ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (18)
  • Articles (OceanRep)  (18)
  • AMS (American Meteorological Society)  (18)
  • AGU
  • AGU (American Geological Union)
  • American Meteorological Society
  • Springer Nature
  • 2000-2004  (18)
  • 1995-1999
  • 1965-1969
  • 2004  (18)
Collection
  • Other Sources  (18)
Source
  • Articles (OceanRep)  (18)
Years
  • 2000-2004  (18)
  • 1995-1999
  • 1965-1969
Year
  • 1
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 17 (19). pp. 3761-3774.
    Publication Date: 2017-08-23
    Description: The decadal-scale variability in the tropical Pacific has been analyzed herein by means of observations and numerical model simulations. The two leading modes of the sea surface temperature (SST) variability in the central western Pacific are a decadal mode with a period of about 10 yr and the ENSO mode with a dominant period of about 4 yr. The SST anomaly pattern of the decadal mode is ENSO like. The decadal mode, however, explains most variance in the western equatorial Pacific and off the equator. A simulation with an ocean general circulation model (OGCM) forced by reanalysis data is used to explore the origin of the decadal mode. It is found that the variability of the shallow subtropical–tropical overturning cells is an important factor in driving the decadal mode. This is supported by results from a multicentury integration with a coupled ocean–atmosphere general circulation model (CGCM) that realistically simulates tropical Pacific decadal variability. Finally, the sensitivity of the shallow subtropical–tropical overturning cells to greenhouse warming is discussed by analyzing the results of a scenario integration with the same CGCM.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 34 . pp. 817-843.
    Publication Date: 2020-08-04
    Description: The current system east of the Grand Banks was intensely observed by World Ocean Circulation Experiment (WOCE) array ACM-6 during 1993–95 with eight moorings, reaching about 500 km out from the shelf edge and covering the water column from about 400-m depth to the bottom. More recently, a reduced array by the Institut für Meerskunde (IfM) at Kiel, Germany, of four moorings was deployed during 1999–2001, focusing on the deep-water flow near the western continental slope. Both sets of moored time series, each about 22 months long, are combined here for a mean current boundary section, and both arrays are analyzed for the variability of currents and transports. A mean hydrographic section is derived from seven ship surveys and is used for geostrophic upper-layer extrapolation and isopycnal subdivision of the mean transports into deep-water classes. The offshore part of the combined section is dominated by the deep-reaching North Atlantic Current (NAC) with currents still at 10 cm s−1 near the bottom and a total northward transport of about 140 Sv (Sv ≡ 106 m3 s−1), with the details depending on the method of surface extrapolation used. The mean flow along the western boundary was southward with the section-mean North Atlantic Deep Water outflow determined to be 12 Sv below the σθ = 27.74 kg m−3 isopycnal. However, east of the deep western boundary current (DWBC), the deep NAC carries a transport of 51 Sv northward below σθ = 27.74 kg m−3, resulting in a large net northward flow in the western part of the basin. From watermass signatures it is concluded that the deep NAC is not a direct recirculation of DWBC water masses. Transport time series for the DWBC variability are derived for both arrays. The variance is concentrated in the period range from 2 weeks to 2 months, but there are also variations at interannual and longer periods, with much of the DWBC variability being related to fluctuations and meandering of the NAC. A significant annual cycle is not recognizable in the combined current and transport time series of both arrays. The moored array results are compared with other evidence on deep outflow and recirculation, including recent models of different types and complexity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 17 (22). pp. 4301-4315.
    Publication Date: 2020-08-04
    Description: Simulations and seasonal forecasts of tropical Pacific SST and subsurface fields that are based on the global Consortium for Estimating the Circulation and Climate of the Ocean (ECCO) ocean-state estimation procedure are investigated. As compared to similar results from a traditional ENSO simulation and forecast procedure, the hindcast of the constrained ocean state is significantly closer to observed surface and subsurface conditions. The skill of the 12-month lead SST forecast in the equatorial Pacific is comparable in both approaches. The optimization appears to have better skill in the SST anomaly correlations, suggesting that the initial ocean conditions and forcing corrections calculated by the ocean-state estimation do have a positive impact on the predictive skill. However, the optimized forecast skill is currently limited by the low quality of the statistical atmosphere. Progress is expected from optimizing a coupled model over a longer time interval with the coupling statistics being part of the control vector.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 34 (11). pp. 2398-2412.
