resistant strain of Saccharomyces cerevisiae produces a cadmium metallothionein with the same characteristics as the copper metallothionein that is encoded by CUP 1 in a copper-resistant strain. The structural gene for metallothionein from the cadmium-resistant strain resembles CUP 1 in terms of the fragmentation patterns generated by restriction enzymes. Furthermore, the gene may be amplified as 2.0 kb repeating units in both the cadmium-resistant and the copperresistant strains. However, transformants with a plasmid that carried the metallothionein gene from the cadmiumresistant strain were resistant to copper but not to cadmium. It appears that the same metallothionein gene, CUP 1, is amplified in both cadmium- and copper-resistant yeasts. However, the mechanism for the cadmiumspecific inducibility of the gene may be restricted to the cadmium-resistant strain.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    ISSN: 1432-0983
    Keywords: Drug resistance ; Yeast ; Positive activator
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The network of genes which mediates multiple drug resistance in yeast includes, among others, the PDR1 gene, which encodes a putative regulator of gene expression, and PDR5, a locus whose amplification leads to resistance. We demonstrate that disruption of PDR5 causes marked hypersensitivity not only to cycloheximide but also to sulphometuron methyl and the mitochondrial inhibitors chloramphenicol, lincomycin, erythromycin and antimycin. Genetic analysis of double mutants containing an insertion in PDR5 (pdr5:Tn5), which renders cells hypersensitive to cycloheximide, and a pdr1 mutation, which confers resistance to this inhibitor, indicates that the expression of resistance requires a functional PDR5 gene. The same interdependency is observed for chloramphenicol, but not for oligomycin, lincomycin, crythromycin or sulphometuron methyl. Northern analysis of PDR1 and PDR5 transcripts reveals that the 5.2 kbp PDR5 transcript is overexpressed in pdr1 (resistant) mutants, but underexpressed in a disruption of PDR1. These observations provide strong experimental support for our former proposal that the PDR5 gene is a target for regulation by the PDR1 gene product.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 21 (1992), S. 83-84 
    ISSN: 1432-0983
    Keywords: Yeast ; Transformation ; Thio compound ; Stationary phase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A fast yeast-transformation technique has been developed by adding thio compounds to alkali-ion based protocols and incubating at 45°C. This procedure is especially recommended for cells from stationary phase at a density up to 2.5×108 cells/ml. It involves only one step for the preparation and transformation of competent cells within 30 min. The yield was more than 104 transformants/μg plasmid DNA. This protocol is easy to scale up for many DNA samples and is also applicable for yeast cells from different types of storages.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    ISSN: 1432-0983
    Keywords: Transcription ; Recombination ; Yeast ; Gene conversion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Several investigators have reported that transcription stimulates some types of mitotic recombination in the yeast Saccharomyces cerevisiae. We find that mutations that reduce the rate of trancription of the yeast HIS4 gene in vegetative cells reduce the frequency of mitotic, but not meiotic, recombination events.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 21 (1992), S. 309-318 
    ISSN: 1432-0983
    Keywords: Yeast ; Aneuploidy ; Chromosomes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The arg4–8 and cup1 s markers comprise a copy-number-dependent signal device in the yeast Saccharomyces cerevisiae. These alleles permit reliable discrimination between euploid and disomic haploids as well as between euploid and trisomic diploids. To investigate and compare inherent inter-chromosomal differences as regards propensity for hyperploidy, we transplaced arg4–8 and cup1 s by deleting them from chromosome VIII and then re-introducing them at the leu2 locus on chromosome III. The rate of chromosome gain was significantly greater for the chromosome III construct compared to the native chromosome VIII, in both diploid and haploid strains. In addition, more coincident aneuploidy for other chromosomes was found among chromosome VIII hyperploids compared to chromosome III hyperploids.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    ISSN: 1432-0983
    Keywords: Yeast ; Saccharomyces cerevisiae ; Lysis mutants ; Plasmid stability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The autonomously replicating plasmid YEpSS1, containing the S. cerevisiae SOD1 and SRB1 genes, was highly unstable in a wild-type strain. When transformed into a fragile srb1-1 mutant host, the same plasmid displayed different characteristics depending on the growth medium used. Both batch and continuous culture experiments demonstrated that the plasmid was very unstable when the transformed strain SLU15 was grown in the presence of an osmotic stabiliser (10% w/v sorbitol). However, in the absence of the osmoticum, nearly 100% of the cells retained the plasmid and produced the Sod1 protein after 80 generations of growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...