ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Bücher  (20)
  • Zeitschriften
  • Bücher (GFZ-OPAC)  (20)
  • E-Books (Allgemein)
  • Potsdam : Universität Potsdam  (20)
  • 2020-2024  (20)
  • 1935-1939
  • 1930-1934
Sammlung
  • Bücher  (20)
  • Zeitschriften
Datenquelle
  • Bücher (GFZ-OPAC)  (20)
  • E-Books (Allgemein)
Sprache
Erscheinungszeitraum
Jahr
Zweigbibliothek
Standort
  • 1
    Signatur: AWI G3-22-94687
    Beschreibung / Inhaltsverzeichnis: Permafrost is warming globally, which leads to widespread permafrost thaw and impacts the surrounding landscapes, ecosystems and infrastructure. Especially ice-rich permafrost is vulnerable to rapid and abrupt thaw, resulting from the melting of excess ground ice. Local remote sensing studies have detected increasing rates of abrupt permafrost disturbances, such as thermokarst lake change and drainage, coastal erosion and RTS in the last two decades. All of which indicate an acceleration of permafrost degradation. In particular retrogressive thaw slumps (RTS) are abrupt disturbances that expand by up to several meters each year and impact local and regional topographic gradients, hydrological pathways, sediment and nutrient mobilisation into aquatic systems, and increased permafrost carbon mobilisation. The feedback between abrupt permafrost thaw and the carbon cycle is a crucial component of the Earth system and a relevant driver in global climate models. However, an assessment of RTS at high temporal resolution to determine the ...
    Materialart: Dissertationen
    Seiten: xxiv, 134 Seiten , Illustrationen, Diagramme, Karten
    Sprache: Englisch
    Anmerkung: Dissertation, Universität Potsdam, 2021 , Table of Contents Abstract Zusammenfassung List of Figures List of Tables Abbreviations 1 Introduction 1.1 Scientific background and motivation 1.1.1 Permafrost and climate change 1.1.2 Permafrost thaw and disturbances 1.1.3 Abrupt permafrost disturbances 1.1.4 Remote sensing 1.1.5 Remote sensing of permafrost disturbances 1.2 Aims and objectives 1.3 Study area 1.4 General data and methods 1.4.1 Landsat and Sentinel-2 1.4.2 Google Earth Engine 1.5 Thesis structure 1.6 Overview of publications and authors’ contribution 1.6.1 Chapter 2 - Comparing Spectral Characteristics of Landsat-8 and Sentinel-2 Same-Day Data for Arctic-Boreal Regions 1.6.2 Chapter 3 - Mosaicking Landsat and Sentinel-2 Data to Enhance LandTrendr Time Series Analysis in Northern High Latitude Permafrost Regions 1.6.3 Chapter 4 - Remote Sensing Annual Dynamics of Rapid Permafrost Thaw Disturbances with LandTrendr 2 Comparing Spectral Characteristics of Landsat-8 and Sentinel-2 Same-Day Data for Arctic-Boreal Regions 2.1 Abstract 2.2 Introduction 2.3 Materials and Methods 2.3.1 Study Sites 2.3.2 Data 2.3.3 Data Processing 2.3.3.1 Filtering Image Collections 2.3.3.2 Creating L8, S2, and Site Masks 2.3.3.3 Preparing Sentinel-2 Surface Reflectance Images in SNAP 2.3.3.4 Applying Site Masks 2.3.4 Spectral Band Comparison and Adjustment 2.4 Results 2.4.1 Spectral Band Comparison 2.4.2 Spectral Band Adjustment 2.4.3 ES and HLS Spectral Band Adjustment 2.5 Discussion 2.6 Conclusions 2.7 Acknowledgements 2.8 Appendix Chapter 2 3 Mosaicking Landsat and Sentinel-2 Data to Enhance LandTrendr Time Series Analysis in Northern High Latitude Permafrost Regions 3.1 Abstract 3.2 Introduction 3.3 Materials and Methods 3.3.1 Study Sites 3.3.2 Data 3.3.3 Data Processing and Mosaicking Workflow 3.3.4 Data Availability Assessment 3.3.5 Mosaic Coverage and Quality Assessment 3.4 Results 3.4.1 Data Availability Assessment 3.4.2 Mosaic Coverage and Quality Assessment 3.5 Discussion 3.6 Conclusions 4 Remote Sensing Annual Dynamics of Rapid Permafrost Thaw Disturbances with LandTrendr 4.1 Abstract 4.2 Introduction 4.3 Study Area and Methods 4.3.1 Study area 4.3.2 General workflow and ground truth data 4.3.3 Data and LandTrendr 4.3.4 Index selection 4.3.5 Temporal Segmentation 4.3.6 Spectral Filtering 4.3.7 Spatial masking and filtering 4.3.8 Machine-learning object filter 4.4 Results 4.4.1 Focus sites 4.4.2 North Siberia 4.5 Discussion 4.5.1 Mapping of RTS 4.5.2 Spatio-temporal variability of RTS dynamics 4.5.3 LT-LS2 capabilities and limitations 4.6 Conclusion 4.7 Appendix 5 Synthesis and Discussion 5.1 Google Earth Engine 5.2 Landsat and Sentinel-2 5.3 Image mosaics and disturbance detection algorithm 5.4 Mapping RTS and their annual temporal dynamics 5.5 Limitations and technical considerations 5.6 Key findings 5.7 Outlook References Acknowledgements
    Standort: AWI Lesesaal
    Zweigbibliothek: AWI Bibliothek
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Signatur: AWI Bio-22-94840
    Beschreibung / Inhaltsverzeichnis: Vegetation change at high latitudes is one of the central issues nowadays with respect to ongoing climate changes and triggered potential feedback. At high latitude ecosystems, the expected changes include boreal treeline advance, compositional, phenological, physiological (plants), biomass (phytomass) and productivity changes. However, the rate and the extent of the changes under climate change are yet poorly understood and projections are necessary for effective adaptive strategies and forehanded minimisation of the possible negative feedbacks. The vegetation itself and environmental conditions, which are playing a great role in its development and distribution are diverse throughout the Subarctic to the Arctic. Among the least investigated areas is central Chukotka in North-Eastern Siberia, Russia. Chukotka has mountainous terrain and a wide variety of vegetation types on the gradient from treeless tundra to northern taiga forests. The treeline there in contrast to subarctic North America and north-western and central Siberia is represented by a deciduous conifer, Larix cajanderi Mayr. The vegetation varies from prostrate lichen Dryas octopetala L. tundra to open graminoid (hummock and non-hummock) tundra to tall Pinus pumila (Pall.) Regel shrublands to sparse and dense larch forests. Hence, this thesis presents investigations on recent compositional and above-ground biomass (AGB) changes, as well as potential future changes in AGB in central Chukotka. The aim is to assess how tundra-taiga vegetation develops under changing climate conditions particularly in Fareast Russia, central Chukotka. Therefore, three main research questions were considered: 1) What changes in vegetation composition have recently occurred in central Chukotka? 2) How have the above-ground biomass AGB rates and distribution changed in central Chukotka? 3) What are the spatial dynamics and rates of tree AGB change in the upcoming millennia in the northern tundra-taiga of central Chukotka? Remote sensing provides information on the spatial and temporal variability of vegetation. I used Landsat satellite data together with field data (foliage projective cover and AGB) from two expeditions in 2016 and 2018 to Chukotka to upscale vegetation types and AGB for the study area. More specifically, I used Landsat spectral indices (Normalised Difference Vegetation Index (NDVI), Normalised Difference Water Index (NDWI) and Normalised Difference Snow Index (NDSI)) and constrained ordination (Redundancy analysis, RDA) for further k-means-based land-cover classification and general additive model (GAM)-based AGB maps for 2000/2001/2002 and 2016/2017. I also used Tandem-X DEM data for a topographical correction of the Landsat satellite data and to derive slope, aspect, and Topographical Wetness Index (TWI) data for forecasting AGB. Firstly, in 2016, taxa-specific projective cover data were collected during a Russian-German expedition. I processed the field data and coupled them with Landsat spectral Indices in the RDA model that was used for k-means classification. I could establish four meaningful land-cover classes: (1) larch closed-canopy forest, (2) forest tundra and shrub tundra, (3) graminoid tundra and (4) prostrate herb tundra and barren areas, and accordingly, I produced the land cover maps for 2000/2001/2002 and 2016/20017. Changes in land-cover classes between the beginning of the century (2000/2001/2002) and the present time (2016/2017) were estimated and interpreted as recent compositional changes in central Chukotka. The transition from graminoid tundra to forest tundra and shrub tundra was interpreted as shrubification and amounts to a 20% area increase in the tundra-taiga zone and 40% area increase in the northern taiga. Major contributors of shrubification are alder, dwarf birch and some species of the heather family. Land-cover change from the forest tundra and shrub tundra class to the larch closed-canopy forest class is interpreted as tree infilling and is notable in the northern taiga. We find almost no land-cover changes in the present treeless tundra. Secondly, total AGB state and change were investigated for the same areas. In addition to the total vegetation AGB, I provided estimations for the different taxa present at the field sites. As an outcome, AGB in the study region of central Chukotka ranged from 0 kg m-2 at barren areas to 16 kg m-2 in closed-canopy forests with the larch trees contributing the highest. A comparison of changes in AGB within the investigated period from 2000 to 2016 shows that the greatest changes (up to 1.25 kg m 2 yr 1) occurred in the northern taiga and in areas where