ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (18)
  • Open Access-Papers  (18)
  • 04.06. Seismology  (8)
  • 04.08. Volcanology  (6)
  • Topographic effects  (4)
  • INGV  (6)
  • Springer  (5)
  • American Meteorological Society  (4)
  • Società Geologica Italiana  (3)
  • Blackwell Publishing Ltd
  • Springer Nature
  • 2020-2024
  • 2020-2023  (6)
  • 2020-2022  (12)
  • 2015-2019
  • 1960-1964
  • 1935-1939
  • 2020  (18)
  • 2020  (18)
  • 2020  (18)
Collection
  • Articles  (18)
Source
  • Open Access-Papers  (18)
Publisher
Years
  • 2020-2024
  • 2020-2023  (6)
  • 2020-2022  (12)
  • 2015-2019
  • 1960-1964
  • +
Year
  • 1
    Publication Date: 2020-11-12
    Description: Public concern about anthropogenic seismic- ity in Italy first arose in the aftermath of the deadly M ≈ 6 earthquakes that hit the Emilia-Romagna region (northern Italy) in May 2012. As these events occurred in a (tectonically active) region of oil and gas production and storage, the question was raised, whether stress perturbations due to underground industrial activities could have induced or triggered the shocks. Following expert recommendations, in 2014, the Italian Oil & Gas Safety Authority (DGS-UNMIG, Ministry of Economic Development) published guidelines (ILG - Indirizzi e linee guida per il monitoraggio della sismicità, delle deformazioni del suolo e delle pressioni di poro nell’ambito delle attività antropiche), describing regula- tions regarding hydrocarbon extraction, waste-water in- jection and gas storage that could also be adapted to other technologies, such as dams, geothermal systems, CO2 storage, and mining. The ILG describe the frame- work for the different actors involved in monitoring activities, their relationship and responsibilities, the procedure to be followed in case of variations of mon- itored parameters, the need for in-depth scientific anal- yses, the definition of different alert levels, their mean- ing and the parameters to be used to activate such alerts. Four alert levels are defined, the transition among which follows a decision to be taken jointly by relevant au- thorities and industrial operator on the basis of evalua- tion of several monitored parameters (micro-seismicity, ground deformation, pore pressure) carried on by a scientific-technical agency. Only in the case of liquid reinjection, the alert levels are automatically activated on the basis of exceedance of thresholds for earthquake magnitude and ground shaking – in what is generally known as a Traffic Light System (TLS). Istituto Nazionale di Geofisica e Vulcanologia has been charged by the Italian oil and gas safety authority (DGS- UNMIG) to apply the ILG in three test cases (two oil extraction and one gas storage plants). The ILG indeed represent a very important and positive innovation, as they constitute official guidelines to coherently regulate monitoring activity on a national scale. While pilot studies are still mostly under way, we may point out merits of the whole framework, and a few possible critical issues, requiring special care in the implementa- tion. Attention areas of adjacent reservoirs, possibly licenced to different operators, may overlap, hence mak- ing the point for joint monitoring, also in view of the possible interaction between stress changes related to the different reservoirs. The prescribed initial blank- level monitoring stage, aimed at assessing background seismicity, may lose significance in case of nearby ac- tive production. Magnitude – a critical parameter used to define a possible step-up in activation levels – has inherent uncertainty and can be evaluated using differ- ent scales. A final comment considers the fact that relevance of TLS, most frequently used in hydraulic fracturing operations, may not be high in case of trig- gered tectonic events.
