ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (316)
  • Open Access-Papers  (316)
  • 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
  • 1
    Publication Date: 2020-11-26
    Description: The CROP-11 deep seismic profile across the central Apennines, Italy, reveals a previously unknown, mid-crustal antiform here interpreted as a fault-bend fold-like structure. The seismic facies and gravity signature suggest that this structure consists of low-grade metamorphic rocks. Geomorphological, stratigraphic and tectonic evidence in the overlying shallow thrusts suggests that this structure developed in early to mid-Messinian time and grew out of sequence in late Messinian– Pliocene time. The out-of-sequence growth may reflect a taper subcriticality stage of the Apenninic thrust wedge, which induced renewed contraction in the rear.
    Description: Published
    Description: 583–586
    Description: open
    Keywords: CROP project ; seismic reflection profile ; mid-crustral folding ; central Apennines ; deep crust ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 543952 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-26
    Description: During the July^August 2001 eruption of Mt. Etna development of extensional fractures/faults and grabens accompanied magma intrusion and subsequent volcanic activity. During the first days of the eruption, we performed an analysis of attitude, displacement and propagation of fractures and faults exposed on the ground surface in two sites, Torre del Filosofo and Valle del Leone, located along the same fracture system in the region surrounding the Valle del Bove depression on the eastern flank of Mt. Etna. Fractures and faults formed as the consequence of a shallow intruding dyke system that fed the several volcanic centres developed along the fracture system. The investigated sites differ in slope attitude and in geometrical relationships between fractures and slopes. In particular, the fracture system propagated parallel to the gentle slope (67‡ dip) in the Torre del Filosofo area, and perpendicular to the steep slope (V25‡ dip) in the Valle del Leone area. In the Torre del Filosofo area, slight graben subsidence and horizontal extension of the ground surface by about 3 m were recorded. In the Valle del Leone area, extensional faulting forming a larger and deeper graben with horizontal extension of the ground surface by about 10 m was recorded. For the Valle del Leone area, we assessed a downhill dip of 14‡ for the graben master fault at the structural level beneath the graben where the fault dip shallows. These results suggest that dyke intrusion at Mount Etna, and particularly in the region surrounding the Valle del Bove depression, may be at the origin of slope failure and subsequent slumps where boundary conditions, i.e. geometry of dyke, slope dip and initial shear stress, amongst others, favour incipient failures.
    Description: Published
    Description: 281-294
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: dykes ; extensional fractures ; grabens ; slope failures ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-26
    Description: Solidified frictional melts, or pseudotachylytes, remain the only unambiguous indicator of seismic slip in the geological record. However, pseudotachylytes form at 〉5 km depth, and there are many rock types in which they do not form at all. We performed low- to high-velocity rock friction experiments designed to impose realistic coseismic slip pulses on calcite fault gouges, and report that localized dynamic recrystallization may be an easy-to-recognize microstructural indicator of seismic slip in shallow, otherwise brittle fault zones. Calcite gouges with starting grain size 〈250 μm were confined up to 26 MPa normal stress using a purpose-built sample holder. Slip velocities were between 0.01 and 3.4 m s−1, and total displacements between 1 and 4 m. At coseismic slip velocities ≥0.1 m s−1, the gouges were cut by reflective principal slip surfaces lined by polygonal grains 〈1 μm in size. The principal slip surfaces were flanked by 〈300 μm thick layers of dynamically recrystallized calcite (grain size 1–10 μm) containing well-defined shape- and crystallographic-preferred orientations. Dynamic recrystallization was accompanied by fault weakening and thermal decomposition of calcite to CO2 + CaO. The recrystallized calcite aggregates resemble those found along the principal slip surface of the Garam thrust, South Korea, exhumed from 〈5 km depth. We suggest that intense frictional heating along the experimental and natural principal slip surfaces resulted in localized dynamic recrystallization, a microstructure that may be diagnostic of seismic slip in the shallow crust.
    Description: Published
    Description: 63-66
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: reserved
    Keywords: Rock mechanics ; shallow earthquales ; 04. Solid Earth::04.01. Earth Interior::04.01.04. Mineral physics and properties of rocks ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-12-03
    Description: The Messina Straits is the locus of one of the strongest seismic event that ever hit Italy during historical times, the 1908 Mw 7.1 earthquake, and the same region also suffered major damage from other strong earthquakes in the last few centuries. However, despite the large amount of data and studies carried out, our knowledge of the present-day deformation of this area is still debated. While a general consensus has been reached about the kinematics of the 1908 causative fault, less is known about the rate and shape of interseismic loading across the Straits, and debate continues also about the general kinematics and geodynamic framework of this region which are strongly influenced by subduction and retreat of Ionian lithosphere. Thanks to the increasing number of GPS Networks in the study region it is now possible to study both the regional kinematics and strain loading across active faults. In this work we analyze all the observations collected over the Messina non-permanent GPS Network for the 1994-2008 time span, and data from about 600 CGPS stations in the Euro-Mediterranean region, using the GAMIT software. The output of our analysis is a new and denser velocity field, which is used to study the plate kinematics and the rate of interseismic strain building across the Straits. GPS velocities show a sudden change in their orientation across the Straits moving to NNW-ward, in Estern Sicily, to NNE-ward in Western Calabria, depicting this area as a primary boundary between two different tectonic domains. The maximum strain-rates observed across the Straits are about 120 nanostrain/yr, with extension oriented about normal to the coasts of Sicily according to the presence of a normal fault. The measured velocity gradient can be used to model the creeping dislocation at depth, however, over the Messina Straits the interseismic elastic strains accumulating across other nearby active faults can significantly affect the observed velocity gradient.For this reason we investigate, using a regional elastic block-modeling approach, these effects. We use the block model to test for different microplates configurations and to account for nearby active faults while inverting for optimal fault geometry and intersismic slip-rates across the Straits.