land cover changed to larch closed-canopy forest. Our estimations indicate a general increase in total AGB throughout the investigated tundra-taiga and northern taiga, whereas the tundra showed no evidence of change in AGB within the 15 years from 2002 to 2017. In the third manuscript, potential future AGB changes were estimated based on the results of simulations of the individual-based spatially explicit vegetation model LAVESI using different climate scenarios, depending on Representative Concentration Pathways (RCPs) RCP 2.6, RCP 4.5 and RCP 8.5 with or without cooling after 2300 CE. LAVESI-based AGB was simulated for the current state until 3000 CE for the northern tundra-taiga study area for larch species because we expect the most notable changes to occur will be associated with forest expansion in the treeline ecotone. The spatial distribution and current state of tree AGB was validated against AGB field data, AGB extracted from Landsat satellite data and a high spatial resolution image with distinctive trees visible. The simulation results are indicating differences in tree AGB dynamics plot wise, depending on the distance to the current treeline. The simulated tree AGB dynamics are in concordance with fundamental ecological (emigrational and successional) processes: tree stand formation in simulated results starts with seed dispersion, tree stand establishment, tree stand densification and episodic thinning. Our results suggest mostly densification of existing tree stands in the study region within the current century in the study region and a lagged forest expansion (up to 39% of total area in the RCP 8.5) under all considered climate scenarios without cooling in different local areas depending on the closeness to the current treeline. In scenarios with cooling air temperature after 2300 CE, forests stopped expanding at 2300 CE (up to 10%, RCP 8.5) and then gradually retreated to their pre-21st century position. The average tree AGB rates of increase are the strongest in the first 300 years of the 21st century. The rates depend on the RCP scenario, where the highest are as expected under RCP 8.5. Overall, this interdisciplinary thesis shows a successful integration of field data, satellite data and modelling for tracking recent and predicting future vegetation changes in mountainous subarctic regions. The obtained results are unique for the focus area in central Chukotka and overall, for mountainous high latitude ecosystems.
    Materialart: Dissertationen
    Seiten: 149 Seiten , Illustrationen, Diagramme
    Sprache: Englisch
    Anmerkung: Dissertation, Potsdam, Universität Potsdam, 2022 , Contents Abstract Zusammenfassung Contents Abbreviations Motivation 1 Introduction 1.1 Scientific background 1.2 Study region 1.3 Aims and objectives 2 Materials and methods 3.1 Section 4 - Strong shrub expansion in tundra-taiga, tree infilling in taiga and stable tundra in central Chukotka (north-eastern Siberia) between 2000 and 2017 3.2 Section 5 - Recent above-ground biomass changes in central Chukotka (NE Siberia) combining field-sampling and remote sensing 3.3 Section 6 - Future spatially explicit tree above-ground biomass trajectories revealed for a mountainous treeline ecotone using the individual-based model LAVESI 4 Strong shrub expansion in tundra-taiga, tree infilling in taiga and stable tundra in central Chukotka (north-eastern Siberia) between 2000 and 2017 Abstract 1 Introduction 2 Materials and methods 2.1 Field data collection and processing 2.2 Landsat data, pre-processing and spectral indices processing 2.3 Redundancy analysis (RDA) and classification approaches 3 Results 3.1 General characteristics of the vegetation field data 3.2 Relating field data to Landsat spectral indices in the RDA model 3.3 Land-cover classification 3.4 Land-cover change between 2000 and 2017 4 Discussion 4.1 Dataset limitations and optimisation 4.2 Vegetation changes from 2000/2001/2002 to 2016/2017 Conclusions Acknowledgements Data availability statement References Appendix A. Detailed description of Landsat acquisitions Appendix B. MODIS NDVI time series from 2000 to 2018 Appendix C. Landsat Indices values for each analysed vegetation site Appendix D. Fuzzy c-means classification for interpretation of uncertainties for land-cover mapping Appendix E. Validation of land-cover maps Appendix F. K-means classification results Appendix G. Heterogeneity of natural landscapes and mixed pixels of satellite data Appendix H. Distribution of land-cover classes and their changes by study area 5 Recent above-ground biomass changes in central Chukotka (NE Siberia) combining field-sampling and remote sensing Abstract 1 Introduction 2 Materials and methods 2.1 Study region and field surveys 2.2 Above-ground biomass upscaling and change derivation 3 Results 3.1 Vegetation composition and above-ground biomass 3.2 Upscaling above-ground biomass using GAM 3.3 Change of above-ground biomass between 2000 and 2017 in the four focus areas 4 Discussion 4.1 Recent state of above-ground biomass at the field sites 4.2 Recent state of above-ground biomass upscaled for central Chukotka 4.3 Change in above-ground biomass within the investigated 15–16 years in central Chukotka 5 Conclusions Data availability statement Author contributions Competing interests Acknowledgements References Appendix A. Sampling and above-ground biomass (AGB) calculation protocol for field data 6 Future spatially explicit tree above-ground biomass trajectories revealed for a mountainous treeline ecotone using the individual-based model LAVESI Abstract 1 Introduction 2 Materials and methods 2.1 Study region 2.2 LAVESI model setup, parameterisation, and validation 2.2.4 LAVESI simulation setup for this study 2.2.5 Validation of the model’s performance 3 Results 3.1 Dynamics and spatial distribution changes of tree above-ground-biomass 3.2 Spatial and temporal validation of the contemporary larch AGB 4 Discussion 4.1 Future dynamics of tree AGB at a plot level 4.2 What are the future dynamics of tree AGB at the landscape level? 5 Conclusions Data availability Acknowledgements References Appendix B. Permutation tests for tree presence versus topographical parameters Appendix C. Landsat-based, field, and simulated estimations of larch above-ground biomass (AGB). 7 Synthesis 7.1 What changes in vegetation composition have happened from 2000 to 2017 in central Chukotka? 7.2 How have the above-ground biomass (AGB) distribution and rates changed from 2000 to 2017 in central Chukotka? 7.3 What are the spatial dynamics and rates of tree AGB change in the upcoming centuries in the northern tundra-taiga from 2020 to 3000 CE on the plot level and landscape level? References Acknowledgements
    Standort: AWI Lesesaal
    Zweigbibliothek: AWI Bibliothek
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Signatur: AWI G3-23-95073
    Beschreibung / Inhaltsverzeichnis: The Arctic is changing rapidly and permafrost is thawing. Especially ice-rich permafrost, such as the late Pleistocene Yedoma, is vulnerable to rapid and deep thaw processes such as surface subsidence after the melting of ground ice. Due to permafrost thaw, the permafrost carbon pool is becoming increasingly accessible to microbes, leading to increased greenhouse gas emissions, which enhances the climate warming. The assessment of the molecular structure and biodegradability of permafrost organic matter (OM) is highly needed. My research revolves around the question “how does permafrost thaw affect its OM storage?” More specifically, I assessed (1) how molecular biomarkers can be applied to characterize permafrost OM, (2) greenhouse gas production rates from thawing permafrost, and (3) the quality of OM of frozen and (previously) thawed sediments. I studied deep (max. 55 m) Yedoma and thawed Yedoma permafrost sediments from Yakutia (Sakha Republic). I analyzed sediment cores taken below thermokarst lakes on the Bykovsky Peninsula (southeast of the Lena Delta) and in the Yukechi Alas (Central Yakutia), and headwall samples from the permafrost cliff Sobo-Sise (Lena Delta) and the retrogressive thaw slump Batagay (Yana Uplands). I measured biomarker concentrations of all sediment samples. Furthermore, I carried out incubation experiments to quantify greenhouse gas production in thawing permafrost. I showed that the biomarker proxies are useful to assess the source of the OM and to distinguish between OM derived from terrestrial higher plants, aquatic plants and microbial activity. In addition, I showed that some proxies help to assess the degree of degradation of permafrost OM, especially when combined with sedimentological data in a multi-proxy approach. The OM of Yedoma is generally better preserved than that of thawed Yedoma sediments. The greenhouse gas production was highest in the permafrost sediments that thawed for the first time, meaning that the frozen Yedoma sediments contained most labile OM. Furthermore, I showed that the methanogenic communities had established in the recently thawed sediments, but not yet in the still-frozen sediments. My research provided the first molecular biomarker distributions and organic carbon turnover data as well as insights in the state and processes in deep frozen and thawed Yedoma sediments. These findings show the relevance of studying OM in deep permafrost sediments.