    Description: Published
    Description: 1015–1028
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: JCR Journal
    Keywords: Anthropogenic seismicity ; Alert system ; Monitoring guidelines ; 04.06. Seismology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-10
    Description: Tor Caldara natural reserve hosts the southernmost discharge of endogenous gas of Colli Albani volcano (mostly CO2 with a relevant H2S content up to 6.3 vol.%). Gas discharges in zones where past sulfur mining removed the impervious surficial cover (e.g. Miniera Grande and Miniera Piccola) and along tectonic fissures. A structural study of the reserve has shown the presence of two zones with different characteristics: prevailing directions NS and N30° in the northern zone; EW and N60° in the southern one. In MarchJuly 2012 a geochemical study was carried out, including a soil CO2 flux survey and continuous monitoring (from 2 to 11 days) of air concentration of CO2 and H2S in 12 sites of the reserve. Environmental parameters were also monitored. Total diffuse soil flux of endogenous CO2 was estimated to 17.48 ton*day1 from 1,259 measurements over a 0.47 km2 surface, with 6.56 ton*day1 only from Miniera Grande. This is the second highest value of soil CO2 flux at Miniera Grande, after that of 2005 (9.25 ton*day1) and is significantly higher than in 2009 (1.20 ton*day1). As both the 2005 and 2012 surveys were made shortly after earthquakes with epicentres near to Tor Caldara (max ML= 4.7 in 2005 and 3.5 in 2012), data confirm that soil CO2 flux increases during earthquakes because of seismic rock microfracturing and soil shaking. Hazardous air concentrations have been found only for H2S, up to immediately lethal values (5651,124 ppm) and with potentially lethal values (≥ 250 ppm) long persisting (up to 12h27’) in several no wind nights. Instead, the CO2 air concentration remained always well below dangerous levels (maximum recorded value = 2.1 vol.%). The most hazardous gas releasing sites were found in Miniera Grande and in a small pond NE of Miniera Piccola, where the carcasses of mammals and other small animals are frequently found. The killer gas is H2S, and the dangerous sites should be appropriately fenced to prevent access to people and animals.
    Description: Regione Lazio Civil Protection Department
    Description: Published
    Description: 1-48
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Tor Caldara gas hazard assessment; Soil CO2 flux; CO2 and H2S air concentration monitoring ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-18
    Description: probably confirm this opinion, with qualifica ons. Historical earthquake catalogues, up to CPTI11 [Rovida et al., 2011], report only one Mw 5.1 event on 13 November 1948: it was located in the Sardinian Sea, and had very modest effects on land. In later decades, the seismic networks did record very few earthquakes of moderate energy (Mw 〈5), mostly located off-shore, either south-east of Cagliari or west of Olbia or in the Sea of Sardinia. The most recent ones (occurred in 2000, 2004 and 2006) had very slight effects on the island. Given the low level of instrumental seismicity and the weak macroseismic effects of known historical earthquakes, Sardinia's seismic risk is perceived as very low. The low seismicity of the region certainly has a geological explana on, given that the Corsica-Sardinia block is among the most stable areas of the Mediterranean basin. “Low”, however, does not mean “non- existent”: recent historical research has improved knowledge on the major known historical earthquake of Sardinia (it occurred on June 4, 1616 and was responsible for minor but widespread damage to the system of coastal watchtowers, south-west of Cagliari) and rediscovered several minor earthquakes, part of which were known to the seismological tradi on but had been almost completely forgo en. This paper collects all the documenta on available at present on the seismic history of Sardinia.