    Description: Published
    Description: vienna, austria.
    Description: 1.9. Rete GPS nazionale
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: block model ; gps ; messina straits ; calabria ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-04-20
    Description: The spatial clustering of basaltic vents in monogenetic volcanic fields has been used as a proxy for crustal thickness in extensional and back-arc tectonic settings. The basaltic vents have a fractal clustered distribution (self-similar clustering) described by a power-law. The power-law is defined over a range, the size range of the distribution, of values (in this case the vents' separation) delimited by a lower and an upper cut-offs. Here we apply the fractal clustering analysis to the two largest monogenetic volcanic fields of the Trans-Mexican Volcanic Belt (TMVB), a continental arc built on different crustal terranes. The Michoacan–Guanajuato volcanic field (MGVF), located in the central-western TMVB, includes over 1000 vents of late Pliocene to Quaternary age, built on attenuated crust of Mesozoic to Tertiary age. The Sierra de Chichinautzin volcanic field (SCVF), in the central-eastern TMVB, is composed of ~ 220 Late Pleistocene to Holocene vents laying above thicker crust of Precambrian to Tertiary age. Monogenetic vents in both volcanic fields show self-similar clustering with fractal exponent D = 1.67 in the range 1.3–38 km (MGVF) and D = 1.56 in the range 1.5–32 km (SCVF). The upper cut-off (Uco) for the power-law distribution of the MGVF well fits the crustal thickness below the volcanic field as derived from independent geophysical data. The Uco value of SCVF indicates a crust thickness of about 32 km, this value is in agreement with new geophysical data that indicate magma underplating the crust beneath the volcanic field area.
    Description: Published
    Description: 55-64
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Volcanic fields ; Tectonic ; Vent distribution ; Crust thickness ; Mexico ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-04-07
    Description: During the summer of 2010 we carried out a survey to acquire a multidisciplinary dataset within the Gulf of Sant'Eufemia (SE Tyrrhenian sea, Italy), with the aim of studying the active tectonics affecting the region, including that potentially responsible for key, elusive earthquakes such as the to-date unexplained 8 September 1905 (Mw 7 - 7.5) earthquake. The data here analysed highlight the presence of several tectonic and morphologic features characterizing the investigated area. We have recognized the Angitola Channel, a deep and wide canyon showing a straight trend in its coastward segment, and a meandering trend in the seaward segment. Based on morpho-structural elements, we maintain that the Angitola Channel could be tectonically controlled. Moreover, several gravitational instabilities as slumps and collapses affect the flanks of the morpho-structural high, detected offshore Capo Vaticano. Very high resolution seismic data have unveiled the presence of numerous fluid escape features and several mud volcanoes straddling the sector from the coastline to seaward.
    Description: INOGS (RIMA Department) supported the acquisition of the entire dataset.
    Description: Published
    Description: 385-401
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: 1905 earthquake ; active tectonics ; mud vulcanoes ; Gulf of Sant’Eufemia ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-05-12
    Description: This study presents a series of self-correcting models that are obtained by integrating information about seismicity and fault sources in Italy. Four versions of the stress release model are analyzed, in which the evolution of the system over time is represented by the level of strain, moment, seismic energy, or energy scaled by the moment. We carry out the analysis on a regional basis by subdividing the study area into eight tectonically coherent regions. In each region, we reconstruct the seismic history and statistically evaluate the completeness of the resulting seismic catalog. Following the Bayesian paradigm, we apply Markov chain Monte Carlo methods to obtain parameter estimates and a measure of their uncertainty expressed by the simulated posterior distribution. The comparison of the four models through the Bayes factor and an information criterion provides evidence (to different degrees depending on the region) in favor of the stress release model based on the energy and the scaled energy. Therefore, among the quantities considered, this turns out to be the measure of the size of an earthquake to use in stress release models. At any instant, the time to the next event turns out to follow a Gompertz distribution, with a shape parameter that depends on time through the value of the conditional intensity at that instant. In light of this result, the issue of forecasting is tackled through both retrospective and prospective approaches. Retrospectively, the forecasting procedure is carried out on the occurrence times of the events recorded in each region, to determine whether the stress release model reproduces the observations used in the estimation procedure. Prospectively, the estimates of the time to the next event are compared with the dates of the earthquakes that occurred after the end of the learning catalog, in the 2003–2012 decade.