    Materialart: Dissertationen
    Seiten: xxiii, 178 Seiten , Illustrationen, Diagramme, Karten
    Sprache: Englisch
    Anmerkung: Table of Contents Abstract Zusammenfassung Samenvatting Acknowledgements List of Figures List of Tables List of Abbreviations 1 Introduction 1.1 Motivation 1.2 Aims and research questions 1.3 Scientific background 1.3.1 The Arctic in a changing climate 1.3.2 Northern Hemisphere permafrost region 1.3.3 Permafrost degradation 1.3.3.1 Thermokarst development 1.3.3.2 Retrogressive thaw slumps 1.3.4 Organic matter in permafrost deposits 1.4 Material and methods 1.4.1 Study sites 1.4.2 Main laboratory methods 1.5 Thesis structure 1.6 Overview of publications 1.6.1 Publication “n-Alkane Characteristics of Thawed Permafrost Deposits Below a Thermokarst Lake on Bykovsky Peninsula, Northeastern Siberia” 1.6.2 Publication “Greenhouse gas production and lipid biomarker distribution in Yedoma and Alas thermokarst lake sediments in Eastern Siberia” 1.6.3 Publication “Organic matter characteristics of a rapidly eroding permafrost cliff in NE Siberia (Lena Delta, Laptev Sea region)” 1.6.4 Publication “Molecular biomarkers in Batagay megaslump permafrost deposits reveal clear differences in organic matter preservation between glacial and interglacial periods” 1.6.5 Contributions to complementary research 2 Bykovsky Peninsula 2.1 Abstract 2.2 Introduction 2.3 Study area 2.4 Material and methods 2.4.1 Field work 2.4.2 Laboratory analyses 2.4.2.1 Biomarker analysis 2.4.2.2 Biomarker indices 2.5 Results 2.5.1 Bulk sediment 2.5.1.1 Long core PG2412 2.5.1.2 Short core PG2420 2.5.2 Hydrochemistry 2.5.3 n-Alkane distributions 2.6 Discussion 2.6.1 Depositional history at the study site 2.6.1.1 Unit I - Early Weichselian fluvial sedimentation 2.6.1.2 Unit II – Yedoma deposition in wetland landscapes dominated by low-centered polygons 2.6.1.3 Unit III/Unit A – Yedoma deposition under cold-dry conditions during the Late Weichselian 2.6.1.4 Unit IV/Unit B – Holocene thermokarst lake formation and lacustrine sedimentation 2.6.2 Organic matter degradation 2.7 Conclusion 2.8 Acknowledgements 3 Yukechi Alas 3.1 Abstract 3.2 Introduction 3.3 Methods and materials 3.3.1 Study area 3.3.2 Field work 3.3.3 Laboratory analyses 3.3.3.1 Organic carbon content 3.3.3.2 Lipid biomarkers 3.3.4 Incubations 3.3.5 Statistical analysis 3.4 Results 3.4.1 Organic matter characteristics 3.4.1.1 Alas lake sediment core YU-L7 3.4.1.2 Yedoma lake sediment core YU-L15 3.4.2 Greenhouse gas production 3.4.2.1 Alas lake sediment core YU-L7 3.4.2.2 Yedoma lake sediment core YU-L15 3.4.2.3 Carbon mineralization 3.4.3 Statistical correlation and regression 3.5 Discussion 3.5.1 Organic matter degradation potential 3.5.1.1 Organic carbon quantity 3.5.1.2 Organic matter preservation and talik formation 3.5.1.3 Presence of methanogenic communities 3.5.2 Greenhouse gas production 3.5.2.1 Carbon dioxide production 3.5.2.2 Methane production 3.5.3 GHG links with other parameters and outlook 3.6 Conclusion 3.7 Acknowledgements 4 Sobo-Sise cliff 4.1 Abstract 4.2 Introduction 4.3 Study area 4.4 Methods 4.4.1 Fieldwork 4.4.2 Sedimentological organic matter parameters 4.4.3 Lipid biomarkers 4.4.3.1 Extraction and fraction separation 4.4.3.2 GC-MS measurements and compound quantification 4.4.4 Biomarker indices 4.4.4.1 Average Chain Length 4.4.4.2 Carbon Preference Index 4.4.4.3 Higher Plant Fatty Acids 4.4.5 Data analysis 4.5 Results 4.5.1 Sedimentological organic matter parameters 4.5.2 Biomarkers 4.5.2.1 n-Alkanes 4.5.2.2 Fatty acids 4.5.3 Clustering 4.6 Discussion 4.6.1 Terrestrial depositional environment 4.6.1.1 Organic matter source 4.6.1.2 Organic matter quality 4.6.2 Implications and outlook 4.7 Conclusion 4.8 Acknowledgements 5 Batagay thaw slump 5.1 Abstract 5.2 Introduction 5.3 Study site 5.4 Methods 5.4.1 Sample collection 5.4.2 Laboratory analyses 5.5 Results 5.5.1 Detected biomolecules 5.5.2 Lower Ice Complex 5.5.3 Lower Sand Unit 5.5.4 Woody Layer 5.5.5 Upper Ice Complex - Yedoma 5.5.6 Holocene Cover 5.6 Discussion 5.6.1 Biogeochemical legacy of glacial periods 5.6.2 Biogeochemical legacy of interglacial periods 5.6.3 Modern organic matter mobilization in the Batagay megaslump 5.7 Conclusion 5.8 Acknowledgements 6 Synthesis 6.1 Lipid biomarkers to characterize permafrost organic matter 6.1.1 Organic matter source 6.1.2 Organic matter quality 6.2 Mobilization of organic matter in thawing permafrost 6.2.1 Methane production vs. emission 6.2.2 Using the data in models 6.2.3 Transport of OM into aquatic systems 6.3 Recommendations for future research References Appendix A Supporting information for Chapter 2 Appendix B Supporting information for Chapter 3 Appendix C Supporting information for Chapter 4 Appendix D Supporting information for Chapter 5
    Standort: AWI Lesesaal
    Zweigbibliothek: AWI Bibliothek
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Signatur: AWI A5-24-95744
    Beschreibung / Inhaltsverzeichnis: The Arctic is the hot spot of the ongoing, global climate change. Over the last decades, near-surface temperatures in the Arctic have been rising almost four times faster than on global average. This amplified warming of the Arctic and the associated rapid changes of its environment are largely influenced by interactions between individual components of the Arctic climate system. On daily to weekly time scales, storms can have major impacts on the Arctic sea-ice cover and are thus an important part of these interactions within the Arctic climate. The sea-ice impacts of storms are related to high wind speeds, which enhance the drift and deformation of sea ice, as well as to changes in the surface energy budget in association with air mass advection, which impact the seasonal sea-ice growth and melt. The occurrence of storms in the Arctic is typically associated with the passage of transient cyclones. Even though the above described mechanisms how storms/cyclones impact the Arctic sea ice are in principal known, there is a lack of statistical quantification of these effects. In accordance with that, the overarching objective of this thesis is to statistically quantify cyclone impacts on sea-ice concentration (SIC) in the Atlantic Arctic Ocean over the last four decades. In order to further advance the understanding of the related mechanisms, an additional objective is to separate dynamic and thermodynamic cyclone impacts on sea ice and assess their relative importance. Finally, this thesis aims to quantify recent changes in cyclone impacts on SIC. These research objectives are tackled utilizing various data sets, including atmospheric and oceanic reanalysis data as well as a coupled model simulation and a cyclone tracking algorithm. Results from this thesis demonstrate that cyclones are significantly impacting SIC in the Atlantic Arctic Ocean from autumn to spring, while there are mostly no significant impacts in summer. The strength and the sign (SIC decreasing or SIC increasing) of the cyclone impacts strongly depends on the considered daily time scale and the region of the Atlantic Arctic Ocean. Specifically, an initial decrease in SIC (day -3 to day 0 relative to the cyclone) is found in the Greenland, Barents and Kara Seas, while SIC increases following cyclones (day 0 to day 5 relative to the cyclone) are mostly limited to the Barents and Kara Seas. For the cold season, this results in a pronounced regional difference between overall (day -3 to day 5 relative to the cyclone) SIC-decreasing cyclone impacts in the Greenland Sea and overall SIC-increasing cyclone impacts in the Barents and Kara Seas. A cyclone case study based on a coupled model simulation indicates that both dynamic and thermodynamic mechanisms contribute to cyclone impacts on sea ice in winter. A typical pattern consisting of an initial dominance of dynamic sea-ice changes followed by enhanced thermodynamic ice growth after the cyclone passage was found. This enhanced ice growth after the cyclone passage most likely also explains the (statistical) overall SIC-increasing effects of cyclones in the Barents and Kara Seas in the cold season. Significant changes in cyclone impacts on SIC over the last four decades have emerged throughout the year. These recent changes are strongly varying from region to region and month to month. The strongest trends in cyclone impacts on SIC are found in autumn in the Barents and Kara Seas. Here, the magnitude of destructive cyclone impacts on SIC has approximately doubled over the last four decades. The SIC-increasing effects following the cyclone passage have particularly weakened in the Barents Sea in autumn. As a consequence, previously existing overall SIC-increasing cyclone impacts in this region in autumn have recently disappeared. Generally, results from this thesis show that changes in the state of the sea-ice cover (decrease in mean sea-ice concentration and thickness) and near-surface air temperature are most important for changed cyclone impacts on SIC, while changes in cyclone properties (i.e. intensity) do not play a significant role.
