ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-03-05
    Description: In this paper we present one year of meteorological and flux measurements obtained near Ny-Ålesund, Spitsbergen. Fluxes are derived by the eddy covariance method and by a hydrodynamic model approach (HMA) as well. Both methods are compared and analyzed with respect to season and mean wind direction. Concerning the wind field we find a clear distinction between 3 prevailing regimes (which have influence on the flux behavior) mainly caused by the topography at the measurement site. Concerning the fluxes we find a good agreement between the HMA and the eddy covariance method in cases of turbulent mixing in summer but deviations at stable conditions, when the HMA almost always shows negative fluxes. Part of the deviation is based on a dependence of HMA fluxes on friction velocity and the influence of the molecular boundary layer. Moreover, the flagging system of the eddy covariance software package TK3 is briefly revised. A new quality criterion for the use of fluxes obtained by the eddy covariance method, which is based on integral turbulence characteristics, is proposed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in International Journal of Distributed Sensor Networks 2012 (2012): 191235, doi:10.1155/2012/191235.
    Description: In recent years, there has been significant concern about the impacts of offshore oil spill plumes and harmful algal blooms on the coastal ocean environment and biology, as well as on the human populations adjacent to these coastal regions. Thus, it has become increasingly important to determine the 3D extent of these ocean features (“plumes”) and how they evolve over time. The ocean environment is largely inaccessible to sensing directly by humans, motivating the need for robots to intelligently sense the ocean for us. In this paper, we propose the use of an autonomous underwater vehicle (AUV) network to track and predict plume shape and motion, discussing solutions to the challenges of spatiotemporal data aliasing (coverage versus resolution), underwater communication, AUV autonomy, data fusion, and coordination of multiple AUVs. A plume simulation is also developed here as the first step toward implementing behaviors for autonomous, adaptive plume tracking with AUVs, modeling a plume as a sum of Fourier orders and examining the resulting errors. This is then extended to include plume forecasting based on time variations, and future improvements and implementation are discussed.
    Description: This research was made with Government support under and awarded by DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...