    Description: Italian Dipartimento della Protezione Civile in the framework of the 2007–2009 Agreement with Istituto Nazionale di Geofisica e Vulcanologia (INGV), project S1: Analysis of the seismic potential in Italy for the evaluation of the seismic hazard.
    Description: Published
    Description: 147-168
    Description: 2T. Tettonica attiva
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: point process ; probabilistic forecasting ; interevent time distribution ; seismogenic sources ; Bayesian inference ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-07-14
    Description: Two major deformation belts occur in the portion of the Adriatic Sea offshore the Gargano Promontory. The NE-SW - trending Tremiti Deformation Belt, located north of the Gargano Promontory, originated during the Plio- Quaternary, while the E-W-trending South Gargano Deformation Belt, located south of the Gargano Promontory, formed in a time span from Eocene to Early Pliocene. These deformation belts may have originated by tectonic inversion of Mesozoic extensional faults. This inversion tectonics, of Tertiary age, can be related to the evolution of the fold-and thrust belts surrounding the Adriatic Sea. The whole of the study area is, at present, seismically active and represents a preferential site of deformation.
    Description: Published
    Description: 573-578
    Description: open
    Keywords: southern Adriatic Sea ; foreland tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-12-15
    Description: The eruptive events of the July–August 2001 and October 2002–January 2003 at Mt. Etna provide new insights for reconstructing the complex geometry of the feeding system and their relationship to regional tectonics. The 2001 eruption took place mainly on the upper southern sector of the volcano. The eruption was preceded by a large earthquake swarm for a few days before its onset and accompanied by ground deformation and fracturing. The development of surface cracking along with the seismic pattern has allowed us to recognize three distinct eruptive systems (the SW–NE, NNW–SSE and N–S systems) which have been simultaneously active. Such eruptive systems are only the upper portions of a complex feeding system that was fed at the same time by two distinct magmas. The SW–NE and NNW–SSE systems, connected with the SE crater conduit, were fed by magma coming from depth, whereas the N–S system served instead as an ascending pathway for an amphibole-bearing magma residing in a shallow reservoir. The eruptive activity started again on October 2002 on the NE Rift Zone, where about 20 eruptive vents were aligned between 2500 and 1900 m a.s.l., and on the southern flank, from the central crater to the Montagnola. The onset of eruptive activity was accompanied by a seismic swarm. As in the 2001 eruptive event, two independent feeding systems formed, characterized by distinct magmas. The SW–NE system controlled the feeding of the Northeast Rift and was accommodated by left-lateral displacement along the WNW–ESE trending Pernicana Fault. The N–S system fed the eruptions on the southern flank. Moreover, the associated crustal deformation triggered seismic reactivation of tectonic structures in the eastern flank of the volcano and offshore. These two last eruptions indicate that at Mt. Etna the ascent of magma, as well as the accommodation of deformation, is strongly dominated by local extensional structures that are connected to a regional tectonic regime.
    Description: Published
    Description: 211-233
    Description: partially_open
    Keywords: extensional tectonics ; volcanic activity ; seismicity ; Sicily ; Mt. Etna ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 5898384 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-12-03
    Description: Along the ∼500km long Sicily–Calabria segment of the Nubia–Eurasia plate boundary GPS data highlight a complex, and debated, kinematic pattern. We focus on eastern Sicily, where the style of crustal deformation rapidly changes in the space of few tens of kilometers. In southeastern Sicily, struck by the 1693MW∼7.4earthquake, GPS measurements highlight a steep velocity gradient, with ∼2.4mm/yr of ∼N–S shortening in ∼10km, changing to broader extension (∼3mm/yr in ∼60km) in northern Sicily and shortening in the southern Tyrrhenian Sea. GPS data and kinematic elastic block models highlight a complex fragmentation of the Sicilian domain into three tectonic blocks, which move independently from Nubia, describing an overall clockwise rotation of this crustal domain with respect to Eurasia. Shortening in southeastern Sicily is associated witha system of high-angle reverse faults resulting from tectonic inversion of extensional faults at the northern tip of the Hyblean plateau. Extension in northern Sicily occurs on a broader deformation belt, developed on the former Kumeta–Alcantara line, extending west of Mount Etna toward the southwestern Tyrrhenian Sea, accommodating the faster rotation of the northeastern Sicily block with respect to central Sicily. Although the seismic potential of inland faults is not negligible, our results strengthen the hypothesis that the Malta escarpment is the likely source of the large 1693 earthquake and tsunami. The observed kinematics appears only subordinately driven by the Nubia–Eurasia convergence and the dynamics of the Mediterranean subduction system is likely playing a major role in governing block motions and active tectonics in Sicily.
    Description: Published
    Description: 77-88
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Central Mediterranean ; GPS ; tectonic blocks ; kinematics ; tectonic reactivation ; geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...