    Materialart: Dissertationen
    Seiten: VIII, 131 Seiten , Illustrationen, Diagramme
    Sprache: Englisch
    Anmerkung: Dissertation, Universität Potsdam, 2024 , Contents 1 Introduction 1.1 The Arctic sea-ice cover 1.1.1 Sea ice in the coupled Arctic climate system 1.1.2 Recent changes of the Arctic sea ice 1.2 The atmosphere as driver of sea-ice variability 1.2.1 Large-scale circulation patterns 1.2.2 Role of cyclones 1.3 Thesis structure and research questions 2 Theory and methods 2.1 Synoptic cyclones 2.1.1 Related fundamentals of atmospheric dynamics 2.1.2 Cyclone activity in the Arctic 2.2 Cyclone tracking and cyclone occurrence mask 2.3 Dynamic and thermodynamic sea-ice variability related to cyclones 3 New insights into cyclone impacts on sea ice in the Atlantic sector of the Arctic Ocean in winter 3.1 Abstract 3.2 Introduction 3.3 Data and methods 3.3.1 Database and cyclone identification 3.3.2 Quantification of cyclone impacts on SIC 3.4 Cyclone impacts on SIC 3.4.1 Effects of different time scales and regions 3.4.2 Effects of SIC conditions and cyclone depth 3.4.3 Spatial variability of SIC response to cyclones 3.4.4 Relation to near-surface wind and surface energy budget 3.5 Signature of ’New Arctic’ conditions 3.6 Conclusions 3.7 Supplementary material 4 Impact of three intense winter cyclones on the sea ice cover in the Barents Sea: A case study with a coupled regional climate model 4.1 Abstract 4.2 Introduction 4.3 Data and methods 4.3.1 HIRHAM–NAOSIM simulation 4.3.2 Supplementary evaluation data 4.3.3 Dynamic and thermodynamic contributions to sea-ice changes 4.4 Results 4.4.1 Cyclone cases 4.4.2 Cyclone impacts on SEB 4.4.3 Cyclone impacts on sea-ice concentration (SIC) 4.4.4 Cyclone impacts on sea-ice thickness (SIT) 4.4.5 Context to other cyclone cases during the MOSAiC winter 4.5 Discussion and conclusions 4.6 Supplementary material 5 Cyclone impacts on sea ice concentration in the Atlantic Arctic Ocean: Annual cycle and recent changes 5.1 Abstract 5.2 Introduction 5.3 Data and methods 5.4 Changes in cyclones and traversed sea ice 5.5 Cyclone impacts on SIC 5.5.1 Annual cycle in the old Arctic 5.5.2 Changes in the new Arctic 5.5.3 Regional changes in autumn 5.6 Conclusions 5.7 Supplementary material 6 Conclusions and Outlook 6.1 What is the statistical impact of cyclone passages on sea-ice concentration (SIC) in the Atlantic Arctic Ocean? 6.2 What are the individual contributions of dynamic and thermodynamic processes to sea-ice changes related to cyclones? 6.3 Do the SIC impacts of cyclones change in a warming Arctic and what are the related mechanisms? 6.4 Ways forward Appendix: Cyclones modulate the control of the North Atlantic Oscillation on transports into the Barents Sea Bibliography
    Standort: AWI Lesesaal
    Zweigbibliothek: AWI Bibliothek
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Signatur: AWI Bio-24-95742
    Beschreibung / Inhaltsverzeichnis: The arctic is warming 2 – 4 times faster than the global average, resulting in a strong feedback on northern ecosystems such as boreal forests, which cover a vast area of the high northern latitudes. With ongoing global warming, the treeline subsequently migrates northwards into tundra areas. The consequences of turning ecosystems are complex: on the one hand, boreal forests are storing large amounts of global terrestrial carbon and act as a carbon sink, dragging carbon dioxide out of the global carbon cycle, suggesting an enhanced carbon uptake with increased tree cover. On the other hand, with the establishment of trees, the albedo effect of tundra decreases, leading to enhanced soil warming. Meanwhile, permafrost thaws, releasing large amounts of previously stored carbon into the atmosphere. So far, mainly vegetation dynamics have been assessed when studying the impact of warming onto ecosystems. Most land plants are living in close symbiosis with bacterial and fungal communities, sustaining their growth in nutrient poor habitats. However, the impact of climate change on these subsoil communities alongside changing vegetation cover remains poorly understood. Therefore, a better understanding of soil community dynamics on multi millennial timescales is inevitable when addressing the development of entire ecosystems. Unravelling long-term cross-kingdom dependencies between plant, fungi, and bacteria is not only a milestone for the assessment of warming on boreal ecosystems. On top, it also is the basis for agriculture strategies to sustain society with sufficient food in a future warming world. The first objective of this thesis was to assess ancient DNA as a proxy for reconstructing the soil microbiome (Manuscripts I, II, III, IV). Research findings across these projects enable a comprehensive new insight into the relationships of soil microorganisms to the surrounding vegetation. First, this was achieved by establishing (Manuscript I) and applying (Manuscript II) a primer pair for the selective amplification of ancient fungal DNA from lake sediment samples with the metabarcoding approach. To assess fungal and plant co-variation, the selected primer combination (ITS67, 5.8S) amplifying the ITS1 region was applied on samples from five boreal and arctic lakes. The obtained data showed that the establishment of fungal communities is impacted by warming as the functional ecological groups are shifting. Yeast and saprotroph dominance during the Late Glacial declined with warming, while the abundance of mycorrhizae and parasites increased with warming. The overall species richness was also alternating. The results were compared to shotgun sequencing data reconstructing fungi and bacteria (Manuscripts III, IV), yielding overall comparable results to the metabarcoding approach. Nonetheless, the comparison also pointed out a bias in the metabarcoding, potentially due to varying ITS lengths or copy numbers per genome. The second objective was to trace fungus-plant interaction changes over time (Manuscripts II, III). To address this, metabarcoding targeting the ITS1 region for fungi and the chloroplast P6 loop for plants for the selective DNA amplification was applied (Manuscript II). Further, shotgun sequencing data was compared to the metabarcoding results (Manuscript III). Overall, the results between the metabarcoding and the shotgun approaches were comparable, though a bias in the metabarcoding was assumed. We demonstrated that fungal shifts were coinciding with changes in the vegetation. Yeast and lichen were mainly dominant during the Late Glacial with tundra vegetation, while warming in the Holocene lead to the expansion of boreal forests with increasing mycorrhizae and parasite abundance. Aside, we highlighted that Pinaceae establishment is dependent on mycorrhizal fungi such as Suillineae, Inocybaceae, or Hyaloscypha species also on long-term scales. The third objective of the thesis was to assess soil community development on a temporal gradient (Manuscripts III, IV). Shotgun sequencing was applied on sediment samples from the northern Siberian lake Lama and the soil microbial community dynamics compared to ecosystem turnover. Alongside, podzolization processes from basaltic bedrock were recovered (Manuscript III). Additionally, the recovered soil microbiome was compared to shotgun data from granite and sandstone catchments (Manuscript IV, Appendix). We assessed if the establishment of the soil microbiome is dependent on the plant taxon and as such comparable between multiple geographic locations or if the community establishment is driven by abiotic soil properties and as such the bedrock area. We showed that the development of soil communities is to a great extent driven by the vegetation changes and temperature variation, while time only plays a minor role. The analyses showed general ecological similarities especially between the granite and basalt locations, while the microbiome on species-level was rather site-specific. A greater number of correlated soil taxa was detected for deep-rooting boreal taxa in comparison to grasses with shallower roots. Additionally, differences between herbaceous taxa of the late Glacial compared to taxa of the Holocene were revealed. With this thesis, I demonstrate the necessity to investigate subsoil community dynamics on millennial time scales as it enables further understanding of long-term ecosystem as well as soil development processes and such plant establishment. Further, I trace long-term processes leading to podzolization which supports the development of applied carbon capture strategies under future global warming.