    Description: Published
    Description: 1-160
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Keywords: Sardinia ; Seismicity ; Seismic history ; Historical Earthquakes ; Historical seismology ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-10-01
    Description: Several months of ambient seismic noise recordings are used for investigating the distribution of elastic properties in the Fucino Plain, one of the largest intermontane tectonic depressions of the Italian Apennine chain (Central Italy). The Plain is characterized by a low level of seismicity but the presence of several active faults makes it an Italian area of high seismic hazard. The most recent and strongest seismic event in Fucino Plain occurred in the 1915 (Avezzano earthquake) and it represents one of the most energetic events (Ms = 7.0) happened in central Apennines. Inter-stations Green’s functions are reconstructed by the cross-correlation of continuous ambient noise data recorded from twelve seismic velocimeters deployed around the Avezzano city, and organized in two different temporally sub-networks. The aim of cross-correlation analysis is to extract surface waves from Green’s functions for investigating the dispersive response of the structure. We analyzed the temporal stability of the cross-correlated signals that is used as an indicator of reliability of measurements and as criteria to select the Green’s functions to analyze
    Description: Published
    Description: 1173-1176
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Keywords: Cross correlation ; Noise ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-11-30
    Description: Buildings close to each other can perform different behaviour despite its similar seismic vulnerability. This effect is mainly due to the local seismic response connected to the characteristics of the shallow soil layers, especially when we move away from the epicentral area and the near field motion reduces its importance among the total amount of shaking. In this paper we show some results of the microzonation project of the Avezzano municipality, a town located in the southwestern portion of the Abruzzi region, which experienced the severe effects of the January 13th, 1915 M 7.0 earthquake. Starting from a particularly detailed knowledge of the geological characteristics of outcropping lithologies and inferring the trend of subsoil geometries, we explored the role played by the near-surface geology in causing variability of the ground motion by analysing a large database of earthquakes and microtremor recordings acquired by temporary seismological networks using classical site-reference and non-reference spectral techniques. Based on the obtained results we can seismically characterize all the municipal territory not only in terms of fundamental resonance frequency, useful in drawing maps of seismic microzonation and design geological sections, but also of amplification factors helpful in verifying numerical modelling of seismic response as required by national microzonation guidelines. We have also found many criticisms that need a more detailed analysis in order to establish the cause of these anomalies.
    Description: Published
    Description: 1153-1157
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Keywords: Microzonation ; Site response ; Spectral techniques ; Seismic amplification ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-19
    Description: Questo rapporto tecnico descrive le attività svolte da SISMIKO [Moretti et al., 2012; 2016a; 2016b; Pondrelli et al., 2016] in occasione della sequenza sismica che ha interessato l’area in provincia di Campobasso tra i comuni di Montecilfone, Guardialfiera e Larino a partire dal 14 agosto 2018 e che ha visto nel terremoto di magnitudo ML 5.2 (MW 5.1) del 16 agosto 2018 (18:19 UTC), ben risentito in un’ampia area che comprende molte regioni dell’Italia centro meridionale, l’evento più significativo della sequenza. SISMIKO è uno dei gruppi operativi dell’Istituto Nazionale di Geofisica e Vulcanologia (INGV) per la gestione delle emergenze sismiche [Pondrelli et al., 2016], e come per ogni terremoto con magnitudo superiore a 5.0, ovvero alla soglia prevista nella vigente Convenzione tra l’INGV e il Dipartimento della Protezione Civile (DPC), a seguito del terremoto del 16 agosto 2018 (ML 5.2) ha predisposto un intervento volto al miglioramento del monitoraggio sismico dell’area interessata. L’integrazione di stazioni sismiche temporanee nella geometria della Rete Sismica Nazionale (RSN [Michelini et al., 2016; INGV Seismological Data Centre]), consente infatti un miglioramento nella individuazione dei terremoti e un perfezionamento del calcolo dei parametri ipocentrali, soprattutto della profondità che è strettamente connessa alla distanza media tra le stazioni sismiche. L’intervento principale è stato svolto nella giornata del 17 agosto [SISMIKO working group, 2018], ma nelle due settimane successive i siti allestiti sono stati più volte visitati e il giorno 30 si è proceduto con l’integrazione di ulteriori 2 stazioni, portando a 5 i punti di acquisizione della rete temporanea. La rete sismica è stata operativa per circa 2 mesi. I dati sono stati trasmessi in tempo reale al centro di acquisizione dati della rete mobile presso la sede di Roma di SISMIKO e al contempo integrati nel sistema di sorveglianza sismica INGV [Michelini et al., 2016] per essere utilizzati nelle localizzazioni e nei prodotti scientifici forniti in tempo reale. On 16 August 2018 at 18:19:04 UTC an earthquake with magnitude ML 5.2 (MW 5.1) occurred in the Molise region. The earthquake was felt in a large area including many regions of Central and Southern Italy. The seismologists on duty in the 24H seismic monitoring room of the National Institute of Geophysics and Volcanology (INGV) located the event in the province of Campobasso, 4 km south­east of Montecilfone and at a preliminary depth of 9 km. The same area was affected two days before by a MW 4.6 event (August 14 at 23.48 Italian time1). Following the MW 5.1 event and the associated aftershock sequence, the SISMIKO Operational Group was activated [Moretti et al., 2012; 2016a; 2016b; Pondrelli et al., 2016] for the installation of temporary seismic stations to integrate the permanent stations of the National Seismic Network (RSN [Michelini et al., 2016; INGV Seismological Data Centre]) deployed in the region.
