ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (20)
  • Articles (OceanRep)  (20)
  • Copernicus Publications (EGU)  (11)
  • AGU (American Geophysical Union)  (6)
  • Wiley  (6)
  • ASLO (Association for the Sciences of Limnology and Oceanography)
  • American Meteorological Society
  • IFM-GEOMAR
  • Public Library of Science
  • Springer Nature
  • 2020-2022  (20)
  • 1995-1999
  • 2020  (20)
Collection
  • Other Sources  (20)
Source
  • Articles (OceanRep)  (20)
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences Discussions .
    Publication Date: 2021-03-05
    Description: Nitrogen fixers, or diazotrophs, play a key role in the carbon and nitrogen cycle of the world oceans, but the controlling mechanisms are not comprehensively understood yet. The present study compares two paradigms on the ecological niche of diazotrophs in an Earth System Model (ESM). In our standard model configuration, which is representative for most of the state-of-the-art pelagic ecosystem models, diazotrophs take advantage of zooplankton featuring a lower food preference for diazotrophs than for ordinary phytoplankton. We compare this paradigm with the idea that diazotrophs are more competitive under oligotrophic conditions, characterized by low (dissolved, particulate, organic and inorganic) phosphorous availability. Both paradigms are supported by observational evidence and lead to a similar good agreement to the most recent and advanced observation-based nitrogen fixation estimate in our ESM framework. Further, we illustrate that the similarity between the two paradigms breaks in a RCP 8.5 anthropogenic emission scenario. We conclude that a more advanced understanding of the ecological niche of diazotrophs is mandatory for assessing the cycling of essential nutrients, especially under changing environmental conditions. Our results call for more in-situ measurements of cyanobacteria biomass if major controls of nitrogen fixation in the oceans are to be dissected.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  (Submitted) Journal of Geophysical Research: Solid Earth .
    Publication Date: 2021-01-07
    Description: It is generally assumed that seismic activity at volcanoes is closely connected to degassing processes. Intuitively, one would therefore expect a good correlation between degassing rates and seismic amplitude. However, both examples and counterexamples of such a correlation exist. In this study on Villarrica volcano (Chile), we pursued a different approach to relate gas flux and volcanic seismicity using 3 months of SO$_2$ flux rate measurements and 12 days of seismic recordings from early 2012.〈br /> We analyzed the statistical distributions of interevent times between transient seismic waveforms commonly associated with explosions and between peaks in the degassing time series.〈br /> Both event types showed a periodic recurrence with a mode of 20-25 s and around 1 h for transients and degassing, respectively. The normalized interevent times were fitted by almost identical log-normal distributions. Given the actually very different time scales, this similarity potentially indicates a scale-invariant phenomenon. We could reproduce these empirical findings by modelling the occurrence of transients as a renewal process from which the degassing events were derived recursively with increasing probability since the previous degassing event. In this model, the seismic transients could be either produced by degassing processes within the conduit or by gas release at the lava lake surface while the longer intervals of the degassing events may be explained by accumulation of gas either in the magma column or in the juvenile gas plume.〈br /> Additionally, we analyzed volcano-tectonic events, which behaved very differently from the transients. They showed the clustered occurrence of tectonic earthquakes.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-08