    Materialart: Dissertationen
    Seiten: xii, 198 Seiten , Illustrationen, Diagramme
    Sprache: Englisch
    Anmerkung: Dissertation, Universität Potsdam, 2024 , Table of Contents Summary Deutsche Zusammenfassung 1 Introduction 1.1 Arctic ecosystems under global warming 1.2 The plant-associated microbiome 1.3 Drivers of soil development 1.4 Ancient DNA to unravel past ecosystems 1.4.1 Lake sediments as archives of past community changes 1.4.2 Metabarcoding for targeting specific communities 1.4.3 Shotgun sequencing for broader overview 1.5 Thesis objective 1.6 Thesis outline and author contributions 2 Manuscript I 2.1 Abstract 2.2 Introduction 2.3 Materials and Methods 2.3.1 Primer design and evaluation In silico analyses Evaluation of lake sediment core DNA for analyses of fungal paleoecology 2.4 Results Primer design and evaluation Evaluation of lake sediment core DNA for fungal paleoecology 2.4.1 Taxonomic resolution across the cores 2.4.2 Comprehensiveness: Rarefaction and accumulation curves 2.4.3 Amplicon length and GC content to assess bias through degradation 2.4.4 General taxonomic composition of fungi in Siberian lake sediment cores Diversity of fungal paleocommunities from lake CH12 2.5 Discussion 2.5.1 Preservation biases and potential contamination 2.5.2 Characteristics of the optimized sedaDNA ITS1 metabarcoding assay 2.5.3 Potential of lake sediment fungal DNA for paleoecology 2.6 Author contributions 2.7 Acknowledgements 2.8 Conflict of interest 2.9 References 3 Manuscript II 3.1 Abstract 3.2 Introduction 3.3 Geographic setting and study sites 3.4 Materials and Methods 3.4.1 Sampling 3.4.2 DNA extraction and amplification 3.4.3 Bioinformatic analysis 3.4.4 Assessment of negative controls and contamination 3.4.5 Statistical analysis and visualization 3.5 Results 3.5.1 Fungi: sedaDNA sequencing results and overall patterns of alpha diversity and taxonomic composition 3.5.2 Vegetation: sedaDNA sequencing results and overall patterns of alpha diversity and taxonomic composition 3.5.3 Site-specific plant-fungus covariation 3.5.3.1 Fungus and plant covariation in arctic Siberia from MIS3 to the Holocene 3.5.3.2 Quantitative relationships between fungi and plant richness and composition 3.6 Discussion 3.6.1 Fungus and plant diversity along a spatiotemporal gradient in Siberia 3.6.2 Changes in ecosystem functioning over a spatiotemporal gradient 3.6.3 Implications of our results for ecosystem functioning and future research avenues 3.7 Conclusions Funding Availability of data and material Author contribution Declaration of competing interest Acknowledgements 3.8 References 4 Manuscript III 4.1 Abstract 4.2 Introduction 4.3 Results and Discussion 4.3.1 Compositional changes of plants, fungi, and bacteria in ancient metagenomic datasets 4.3.2 Long-term soil development: a trajectory or environmentally driven processes? 4.3.3 Bioweathering supported by lichens and mycorrhiza 4.3.4 Turnover in carbon, nitrogen, and sulphur cycling 4.3.5 Tracing podzolization 4.4 Implications and conclusions 4.5 Material and methods 4.5.1 Geographical setting and study site 4.5.2 X-ray fluorescence scanning of the sediment core 4.5.3 Core sub-sampling 4.5.4 DNA extraction 4.5.5 Single stranded DNA library build 4.5.6 Bioinformatic pipeline for the analysis of the sequencing results 4.5.7 Data analysis 4.5.8 Analysis of the ancient patterns 4.5.9 Statistical analysis of the dataset Acknowledgements 4.6 References Declarations 5 Discussion and synthesis 5.1 Long-term rhizosphere establishment in tundra and taiga areas 5.1.1 SedaDNA as a proxy for soil microbiome 5.1.1.1 Fungal DNA metabarcoding 5.1.1.2 Targeting soil communities with shotgun sequencing 5.1.1.3 Comparison between metabarcoding and shotgun sequencing for the soil microbiome 5.1.2 Fungi-vegetation interaction changes over time 5.1.3 Soil development on a temporal gradient 5.2 Conclusion and future perspectives 6 References 7 Appendix 7.1 Appendix to manuscript I 7.2 Appendix to manuscript II 7.3 Appendix to manuscript III 7.4 Manuscript IV 7.4.1 Abstract 7.4.2 Introduction 7.4.3 Geographical setting and study sites 7.4.4 Material & Methods 7.4.4.1 Sub-sampling of the sediment cores 7.4.4.2 DNA extraction 7.4.4.3 Single stranded DNA library built 7.4.4.4 Bioinformatic pipeline for the analysis of the sequencing data 7.4.4.5 Data analysis 7.4.4.6 Statistical analysis of the datasets 7.4.5 Results 7.4.5.1 Compositional changes of representative plant taxa alongside dynamics in fungal ecologies and bacterial element cycling in ancient metagenomic datasets 7.4.5.2 Impact of abiotic and biotic drivers on soil establishment across geographical locations 7.4.5.3 Relative positive correlations of functional soil taxa with plants across the locations 7.4.5.4 Assessment of the plant taxon-specific microbiome across the locations 7.4.6 Discussion 7.4.6.1 Site-specific soil development 7.4.6.2 Differences in the bedrock 7.4.6.3 Correlation between the lake biota 7.4.6.3.1 General Trends in positively correlated rhizosphere taxa 7.4.6.3.2 Plant taxa specific microbiome 7.4.7 Implications and future directions 7.4.8 References 7.4.9 Supplement to manuscript IV Acknowledgements Eidesstattliche Erklärung Damage pattern analysis – Auflagen Doktorarbeit Summary Main References
    Standort: AWI Lesesaal
    Zweigbibliothek: AWI Bibliothek
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Signatur: AWI Bio-21-94540
    Beschreibung / Inhaltsverzeichnis: This thesis investigates how the permafrost microbiota responds to global warming. In detail, the constraints behind methane production in thawing permafrost were linked to methanogenic activity, abundance and composition. Furthermore, this thesis offers new insights into microbial adaptions to the changing environmental conditions during global warming. This was assesed by investigating the potential ecological relevant functions encoded by plasmid DNA within the permafrost microbiota. Permafrost of both interglacial and glacial origin spanning the Holocene to the late Pleistocene, including Eemian, were studied during long-term thaw incubations. Furthermore, several permafrost cores of different stratigraphy, soil type and vegetation cover were used to target the main constraints behind methane production during short-term thaw simulations. Short- and long-term incubations simulating thaw with and without the addition of substrate were combined with activity measurements, amplicon and metagenomic sequencing of permanently frozen and seasonally thawed active layer. Combined, it allowed to address the following questions. i) What constraints methane production when permafrost thaws and how is this linked to methanogenic activity, abundance and composition? ii) How does the methanogenic community composition change during long-term thawing conditions? iii) Which potential ecological relevant functions are encoded by plasmid DNA in active layer soils? The major outcomes of this thesis are as follows. i) Methane production from permafrost after long-term thaw simulation was found to be constrained mainly by the abundance of methanogens and the archaeal community composition. Deposits formed during periods of warmer temperatures and increased precipitation, (here represented by deposits from the Late Pleistocene of both interstadial and interglacial periods) were found to respond strongest to thawing conditions and to contain an archaeal community dominated by methanogenic archaea (40% and 100% of all detected archaea). Methanogenic population size and carbon density were identified as main predictors for potential methane production in thawing permafrost in short-term incubations when substrate was sufficiently available. ii) Besides determining the methanogenic activity after long-term thaw, the paleoenvironmental conditions were also found to influence the response of the methanogenic community composition. Substantial shifts within methanogenic community structure and a drop in diversity were observed in deposits formed during warmer periods, but not in deposits from stadials, when colder and drier conditions occurred. Overall, a shift towards a dominance of hydrogenotrophic methanogens was observed in all samples, except for the oldest interglacial deposits from the Eemian, which displayed a potential dominance of acetoclastic methanogens. The Eemian, which is discussed to serve as an analogue to current climate conditions, contained highly active methanogenic communities. However, all potential limitation of methane production after permafrost thaw, it means methanogenic community structure, methanogenic population size, and substrate pool might be overcome after permafrost had thawed on the long-term. iii) Enrichments with soil from the seasonally thawed active layer revealed that its plasmid DNA (‘metaplasmidome’) carries stress-response genes. In particular it encoded antibiotic resistance genes, heavy metal resistance genes, cold shock proteins and genes encoding UV-protection. Those are functions that are directly involved in the adaptation of microbial communities to stresses in polar environments. It was further found that metaplasmidomes from the Siberian active layer originate mainly from Gammaproteobacteria. By applying enrichment cultures followed by plasmid DNA extraction it was possible to obtain a higher average contigs length and significantly higher recovery of plasmid sequences than from extracting plasmid sequences from metagenomes. The approach of analyzing ‘metaplasmidomes’ established in this thesis is therefore suitable for studying the ecological role of plasmids in polar environments in general. This thesis emphasizes that including microbial community dynamics have the potential to improve permafrost-carbon projections. Microbially mediated methane release from permafrost environments may significantly impact future climate change. This thesis identified drivers of methanogenic composition, abundance and activity in thawing permafrost landscapes. Finally, this thesis underlines the importance to study how the current warming Arctic affects microbial communities in order to gain more insight into microbial response and adaptation strategies.
