ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (3)
  • 1980-1984  (3)
  • 1925-1929
  • 1983  (3)
  • 1926
  • Mineralogy  (3)
  • 1
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 94.0162
    In: Reviews in mineralogy
    Description / Table of Contents: Geochemistry is a science that is based on an understanding of chemical processes in the earth. One of the principal tools available to the chemist for understanding systems at equilibrium is thermodynamics. The awareness and application of thermodynamic techniques has increased at a very fast pace in geosciences; in fact, one may be so bold as to say that thermodynamics in geology has reached the "mature" stage, although much future thermodynamic research is certainly needed. However, the natural processes in the earth are often sluggish enough that a particular system may not reach equilibrium. This observation is being supported constantly by new experimental and field data available to the geochemist e.g. the non-applicability of the phase rule in some assemblages, the compositional inhomogeneities of mineral grains, the partial reaction rims surrounding original minerals, the lack of isotopic equilibration or the absence of minerals (e.g. dolomite), which should be present according to thermodynamics. The need to apply kinetics has produced a large number of papers dealing with kinetics in geochemistry. As an initial response to this growing field, a conference on geochemical transport and kinetics was conducted at Airlie House, VA, in 1973, sponsored by the Carnegie Institution of Washington. The papers there dealt with several kinetic topics including diffusion, exsolution, metasomatism and metamorphic layering. Since 1973 the number of kinetic papers has continued to increase greatly. Therefore, the time is ripe for a Short Course in Kinetics, which brings together the fundamentals needed to explain field observations using kinetic data. It is hoped that this book may serve, not only as a reference for researchers dealing with the rates of geochemical processes, but also as a text in courses on geochemical kinetics. One of us has found this need of a text in teaching a graduate course on geochemical kinetics at Harvard and at Penn State during the past several years. Finally, it is our hope that the book may itself further even more research into the rates of geochemical processes and into the quantification of geochemical observations. The book is organized with a rough temperature gradient in mind, i.e. low temperature kinetics at the beginning and igneous kinetics at the end (no prejudices are intended with this scheme!). However, the topics in each chapter are general enough that they can be applied often to any geochemical domain: sedimentary, metamorphic or igneous. The theory of kinetics operates at two complementary levels: the phenomenological and the atomistic. The former relies on macroscopic variables (e.g. temperature or concentrations) to describe the rates of reactions or the rates of transport; the latter relates the rates to the basic forces operating between the particular atomic or molecular species of any system. This book deals with both descriptions of the kinetics of geochemical processes. Chapter one sets the framework for the phenomenological theory of reaction rates. If any geochemical reaction is to be described quantitatively, the rate law must be experimentally obtained in a kinetically sound manner and the reaction mechanism must be understood. This applies to heterogeneous fluid-rock reactions such as those occurring during metamorphism, hydrothermal alteration or weathering as well as to homogeneous reactions. Chapter 2 extends the theory to the global kinetics of geochemical cycles. This enables the kinetic concepts of stability and feedback to be applied to the cycling of elements in the many reservoirs of the earth. Chapter 3 applies the phenomenological treatment of chapter 1 to diagenesis and weathering. The rate of dissolution of minerals as well as the chemical evolution of pore waters are discussed. The atomistic basis of rates of reaction, transition state theory, is introduced in Chapter 4. Transition state theory can be applied to relate the rate constants of geochemical reactions to the atomic processes taking place. This includes not only homogeneous reactions but also reactions that occur at the surface of minerals. Chapter 5 discusses the theory of irreversible thermodynamics and its application to petrology. The use of the second law of thermodynamics along with the expressions for the rate of entropy production in a system have been used successfully since 1935 to describe kinetic phenomena. The chapter applies the concepts to the growth of minerals during metamorphism as well as to the formation of differentiated layers (banding) in petrology. Chapter 6 describes the phenomenological theory of diffusion both in aqueous solutions and in minerals. In particular, the multicomponent nature of diffusion and its consequence in natural systems is elaborated. Chapter 7 provides the atomistic basis for the rates of reactions in minerals. Understanding of the rates of diffusion, conduction, order-disorder reactions or exsolution in minerals depends on proper description of the defects in the various mineral structures. Chapter 8 provides the kinetic theory of crystal nucleation and growth. While many of the concepts in the chapter can be applied to aqueous systems, the emphasis is on igneous processes occurring during crystallization of a melt. To fully understand both the mineral composition as well as the texture of igneous rocks, the processes whereby new crystals form and grow must be quantified by using kinetic theory. Due to space and time limitations (kinetics!) some topics have not been covered in detail. In particular, the mathematical solution of diffusion or conduction equations is discussed very well by Crank in his book, Mathematics of Diffusion, and so is not covered to a great extent here. The treatment of fluid flow (e.g. convection) is also not covered in the text.
    Type of Medium: Monograph available for loan
    Pages: x, 398 S.