    Description: We present a new set of global and local sea‐level projections at example tide gauge locations under the RCP2.6, RCP4.5 and RCP8.5 emissions scenarios. Compared to the CMIP5‐based sea‐level projections presented in IPCC AR5, we introduce a number of methodological innovations, including: (i) more comprehensive treatment of uncertainties; (ii) direct traceability between global and local projections; (iii) exploratory extended projections to 2300 based on emulation of individual CMIP5 models. Combining the projections with observed tide gauge records, we explore the contribution to total variance that arises from sea‐level variability, different emissions scenarios and model uncertainty. For the period out to 2300 we further breakdown the model uncertainty by sea‐level component and consider the dependence on geographic location, time horizon and emissions scenario. Our analysis highlights the importance of variability for sea‐level change in the coming decades and the potential value of annual‐to‐decadal predictions of local sea‐level change. Projections to 2300 show a substantial degree of committed sea‐level rise under all emissions scenarios considered and highlights the reduced future risk associated with RCP2.6 and RCP4.5 compared to RCP8.5. Tide gauge locations can show large (〉 50%) departures from the global average, in some cases even reversing the sign of the change. While uncertainty in projections of the future Antarctic ice dynamic response tends to dominate post‐2100, we see a substantial differences in the breakdown of model variance as a function of location, timescale and emissions scenario.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-01-08
    Description: Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015–2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between −7.8 and 30.0 cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar to present-day conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between −6.1 and 8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28 mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 climate models show an additional mass loss of 0 and 3 cm of SLE on average compared to simulations done under present-day conditions for the two CMIP5 forcings used and display limited mass gain in East Antarctica.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Wiley
    In:  In: Bergey's Manual of Systematics of Archaea and Bacteria (BMSAB). , ed. by Brenner, D. J., Krieg, N. R. and Staley, J. T. Wiley, New York, USA, pp. 506-507. ISBN 978-1-118-96060-8
    Publication Date: 2020-11-27
    Description: Proteobacteria Alphaproteobacteria Rhizobiales Hyphomicrobiaceae Blas.to.chlo'ris. Gr. masc. n. blastos bud shoot; Gr. masc. adj. chloros green; N.L. fem. n. Blastochloris green bud shoot. Proteobacteria / Alphaproteobacteria / Rhizobiales / Hyphomicrobiaceae / Blastochloris Blastochloris species are anoxygenic phototrophic Alphaproteobacteria that have bacteriochlorophyll b in their photosynthetic reaction centers. Crystals of the photosynthetic reaction centers of Blastochloris viridis were the first that have been studied in high‐resolution structure analysis at 3 Å resolution. Internal photosynthetic membranes are present as lamellae underlying and parallel to the cytoplasmic membrane. Cells are rod shaped to ovoid and exhibit polar growth, budding, and asymmetric cell division and form rosette‐like cell aggregates. They are motile by means of subpolar flagella and stain Gram‐negative. Straight‐chain monounsaturated C18:1 is the predominant component of cellular fatty acids. Ubiquinones and menaquinones are present, and the lipopolysaccharides are characterized by a 2,3‐diamino‐2,3‐deoxy‐d‐glucose (DAG)‐containing, phosphate‐free lipid A with amide‐bound C14:0 3OH. DNA G + C content (mol%): 63.8–68.3. Type species: Blastochloris viridis (Drews and Giesbrecht 1966) Hiraishi 1997 (Rhodopseudomonas viridis Drews and Giesbrecht 1966).
    Type: Book chapter , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Eos, 101 . pp. 1-8.