    Materialart: Dissertationen
    Seiten: VI, 243 Seiten , Diagramme, Illustrationen
    Sprache: Englisch
    Anmerkung: Dissertation, Universität Potsdam, 2020 , Contents Preface Acknowledgements Contents Summary Zusammenfassung List of abbreviations Chapter 1. Introduction 1.1 Motivation 1.2 Carbon storage in Arctic permafrost environments and the permafrost carbon feedback (PCF) 1.3 Methane cycling microorganisms 1.4 The microbial ecology of permafrost 1.5 Plasmids and their potential role in stress tolerance 1.6 Objectives Chapter 2. Study sites 2.1 Regional settings 2.2 Kurungnakh and Samoylov Island 2.3 Bol'shoy Lyakhovsky Island 2.4 Herschel Island Chapter 3. Manuscripts 3.1 Overview of manuscripts, including contribution of co-authors. 3.2 Manuscript I Methanogenic response to long-term permafrost thaw is determined by paleoenvironment 3.3 Manuscript II Methane production in thawing permafrost is constrained by methanogenic population size and carbon density 3.4 Manuscript III Metaplasmidome-encoded functional potential of permafrost active layer soils Chapter 4. Synthesis 4.1 Introduction 4.2 Constraints behind methane production from thawing permafrost 4.3 The methanogenic community response to long-term permafrost thaw 4.4 The adaptive potential of the permafrost micro biota to cope with stress factors during global warming 4.5 Conclusion Chapter 5. Future research directions and perspectives Chapter 6. References Chapter 7. Appendix 7.1 Supporting information for manuscript I 7.2 Supporting information for manuscript II 7.3 Supporting information for manuscript III 7.4 ESR collaboration, manuscript IV
    Standort: AWI Lesesaal
    Zweigbibliothek: AWI Bibliothek
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Signatur: AWI Bio-22-94766
    Beschreibung / Inhaltsverzeichnis: The arctic-boreal treeline is a transition zone from taiga to tundra covering a vast area in Siberia. It often features large environmental gradients and reacts sensitively to changes in the environment. For example, the expansion of shrubs and a northward movement of the treeline are observable in Siberia as a response to the warming climate. The changes in vegetation across the treeline are known to influence the water chemistry in the lakes. This causes further alteration to the composition and diversity of sensitive aquatic organisms such as diatoms and macrophytes. Despite the rising awareness of the complex climate-feedback mechanisms of terrestrial plants, the understanding of their assembly rules and about responses of aquatic biomes in the surrounding treeline lakes is still limited. The goal of this thesis is to examine the previous and present biodiversity of terrestrial and freshwater biomes from the Siberian treeline ecotone, as well as their reactions to environmental changes. In particular, this thesis attempts to ...
    Materialart: Dissertationen
    Seiten: 132 Blätter , Illustrationen, Diagramme, Karten
    Sprache: Englisch
    Anmerkung: Dissertation, Universität Potsdam, 2021 , Contents List of abbreviations Acknowledgements Summary Zusammenfassung 1 Scientific background 1.1 Motivation 1.2 The arctic-boreal ecotone in time and space 1.2.1 Terrestrial plants composition and biodiversity 1.2.2. Lake macrophytes and diatoms 1.3 Sedimentary DNA metabarcoding as an ecologicalproxy 1.4 Study area 1.5 Objectives of the thesis 1.6 Methods 1.7 Thesis organizations 1.7.1 Manuscripts and chapters 1.7.2 Non-finalized research 1.7.2 Author contributions 2 Manuscript I: Genetic and morphological diatom composition in surface sediments from glacial and thermokarst lakes in the Siberian Arctic 2.1 Abstract 2.2 Introduction 2.3 Materials and methods 2.3.1 Sampling and collection of environmental data 2.3.2 Diatom genetic assessment 2.3.3 Raw sequence processing and taxonomic assignment 2.3.4 Morphological diatom identification 2.3.5 Statistical analyses 2.4 Results 2.4.1 Genetic-based diatom composition, diversityand diatom-environment relationship 2.4.2 Morphological-based diatom composition, diversity and diatom-environment relationship 2.4.3 Comparison of spatial diatom patterns obtained from the genetic and morphological approaches 2.5 Discussion 2.5.1 Genetic and morphological diatom composition and diversity 2.5.2 Diatom composition is affected by lake type and lake water parameters 2.6 Conclusions 2.7 Acknowledgments 3 Manuscript II: Plant sedimentary ancient DNA from Far East Russia covering the last 28 ka reveals different assembly rules in cold and warm climates 3.1 Abstract 3.2 Introduction 3.3 Methods 3.3.1 Study area 3.3.2 Sampling and dating 3.3.3 Genetic laboratory works 3.3.4 Processing the sequence data 3.3.5 Statistical analyses 3.4 Results 3.4.1 Overview of the sequencing data and taxonomic composition 3.4.2 Taxonomic alpha and beta diversity 3.4.3 Phylogenetic alpha and beta diversity 3.4.4 Relationship between taxonomic composition and phylogenetic diversity 3.5 Discussion 3.5.1 Vegetation history revealed by sedaDNA 3.5.2 Patterns oftaxonomic alpha diversity and their relationship to community composition 3.5.3 Relationship between richness and phylogenetic alpha and beta diversity 4 Manuscript III: Sedimentary DNA identifies modem and past macrophyte diversity and its environmental drivers in high latitude and altitude lakes in Siberia and China 4.1 Abstract 4.2 Introduction 4.3 Materialsand Methods 4.3.1 Field sampling of surface and core samples 4.3.2 Environmental data 4.3.3 Molecular genetic laboratory work 4.3.4 Bioinformatic analyses 4.3.5 Statistical analyses 4.4 Results 4.4.1 Macrophyte diversity in surface sediments inferred from sedDNA 4.4.2 Relationship of modem macrophyte richness and environmental variables 4.4.3 The relationship between modem macrophyte community and environmental variables 4.4.4 Past macrophyte richness and composition inferred from sedaDNA 4.4.5 Past macrophyte compositional changes and its environmental drivers 4.5 Discussion 4.5.1 Retrieval of aquatic plant diversity using the tmL P6 loop plant DNA metabarcode 4.5.2 Modem macrophyte diversity and its relation to environmental factors 4.5.3 Temporal macrophyte diversity as an indicator for past environmental change 4.6 Conclusion 5 Synopsis 5.1 Potential and limitations of sedimentary DNA in the applied study 5.1.1 Sedimentary DNA is a powerful proxy 5.1.2 Limitations in sedimentary DNA 5.2 Spatial patterns of vegetation, macrophytes and diatoms 5.2.1 Composition and diversity of vegetation 5.2.2 Composition and diversity of macrophytes 5.2.3 Composition and diversity of diatoms 5.3 Temporal patterns of vegetation, macrophytes and diatoms 5.3.1 Composition and diversity of vegetation 5.3.2 Composition and diversity of macrophytes 5.3.3 Composition and diversity of diatoms 5.4 Outlooks and conclusions Appendices Appendix 1 for Manuscript I Appendix 2 for Manuscript II Appendix 3 for Manuscript III References
    Standort: AWI Lesesaal
    Zweigbibliothek: AWI Bibliothek
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Signatur: AWI A6-21-94541
    Beschreibung / Inhaltsverzeichnis: Stratospheric variability is one of the main potential sources for sub-seasonal to seasonal predictability in mid-latitudes in winter. Stratospheric pathways play an important role for long-range teleconnections between tropical phenomena, such as the quasi-biennial oscillation (QBO) and El Niño-Southern Oscillation (ENSO), and the mid-latitudes on the one hand, and linkages between Arctic climate change and the mid-latitudes on the other hand. In order to move forward in the field of extratropical seasonal predictions, it is essential that an atmospheric model is able to realistically simulate the stratospheric circulation and variability. The numerical weather prediction (NWP) configuration of the ICOsahedral Non-hydrostatic atmosphere model ICON is currently being used by the German Meteorological Service for the regular weather forecast, and is intended to produce seasonal predictions in future. This thesis represents the first extensive evaluation of Northern Hemisphere stratospheric winter circulation in ICON-NWP by analysing a ...