    ISBN: 0-939950-08-1 , 978-0-939950-08-9
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy 8
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. Rate Laws of Chemical Reactions by Antonio C. Lasaga, p. 1 - 68 Chapter 2. Dynamic Treatment of Geochemical Cycles: Global Kinetics by Antonio C. Lasaga, p. 69 - 110 Chapter 3. Kinetics of Weathering and Diagenesis by Robert A. Berner, p. 111 - 134 Chapter 4. Transition State Theory by Antonio C. Lasaga, p. 135 - 170 Chapter 5. Irreversible Thermodynamics in Petrology by George W. Fisher and Antonio C. Lasaga, p. 171 - 210 Chapter 6. Diffusion in Electrolyte Mixtures by David E. Anderson, p. 211 - 260 Chapter 7. The Atomistic Basis of Kinetics: Defects in Minerals by Antonio C. Lasaga, p. 261 - 320 Chapter 8. Kinetics of Crystallization of Igneous Rocks by R. James Kirkpatrick, p. 321 - 398
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 92.0613
    In: Reviews in mineralogy
    Description / Table of Contents: In October 1975 a Short Course on Feldspar Mineralogy was held at the Hotel Utah, Salt Lake City, in conjunction with the annual meetings of the Mineralogical Society of America. Richard A. Yund, David B. Stewart, Joseph V. Smith and Paul R. Ribbe presented workshops on x-ray single-crystal and powder diffraction methods and electron optical techniques as applied to the study of feldspars and presented eight lectures, the substance of which became the nine chapters of the first edition of Feldspar Mineralogy. That book was published by the Mineralogical Society as the second volume of its series entitled Short Course Notes. In 1980 the MSA renamed the series Reviews in Mineralogy to more accurately reflect the scope and contents of the volumes, some of which -- including Volume 5 (1st and 2nd editions), this volume and a forthcoming one on fluid inclusions --were written without presentation at a short course. It will be noted by readers experienced with feldspars that there are many new ideas appearing in Chapters 3, 4 and 5 that have neither received scrutiny by review (other than ourselves) nor survived practical tests of time in the research community. There is some danger in this, but the editor decided the greater risk was to produce a review volume soon to be outdated. Inevitably, given the different goals of individual authors in their assigned topics, some repetition of material has occurred, although usually with quite different emphases. Chapters 1, 2, 9 and 10, in which plagioclase structures and diffraction patterns and their Al,Si distributions, phase equilibria and exsolution textures are featured, are notable in this regard. The editor has attempted to cross-reference these and as many other subjects throughout the volume as feasible. This is a luxury not afforded in other books of this series produced with a short course deadline, and it, together with the detailed Table of Contents, compensates to some degree for the lack of an index. Throughout this book repeated references are made to Smith (1974a,b); these are Volumes 1 and 2 of Feldspar Minerals, an encyclopedic work written by Joseph V. Smith and published by Springer-Verlag. We are particularly indebted to Drs. Konrad Springer and H. Wiebking for permission to reproduce many figures free of charge. The editor (and hopefully this volume) benefitted greatly from numerous stimulating discussions with David B. Stewart, some of which reached a high pitch, none of which came to blows, and several of which produced some palpable scientific progress. Stewart read and criticized many of the chapters. The authors are grateful to numerous individual scientists for figures, for data in advance of publication, and for encouragement and correction.
    Type of Medium: Monograph available for loan
    Pages: xii, 362 S.
    Edition: 2nd ed.
    ISBN: 0-939950-14-6 , 978-0-939950-14-0
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy 2
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. Chemistry, Structure, and Nomenclature of Feldspars by Paul H. Ribbe, p. 1 - 20. Chapter 2. Aluminum-Silicon Order in Feldspars: Domain Textures and Diffraction Patterns by Paul H. Ribbe, p. 21 - 56. Chapter 3. Lattice Parameters, Composition, and Al/Si Order in Alkali Feldspars by Herbert Kroll and Paul H. Ribbe, p. 57 - 100. Chapter 4. Lattice Parameters and Determinative Methods for Plagioclase and Alkali Feldspars by Herbert Kroll, p. 101 - 120. Chapter 5. Optical Properties of Feldspars by David B. Stewart and Paul H. Ribbe, p. 121 - 140. CHapter 6. Subsolidus Phase Relations in the Alkali Feldspars with Emphasis on Coherent Phases by Richard A. Yund and Jan Tullis, p. 141 - 176. Chapter 7. Microstructure, Kinetics and Mechanisms of Alkali Feldspar Exsolution by Richard A. Yund, p. 177 - 202. Chapter 8. Diffusion in Feldspars by Richard A. Yund, p. 203 - 222. Chapter 9. Phase Equilibria of Plagioclase by Joeseph V. Smith, p. 223 - 240. Chapter 10. Exsolution Textures in Ternary and Plagioclase Feldspars; Interference Colors by Paul H. Ribbe, p. 241 - 270. Chapter 11. Color in Feldspars by Anne M. Hofmeister and George R. Rossman, p. 271 - 280. Chapter 12. Some Chemical Properties of Feldspars by Joseph V. Smith, p. 281 - 296. Chapter 13. Deformation of Feldspars by Jan Tullis, p. 297 - 324. Appendix. Guides to indexing Feldspar Powder Patterns p. 325 - 342.
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Monograph available for loan
    Monograph available for loan
    New York [u.a.] : Springer-Verl.
    Associated volumes
    Call number: M 93.0721 ; M 93.00038/3
    In: Advances in physical geochemistry
    Type of Medium: Monograph available for loan
    Pages: x, 273 S.
    ISBN: 038790865X
    Series Statement: Advances in physical geochemistry
    Classification:
    Mineralogy
    Language: English
    Location: Upper compact magazine
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...