    Description: Published
    Description: 1-32
    Description: 2SR TERREMOTI - Gestione delle emergenze sismiche e da maremoto
    Description: N/A or not JCR
    Keywords: SISMIKO ; Seismic networks temporary ; Seismic emergency ; Molise ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-11-09
    Description: The Pico do Fogo volcano, in the Cape Verde Archipelago off the western coasts of Africa, has been the most active volcano in the Macaronesia region in the Central Atlantic, with at least 27 eruptions during the last 500 years. Between eruptions fumarolic activity has been persisting in its summit crater, but limited information exists for the chemistry and output of these gas emissions. Here, we use the results acquired during a field survey in February 2019 to quantify the quiescent summit fumaroles’ volatile output for the first time. By combining measurements of the fumarole compositions (using both a portable Multi-GAS and direct sampling of the hottest fumarole) and of the SO2 flux (using near-vent UV Camera recording), we quantify a daily output of 1060±340 tons CO2, 780±320 tons H2O, 6.2±2.4 tons H2S, 1.4±0.4 tons SO2 and 0.05±0.022 tons H2. We show that the fumarolic CO2 output from Pico do Fogo exceeds (i) the time-averaged CO2 release during 2015-type recurrent eruptions and (ii) is larger than current diffuse soil degassing of CO2 on Fogo Island. When compared to worldwide volcanoes in quiescent hydrothermal-stage, Pico do Fogo is found to rank among the strongest CO2 emitters. Its substantial CO2 discharge implies a continuous deep supply of magmatic gas from the volcano’s plumbing system (verified by the low but measurable SO2 flux), that becomes partially affected by water condensation and sulphur scrubbing in fumarolic conduits prior to gas exit. Variable removal of magmatic H2O and S accounts for both spatial chemical heterogeneities in the fumarolic field and its CO2-enriched mean composition, that we infer at 64.1±9.2 mol. % H2O, 35.6±9.1 mol. % CO2, 0.26±0.14 mol. % total Sulfur (St), and 0.04±0.02 mol. % H2.
    Description: Published
    Description: 325-340
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Pico do Fogo volcano ; Cape Verde ; Volcanic gases ; CO2 output ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-06-14
    Description: The eruption of Mt. Etna which occurred on December 24th 2018 was characterized by strombolian activity and fire fountains, emitted by the New South-East Crater and along a fissure that propagated towards the SE. The influence of volcanic emissions on atmospheric deposition was clearly detectable at several kilometres from the source. Wet and dry (bulk) deposition samples were collected each month, through a network of eleven collectors, in the areas of Milazzo, and Priolo between June 2018 and June 2019. They were analysed for major ions and trace elements concentrations. The pH values range from 3.9 to 8.3, while the EC values range from 7 to 396 μS cm-1. An extensive neutralization of the acidity has been recognised mainly due to the suspended alkaline dust particles, which have a buffering role in rainwater. A high load of Na+ and Cl- was observed at all sites, related to the closeness of the study areas to the coast, showing a high positive correlation (R2 = 0.989) along the line of Na+/Cl- ratio in seawater. During the eruption, the volcanic plume was carried by the winds for long distance (more than 300 km) affecting the area of Priolo but not that of Milazzo, which was upwind with respect to Mt. Etna. The impact of volcanic HF was clearly recognised in the samples collected after the eruption. Volcanic SO2 and HCl had a lower impact due to the overwhelming input of anthropogenic sulfate and marine chloride. On the contrary, the signature of the Mt. Etna eruption can be well recognised in the high concentrations of certain trace elements in the samples collected immediately after the eruption. The strongest contrast between affected and non-affected samples was recognised in Al, Cd, and especially in the volatile elements Tl and Te, which are typically enriched in volcanic emissions. The results showed that volcanic eruptions might have a relevant effect on the atmospheric chemistry and on the composition of rainwater up to distances of 80 km from the emission vents.