    Publication Date: 2021-01-08
    Description: Ocean experts are engaged in a long-term effort to envision, develop, and implement best practices for meeting today’s needs while preserving ocean resources for future generations
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-04-09
    Description: The Last Glacial Maximum (LGM, ~ 21,000 years ago) has been a major focus for evaluating how well state-of-the-art climate models simulate climate changes as large as those expected in the future using paleoclimate reconstructions. A new generation of climate models have been used to generate LGM simulations as part of the Palaeoclimate Modelling Intercomparison Project (PMIP) contribution to the Coupled Model Intercomparison Project (CMIP). Here we provide a preliminary analysis and evaluation of the results of these LGM experiments (PMIP4-CMIP6) and compare them with the previous generation of simulations (PMIP3-CMIP5). We show that the PMIP4-CMIP6 are globally less cold and less dry than the PMIP3-CMIP5 simulations, most probably because of the use of a more realistic specification of the northern hemisphere ice sheets in the latest simulations although changes in model configuration may also contribute to this. There are important differences in both atmospheric and ocean circulation between the two sets of experiments, with the northern and southern jet streams being more poleward and the changes in the Atlantic Meridional Overturning Circulation being less pronounced in the PMIP4-CMIP6 simulations than in the PMIP3-CMIP5 simulations. Changes in simulated precipitation patterns are influenced by both temperature and circulation changes. Differences in simulated climate between individual models remain large so, although there are differences in the average behaviour across the two ensembles, the new simulation results are not fundamentally different from the PMIP3-CMIP5 results. Evaluation of large-scale climate features, such as land-sea contrast and polar amplification, confirms that the models capture these well and within the uncertainty of the palaeoclimate reconstructions. Nevertheless, regional climate changes are less well simulated: the models underestimate extratropical cooling, particularly in winter, and precipitation changes. The spatial patterns of increased precipitation associated with changes in the jet streams are also poorly captured. However, changes in the tropics are more realistic, particularly the changes in tropical temperatures over the oceans. Although these results are preliminary in nature, because of the limited number of LGM simulations currently available, they nevertheless point to the utility of using paleoclimate simulations to understand the mechanisms of climate change and evaluate model performance.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-08-11
    Description: Keypoints This contribution is a reply on a comment submitted by A. Argnani. The alternate interpretation of the wide-angle seismic model is discussed. The Alfeo Fault system is proposed to be the current location of STEP fault. Abstract Andrea Argnani in his comment on Dellong et al., 2020 (Geometry of the deep Calabrian subduction (Central Mediterranean Sea) from wide‐angle seismic data and 3D gravity modeling), proposes an alternate interpretation of the wide-angle seismic velocity models presented by Dellong et al., 2018 and Dellong et al., 2020 and proposes a correction of the literature citations in these paper. In this reply, we discuss in detail all points raised by Andrea Argnani.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Springer Nature
    In:  In: Encyclopedia of Solid Earth Geophysics. , ed. by Gupta, H. Encyclopedia of Earth Sciences Series . Springer Nature, Cham, Switzerland, , 11 pp. ISBN 978-3-030-10475-7
    Publication Date: 2021-02-10
    Description: The Trans-European Suture Zone (TESZ) is the transition zone from the Precambrian East European Craton in the north and east to the younger Phanerozoic mobile belts to the south and west. It is the most prominent lithospheric tectonic feature of Europe. The term Trans-European Suture Zone was only adapted around year 2000 during the Pan-European EUROPROBE program of the European Science Foundation. Until then, parts of the zone were termed Teisseyre-Tornquist Zone, Sorgenfrei-Tornquist Zone, Trans-European Fault, and Tornquist Fan.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-10-14
    Description: This paper presents a novel data set of regional climate model simulations over Europe that significantly improves our ability to detect changes in weather extremes under low and moderate levels of global warming. The data set provides a unique and physically consistent data set, as it is derived from a large ensemble of regional climate model simulations. These simulations were driven by two global climate models from the international HAPPI consortium. The set consists of 100 × 10-year simulations and 25 × 10-year simulations, respectively. These large ensembles allow for regional climate change and weather extremes to be investigated with an improved signal-to-noise ratio compared to previous climate simulations. The changes in four climate indices for temperature targets of 1.5 °C and 2.0 °C global warming are quantified: number of days per year with daily mean near-surface apparent temperature of 〉 28 °C (ATG28); the yearly maximum 5-day sum of precipitation (RX5day); the daily precipitation intensity of the 50-yr return period (RI50yr); and the annual Consecutive Dry Days (CDD). This work shows that even for a small signal in projected global mean temperature, changes of extreme temperature and precipitation indices can be robustly estimated. For temperature related indices changes in percentiles can also be estimated with high confidence. Such data can form the basis for tailor-made climate information that can aid adaptive measures at a policy-relevant scales, indicating potential impacts at low levels of global warming at steps of 0.5 °C.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...