    Publication Date: 2020-08-04
    Description: In the eastern South Pacific Ocean, at a depth of about 200 m, a salinity minimum is found. This minimum is associated with a particular water mass, the “Shallow Salinity Minimum Water” (SSMW). SSMW outcrops in a fresh tongue (Smin) centered at about 45°S. The Smin appears to emanate from the eastern boundary, against the mean flow. The watermass transformation that creates SSMW and Smin is investigated here. The Smin and SSMW are transformed from saltier and warmer waters originating from the western South Pacific. The freshening and cooling occur when the water is advected eastward at the poleward side of the subtropical gyre. Sources of freshening and cooling are air–sea exchange and advection of water from south of the subtropical gyre. A freshwater and heat budget for the mixed layer reveals that both sources equally contribute to the watermass transformation in the mixed layer. The freshened and cooled mixed layer water is subducted into the gyre interior along the southern rim of the subtropical gyre. Subduction into the zonal flow restricts the transformation of interior properties to diffusion only. A simple advection/diffusion balance reveals diffusion coefficients of order 2000 m2 s−1. The tongue shape of the Smin is explained from a dynamical viewpoint because no relation to a positive precipitation–evaporation balance was found. Freshest Smin values are found to coincide with slowest eastward mixed layer flow that accumulates the largest amounts of freshwater in the mixed layer and creates the fresh tongue at the sea surface. Although the SSMW is the densest and freshest mode of water subducted along the South American coast, the freshening and cooling in the South Pacific affect a whole range of densities (25.0–26.8 kg m−3). The transformed water turns northward with the gyre circulation and contributes to the hydrographic structure of the gyre farther north. Because the South Pacific provides most of the source waters that upwell along the equatorial Pacific, variability in South Pacific hydrography may influence equatorial Pacific hydrography. Because one-half of the transformation is found to be controlled through Ekman transport, variability in wind forcing at the southern rim of the subtropical gyre may be a source for variability of the equatorial Pacific.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 34 (1). pp. 293-305.
    Publication Date: 2018-04-11
    Description: An analytical model is developed to study the tidally induced mean circulation in the frontal zone. Four distinct forcing mechanisms are identified, which result in the generation of the counterclockwise Bernoulli cell, the clockwise Ekman cell, the clockwise frontal cell, and the Stokes drift (facing in the direction with the shallow water to the left). The decomposition of the cross-frontal circulation provides a dynamical framework for interpreting and understanding its complex structure. To illustrate the underlying physics, three model configurations are considered pertaining to a homogenous ocean and winter and summer fronts. For a homogeneous ocean, the circulation is dominated by three cells; for the winter front, the offshore Bernoulli cell is strengthened; and for the summer front, two counterrotating cells are found in the vertical direction, associated with the two branches of the front. The dependence of the cell structure on the Ekman, Burger, and other dimensionless numbers is examined.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-09-07
    Description: A multi-model ensemble-based system for seasonal-to-interannual prediction has been developed in a joint European project known as DEMETER (Development of a European Multimodel Ensemble Prediction System for Seasonal to Interannual Prediction). The DEMETER system comprises seven global atmosphere–ocean coupled models, each running from an ensemble of initial conditions. Comprehensive hindcast evaluation demonstrates the enhanced reliability and skill of the multimodel ensemble over a more conventional single-model ensemble approach. In addition, innovative examples of the application of seasonal ensemble forecasts in malaria and crop yield prediction are discussed. The strategy followed in DEMETER deals with important problems such as communication across disciplines, downscaling of climate simulations, and use of probabilistic forecast information in the applications sector, illustrating the economic value of seasonal-to-interannual prediction for society as a whole.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-08-04
    Description: This study focuses on an important aspect of air–sea interaction in models, namely, large-scale, spurious heat fluxes due to false pathways of the Gulf Stream and North Atlantic Current (NAC) in the “storm formation region” south and east of Newfoundland. Although high-resolution eddy-resolving models show some improvement in this respect, results are sensitive to poorly understood, subgrid-scale processes for which there is currently no complete, physically based parameterization. A simple method to correct an ocean general circulation model (OGCM), acting as a practical substitute for a physically based parameterization, is explored: the recently proposed “semiprognostic method,” a technique for adiabatically adjusting flow properties of a hydrostatic OGCM. The authors show that application of the method to an eddy-permitting model of the North Atlantic Ocean yields more realistic flow patterns and watermass characteristics in the Gulf Stream and NAC regions; in particular, spurious surface heat fluxes are reduced. Four simple modifications to the method are proposed, and their benefits are demonstrated. The modifications successfully account for three drawbacks of the original method: reduced geostrophic wave speeds, damped mesoscale eddy activity, and spurious interaction with topography. It is argued that use of a corrected (eddy permitting) OGCM in a coupled modeling system for simulating present climate (as now becomes possible because of increasing computer power) should lead to a more realistic simulation in regions of strong air–sea interaction as compared with that obtained with an uncorrected model. The method is also well suited for the simulation of the uptake and transport of passive tracers, such as anthropogenic carbon dioxide or components of ecosystem models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 34 (3). pp. 566-581.