    Description: Published
    Description: 341-358
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: rainwater ; fluoride ; trace elements ; volcanic emissions ; 01. Atmosphere ; 03. Hydrosphere ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-11-12
    Description: Slope dynamics in volcanic environments comprise a wide spectrum of phenomena, from large lateral collapse to shallow debris remobilization, which may represent a major threat for human communities and infrastructures. Many volcanos built up from the ocean floor and large portions of the volcano edifice are submerged. In these settings, only the edifice’s summit can be investigated by terrestrial remote sensing and in-situ approaches. Growth and destruction, including tectonics and gravitational phenomena, affect entire volcano flanks and are not limited to the physical boundary of the sea level but could comprise their subaqueous parts.
    Description: Published
    Description: 2615–2618
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: volcanoes ; flanks ; volcano-tectonics ; structure ; collapse ; stability ; 04.08. Volcanology ; 05.08. Risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-11-09
    Description: This work presents chemical and isotopic (δ13C-CO2, δ13C-CH4, 3He, 4He, 20Ne, 40Ar, 36Ar, δ18O and δD) data on fluid discharges from the Colpitas-Taapaca volcanic-hydrothermal system, located close to the Taapaca Volcanic Complex, with the aim to investigate the physical-chemical conditions of the fluid source and to provide a preliminary evaluation of the geothermic potential of the study area. Colpitas thermal springs (to 56 °C) and part of the cold springs (≤18°C) from this area have a Na+-Cl- composition and Total Dissolved Solids (TDS) values (from 6,059 to 19,118 mg/L). Putre springs also show a Na+-Cl- composition, TDS values up to 7,887 mg/L, and outlet temperatures from 21 to 31 °C. Colpitas cold springs, with a Ca2+-SO4 2- composition and relatively low TDS values (≤1,350 mg/L), are likely produced by interaction of shallow water with uprising H2S-rich hydrothermal gases. This process is likely also controlling the chemistry of Jurase thermal springs, which have the highest outlet temperatures of the study area (up to 68 °C), a Ca2+-SO4 2- composition and TDS values ≤2,355 mg/L. Eventually, Las Cuevas springs have temperatures up to 36 °C, a Na+-HCO3 - composition and low TDS values (≤1,067 mg/L), typical features of springs related to a shallow aquifer. The δ18OH 2O and δD-H2O values indicate that all waters have a dominant meteoric origin. Enrichments in 18O and D shown by Colpitas and Putre thermal waters are likely due to steam loss and waterrock interaction, masking a possible direct steam contribution from magmatic degassing. Gas emissions from Colpitas bubbling pools are dominated by CO2, with significant concentrations of CH4, H2S and H2. The Rc/Ra values (up to 2.04) of Colpitas gases indicate a significant contribution of magmatic to mantle He, whereas the high CO2/3He ratios, combined with δ13C-CO2 values ranging from -7.66 to -5.63 ‰ vs. PDB, imply a dominant crustal CO2 source, mostly involving limestone. Estimated temperatures based on the composition of waters and gases from Colpitas are up to 215 °C. Higher temperatures (240 °C) are estimated for Putre thermal waters, although these waters, as well as those from Jurase and Las Cuevas, are too immature for a reliable application of geothermometric techniques. Based on the theoretical reservoir temperature and the measured Cl total output, the thermal energy released from Colpitas thermal area is estimated at up to 13.9 Mw. Such results suggest the occurrence of a promising heat source, possibly related to Taapaca volcanic complex, and encourage the development of future research based on combined geophysical and geochemical approaches, in order to provide a reliable evaluation of the geothermal potential of the whole area.
    Description: Published
    Description: 359-373
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Colpitas-Taapaca geothermal system ; Fluid geochemistry ; volcanic-hydrothermal system ; geothermal potential ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...