    Materialart: Dissertationen
    Seiten: viii, 119 Seiten , Illustrationen, Diagramme, Karten
    Sprache: Englisch
    Anmerkung: Dissertation, Universität Potsdam, 2020 , Contents1 Introduction 1.1 Motivation: Seasonal prediction 1.2 The new atmosphere model ICON 1.3 Research questions 2 Theoretical background 2.1 Fundamentals of atmospheric circulation 2.1.1 Primitive equations 2.1.2 The global energy budget 2.1.3 Baroclinic instability 2.1.4 Vertical structure of the atmosphere 2.2 Stratospheric dynamics 2.2.1 Circulation patterns 2.2.2 Atmospheric waves 2.2.3 Sudden stratospheric warmings 2.2.4 Quasi-biennial oscillation 2.3 Atmospheric Teleconnections 2.3.1 NAM, NAO and PNA 2.3.2 El Niño-Southern Oscillation 2.3.3 Arctic-midlatitude linkages 3 Atmospheric model and methods of analysis 3.1 Atmospheric model ICON-NWP 3.1.1 Model description 3.1.2 Experimental setup 3.2 Reanalysis data ERA-Interim 3.3 Methods of analysis 3.3.1 NAM index for stratosphere–troposphere coupling 3.3.2 Stratospheric warmings 3.3.3 ENSO index and composites 3.3.4 Bias and error estimation 3.3.5 Statistical significance 4 Results 4.1 Evaluation of seasonal experiments with ICON-NWP 4.1.1 Tropospheric circulation 4.1.2 Stratospheric circulation 4.2 Effect of gravity wave drag parameterisations 4.2.1 Stratospheric effects 4.2.2 Effects on stratosphere-troposphere coupling 4.2.3 Tropospheric effects 4.3 Low latitudinal influence on the stratospheric polar vortex 4.3.1 Quasi-biennial oscillation 4.3.2 El Niño-Southern Oscillation 4.4 Arctic-midlatitude linkages 4.4.1 Tropospheric processes 4.4.2 Stratospheric pathway 4.4.3 Sea ice sensitivity experiment 5 Discussion and outlook Bibliography Appendix
    Standort: AWI Lesesaal
    Zweigbibliothek: AWI Bibliothek
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Signatur: AWI A11-22-94735
    Beschreibung / Inhaltsverzeichnis: Over the last decades, the rate of near-surface warming in the Arctic is at least double than elsewhere on our planet (Arctic amplification). However, the relative contribution of different feedback processes to Arctic amplification is a topic of ongoing research, including the role of aerosol and clouds. Lidar systems are well-suited for the investigation of aerosol and optically-thin clouds as they provide vertically-resolved information on fine temporal scales. Global aerosol models fail to converge on the sign of the Arctic aerosol radiative effect (ARE). In the first part of this work, the optical and microphysical properties of Arctic aerosol were characterized at case study level in order to assess the short-wave (SW) ARE. A long-range transport episode was first investigated. Geometrically similar aerosol layers were captured over three locations. Although the aerosol size distribution was different between Fram Strait(bi-modal) and Ny-Ålesund (fine mono-modal), the atmospheric column ARE was similar. The latter was related to the domination of accumulation mode aerosol. Over both locations top of the atmosphere (TOA) warming was accompanied by surface cooling. Subsequently, the sensitivity of ARE was investigated with respect to different aerosol and spring-time ambient conditions. A 10% change in the single-scattering albedo (SSA) induced higher ARE perturbations compared to a 30% change in the aerosol extinction coefficient. With respect to ambient conditions, the ARETOA was more sensitive to solar elevation changes compared to AREsur f ace. Over dark surfaces the ARE profile was exclusively negative, while over bright surfaces a negative to positive shift occurred above the aerosol layers. Consequently, the sign of ARE can be highly sensitive in spring since this season is characterized by transitional surface albedo conditions. As the inversion of the aerosol microphysics is an ill-posed problem, the inferred aerosol size distribution of a low-tropospheric event was compared to the in-situ measured distribution. Both techniques revealed a bi-modal distribution, with good agreement in the total volume concentration. However, in terms of SSA a disagreement was found, with the lidar inversion indicating highly scattering particles and the in-situ measurements pointing to absorbing particles. The discrepancies could stem from assumptions in the inversion (e.g. wavelength-independent refractive index) and errors in the conversion of the in-situ measured light attenuation into absorption. Another source of discrepancy might be related to an incomplete capture of fine particles in the in-situ sensors. The disagreement in the most critical parameter for the Arctic ARE necessitates further exploration in the frame of aerosol closure experiments. Care must be taken in ARE modelling studies, which may use either the in-situ or lidar-derived SSA as input. Reliable characterization of cirrus geometrical and optical properties is necessary for improving their radiative estimates. In this respect, the detection of sub-visible cirrus is of special importance. The total cloud radiative effect (CRE) can be negatively biased, should only the optically-thin and opaque cirrus contributions are considered. To this end, a cirrus retrieval scheme was developed aiming at increased sensitivity to thin clouds. The cirrus detection was based on the wavelet covariance transform (WCT) method, extended by dynamic thresholds. The dynamic WCT exhibited high sensitivity to faint and thin cirrus layers (less than 200 m) that were partly or completely undetected by the existing static method. The optical characterization scheme extended the Klett–Fernald retrieval by an iterative lidar ratio (LR) determination (constrained Klett). The iterative process was constrained by a reference value, which indicated the aerosol concentration beneath the cirrus cloud. Contrary to existing approaches, the aerosol-free assumption was not adopted, but the aerosol conditions were approximated by an initial guess. The inherent uncertainties of the constrained Klett were higher for optically-thinner cirrus, but an overall good agreement was found with two established retrievals. Additionally, existing approaches, which rely on aerosol-free assumptions, presented increased accuracy when the proposed reference value was adopted. The constrained Klett retrieved reliably the optical properties in all cirrus regimes, including upper sub-visible cirrus with COD down to 0.02. Cirrus is the only cloud type capable of inducing TOA cooling or heating at daytime. Over the Arctic, however, the properties and CRE of cirrus are under-explored. In the final part of this work, long-term cirrus geometrical and optical properties were investigated for the first time over an Arctic site (Ny-Ålesund). To this end, the newly developed retrieval scheme was employed. Cirrus layers over Ny-Ålesund seemed to be more absorbing in the visible spectral region compared to lower latitudes and comprise relatively more spherical ice particles. Such meridional differences could be related to discrepancies in absolute humidity and ice nucleation mechanisms. The COD tended to decline for less spherical and smaller ice particles probably due to reduced water vapor deposition on the particle surface. The cirrus optical properties presented weak dependence on ambient temperature and wind conditions. Over the 10 years of the analysis, no clear temporal trend was found and the seasonal cycle was not pronounced. However, winter cirrus appeared under colder conditions and stronger winds. Moreover, they were optically-thicker, less absorbing and consisted of relatively more spherical ice particles. A positive CREnet was primarily revealed for a broad range of representative cloud properties and ambient conditions. Only for high COD (above 10) and over tundra a negative CREnet was estimated, which did not hold true over snow/ice surfaces. Consequently, the COD in combination with the surface albedo seem to play the most critical role in determining the CRE sign over the high European Arctic.