    Publication Date: 2020-08-04
    Description: Two major water masses dominate the deep layers in the Mariana and Caroline Basins: the Lower Circumpolar Water (LCPW), arriving from the Southern Ocean along the slopes north of the Marshall Islands, and the North Pacific Deep Water (NPDW) reaching the region from the northeastern Pacific Ocean. Hydrographic and moored observations and multibeam echosounding were performed in the East Mariana and the East Caroline Basins to detail watermass distributions and flow paths in the area. The LCPW enters the East Mariana Basin from the east. At about 13°N, however, in the southern part of the basin, a part of this water mass arrives in a southward western boundary flow along the Izu–Ogasawara–Mariana Ridge. Both hydrographic observations and moored current measurements lead to the conclusion that this water not only continues westward to the West Mariana Basin as suggested before, but also provides bottom water to the East Caroline Basin. The critical throughflow regions were identified by multibeam echosounding at the Yap Mariana Junction between the East and West Mariana Basins and at the Caroline Ridge between the East Mariana and East Caroline Basins. The throughflow is steady between the East and West Mariana Basins, whereas more variability is found at the Caroline Ridge. At both locations, throughflow fluctuations are correlated with watermass property variations suggesting layer-thickness changes. The total transport to the two neighboring basins is only about 1 Sverdrup (1Sv ≡ 106 m3 s−1) but has considerable impact on the watermass structure in these basins. Estimates are given for the diapycnal mixing that is required to balance the inflow into the East Caroline Basin. Farther above in the water column, the high-silica tongue of NPDW extends from the east to the far southwestern corner of the East Mariana Basin, with transports being mostly southward across the basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-04
    Description: Sea surface temperature (SST) observations in the North Atlantic indicate the existence of strong multidecadal variability with a unique spatial structure. It is shown by means of a new global climate model, which does not employ flux adjustments, that the multidecadal SST variability is closely related to variations in the North Atlantic thermohaline circulation (THC). The close correspondence between the North Atlantic SST and THC variabilities allows, in conjunction with the dynamical inertia of the THC, for the prediction of the slowly varying component of the North Atlantic climate system. It is shown additionally that past variations of the North Atlantic THC can be reconstructed from a simple North Atlantic SST index and that future, anthropogenically forced changes in the THC can be easily monitored by observing SSTs. The latter is confirmed by another state-of-the-art global climate model. Finally, the strong multidecadal variability may mask an anthropogenic signal in the North Atlantic for some decades.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-08-18
    Description: A systematic modular approach to investigate the respective roles of the ocean and atmosphere in setting El Niño characteristics in coupled general circulation models is presented. Several state-of-the-art coupled models sharing either the same atmosphere or the same ocean are compared. Major results include 1) the dominant role of the atmosphere model in setting El Niño characteristics (periodicity and base amplitude) and errors (regularity) and 2) the considerable improvement of simulated El Niño power spectratoward lower frequencywhen the atmosphere resolution is significantly increased. Likely reasons for such behavior are briefly discussed. It is argued that this new modular strategy represents a generic approach to identifying the source of both coupled mechanisms and model error and will provide a methodology for guiding model improvement.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...