    Materialart: Dissertationen
    Seiten: x, 136 Seiten , Illustrationen, Diagramme, Karten
    Sprache: Englisch
    Anmerkung: Dissertation, Universität Potsdam, 2021 , CONTENTS 1 INTRODUCTION 1.1 Motivation: Aerosol and cloud relevance to Arctic amplification 1.2 Theoretical background 1.2.1 Atmospheric aerosol 1.2.2 Aerosol in the Arctic 1.2.3 Cirrus clouds 1.3 Research questions 2 METHODS 2.1 lidar remote sensing techniqu 2.1.1 Elastic and Raman lidar equations 2.1.2 lidar signal corrections 2.1.3 Derivation of particle optical properties and related uncertainties 2.2 Lidar systems 2.2.1 Ground-based system KARL 2.2.2 Air-borne system AMALi 2.2.3 Space-borne system CALIOP 2.3 Ancillary instrumentation 2.3.1 Radiosondes 2.3.2 Sun-photometers 2.3.3 Radiation sensors 2.4 Modeling tools 2.4.1 Air mass backward trajectories 2.4.2 Aerosol microphysics retrieval algorithm 2.4.3 Radiative transfer model SCIATRAN 2.4.4 Multiple-scattering correction model 2.4.5 Simplified cloud radiative effect model 3 ARCTIC AEROSOL PROPERTIES AND RADIATIVE EFFECT (CASE STUDIES) 3.1 Aerosol in the upper troposphere (Spring) 3.1.1 Overview of aerosol observations and air mass origin 3.1.2 Modification of aerosol optical and microphysical properties 3.1.3 Aerosol radiative effect (ARE) 3.2 Sensitivities of the spring-time Arctic ARE 3.2.1 Sensitivity on aerosol related parameters 3.2.2 Sensitivity on ambient conditions 3.3 Aerosol in the lower troposphere (Winter) 3.3.1 Overview of remote sensing and in-situ measurements 3.3.2 Aerosol properties from the remote sensing perspective: KARL and CALIOP 3.3.3 Aerosol microphysical properties from in-situ and remote sensing perspectives 3.4 Discussion and Conclusions 4 DEVELOPMENT OF A CIRRUS CLOUD RETRIEVAL SCHEME 4.1 Fine-scale cirrus cloud detection 4.1.1 Selection of cirrus clouds 4.1.2 Wavelet Covariance Transform method 4.1.3 Revised detection method: Dynamic Wavelet Covariance Transform 4.2 Comparison of dynamic and static cirrus detection 4.3 Cirrus cloud optical retrievals 4.3.1 Existing cirrus optical retrievals: double-ended Klett and Raman 4.3.2 Temporal averaging within stationary periods 4.3.3 Revised optical retrieval: constrained Klett method 4.4 Comparison to established optical retrievals 4.5 How uncertainties in cirrus detection affect the optical retrievals? 4.6 Discussion 4.6.1 Limitations of cirrus retrieval schemes 4.6.2 Strengths of the revised retrieval scheme 4.7 Conclusions 5 LONG-TERM ANALYSIS OF ARCTIC CIRRUS CLOUD PROPERTIES 5.1 Overview of cirrus occurrence and meteorological conditions over Ny-Ålesund 5.2 Quality assurance of optical properties 5.2.1 Specular reflection effect 5.2.2 Investigation of extreme cirrus lidar ratio values 5.2.3 Multiple-scattering correction 5.3 Overview of cirrus optical properties over Ny-Ålesund 5.4 Inter-relations of cirrus properties 5.5 Dependence on meteorological conditions 5.5.1 Cirrus clouds in the tropopause 5.6 CRE estimation at TOA: sensitivity analysis 5.7 Conclusions 6 CONCLUSIONS AND OUTLOOK A CIRRUS DETECTION SENSITIVITIES a.1 Wavelet Covariance Transform - dilation sensitivity a.2 Wavelet Covariance Transform - wavelength dependency B CIRRUS OPTICAL CHARACTERIZATION SENSITIVITIES b.1 Reference value accuracy and limitations b.2 Inherent uncertainties of constrained Klett C MULTIPLE-SCATTERING CORRECTION FOR CIRRUS CLOUDS D SEASONAL CIRRUS PROPERTIES: DESCRIPTIVE STATISTICS BIBLIOGRAPHY
    Standort: AWI Lesesaal
    Zweigbibliothek: AWI Bibliothek
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Signatur: AWI G5-22-94780
    Materialart: Dissertationen
    Seiten: xxi, 201 Seiten , Illustrationen, Diagramme
    Sprache: Englisch
    Anmerkung: Dissertation, Universität Potsdam, 2021 , Contents List of Figures List of Tables I Preamble 1 Introduction 1.1.1 The Journey from Weather to Climate 1.1.2 The Climate Background 1.1.3 Pollen as Quantitative Indicators of Past Changes 1.2 Overview and Aims of Manuscripts 1.2.1 List of Manuscripts 1.2.2 Short Summaries of the Manuscripts 1.3 Author Contributions to the Manuscripts II Manuscripts 2 Comparing estimation of techniques for temporal Scaling 2.1 Introduction 2.2 Data and Methods 2.2.1 Scaling estimation methods 2.2.2 Evaluation of the estimators 2.2.3 Data 2.3 Results 2.3.1 Effect of Regular and Irregular Sampling 2.3.2 Effect of Time series length 2.3.3 Application to database 2.4 Discussion 2.5 Conclusions 3 Land temperature variability driven by oceans at millennial timescales 4 Variability of surface climate in simulations of past and future 4.1 Introduction 4.2 Data and Method 4.2.1 Model simulations 4.2.2 The Last Glacial Maximum experiment 4.2.3 The mid Holocene experiment (midHolocene) 4.2.4 The warming experiments 1pctCO2 and abrupt4xCO2 4.2.5 Preprocessing of model simulations 4.2.6 Comparisons across the ensemble 4.2.7 Diagnosing variability changes 4.2.8 Changes in precipitation extremes 4.2.9 Timescale-dependence of the variability changes 4.3 Results 4.3.1 Hydrological sensitivity across the ensemble 4.3.2 Changes in local interannual variability 4.3.3 Changes in modes of variability 4.3.4 Circulation patterns underlying extratropical precipitation extremes 4.3.5 Changes in. the spectrum of variability 4.4 Discussion 4.4.1 Changes in climate variability with global mean temperature 4.4.2 Temperature vs. precipitation scaling 4.4.3 Comparison to climate reconstructions and observations 4.4.4 Limitations 4.5 Conclusions 5 Holocene vegetation variability in the Northern Hemisphere 5.1 Introduction 5.2 Data and Methods 5.2.1 Pollen Database 5.2.2 Principal Component Analysis 5.2.3 Timescale-dependent Estimates of Variability 5.2.4 Biome Classification 5.3 Results 5.3.1 General Vegetation Variability Analysis 5.3.2 Comparison of Forested and Open Land Vegetations 5.3.3 Comparison of Broadleaf and Needleleaf Fore ts 5.3.4 Comparison of Temperate and Boreal Coniferous Forests 5.3.5 Comparison of Evergreen and Deciduous Boreal Forests 5.4 Discussion 5.5 Conclusion III Postamble 6 General discussion and conclusion 6.1 Overview 6.2 Timescale-Dependent Estimates of Variability 6.3 Climate and Vegetation Variabilities in the Holocene 6.4 Implications for the 21th Century 6.5 Outlook IV Appendix A Supplementary figures from "Comparing estimation techniques for temporal scaling in paleo-climate timeseries" A.1 Block Average Results A.2 First-Order Correction for the Effect of Interpolation A.3 Change in Bias and Standard Deviation B Methods and supplementary information from "Land temperature variability driven by oceans at millennial timescales" B.1 Methods B.1.1 Reconstructions B.1.2 Significance Testing B.1.3 Testing for Anthropogenic Impacts B.1.4 Instrumental Data B.1.5 Model Data B.1.6 Spectral Estimates B.1.7 Variance Ratios B.1.8 Sub-Decadal Variability Binning B.1.9 Correlation B.1.10 Moran's I B.2 Supplementary Information B.2.1 Tree Ring Data Analysis B.2.2 Energy-Balance Equations B.3 Extended Data Figures C Supplementary figures from "Variability of surface climate in simulations of past and future" D Supplementary figures from "Characterization of holocene vegetation variability in the Northern Hemisphere" Bibliography
    Standort: AWI Lesesaal
    Zweigbibliothek: AWI Bibliothek
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...