ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books  (231)
  • English  (231)
  • 2015-2019  (198)
  • 1955-1959  (33)
  • AWI Library  (231)
Collection
  • Books  (231)
Language
Years
Year
Branch Library
  • 1
    Monograph available for loan
    Monograph available for loan
    Tokyo : National Institute for Polar Research
    Call number: AWI P5-15-0033
    Type of Medium: Monograph available for loan
    Pages: 26 S. : Ill., graph. Darst., Kt.
    Edition: 2014, rev. March 2015
    Language: English
    Note: Contents: 1. Introduction. - (1) The purposes of the long-term plan report. - (2) The background and particulars of this report. - (3) Contents of this report. - 2.Changes in the Arctic environment to date and in the near future. - 3. History of Arctic environmental research. - 4. Abstracts of all themes. - (1) Elucidation of abrupt environmental change in the Arctic associated with the on-going global warming. - Theme 1: Arctic amplification of global warming. - Theme 2: Mechanisms and influence of sea ice decline. - Theme 3: Biogeochemical cycles and ecosystem changes. - Theme 4: Ice sheet, glaciers, permafrost, snowfall, snow cover and hydrological cycle. - Theme 5: Interactions between the Arctic and the entire earth. - Theme 6: Predicting future environmental conditions of the Arctic based on paleoenvironmental records. - Theme 7: Effects of the Arctic environment on human society. - (2) Elucidation of environmental change concerning biodiversity. - Theme 8: Effects on terrestrial ecosystems and biodiversity. - Theme 9: Influence on marine ecosystem and biodiversity. - (3) Broad and important subjects on the Arctic environment. - Theme 10: Geospace environment. - Theme 11: Interaction of surface environment change with solid earth. - Theme 12: Basic understanding on formation and transition process of permafrost. - (4) Development of methods enabling breakthroughs in environmental research. - Theme A: Sustainable seamless monitoring. - Theme B: Earth system-modeling for inter-disciplinary research. - Theme C: Data assimilation to connect monitoring and modeling. - 5. Improvement of research foundation. - Authors and reviewers.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Monograph available for loan
    Monograph available for loan
    Dordrecht : Springer
    Call number: AWI A11-15-0048
    Description / Table of Contents: This textbook aims to be a one stop shop for those interested in aerosols and their impact on the climate system. It starts with some fundamentals on atmospheric aerosols, atmospheric radiation and cloud physics, then goes into techniques used for in-situ and remote sensing measurements of aerosols, data assimilation, and discusses aerosol-radiation interactions, aersol-cloud interactions and the multiple impacts of aerosols on the climate system. The book aims to engage those interested in aerosols and their impacts on the climate system: graduate and PhD students, but also post-doctorate fellows who are new to the field or would like to broaden their knowledge. The book includes exercises at the end of most chapters. Atmospheric aerosols are small (microscopic) particles in suspension in the atmosphere, which play multiple roles in the climate system. They interact with the energy budget through scattering and absorption of solar and terrestrial radiation. They also serve as cloud condensation and ice nuclei with impacts on the formation, evolution and properties of clouds. Finally aerosols also interact with some biogeochemical cycles. Anthropogenic emissions of aerosols are responsible for a cooling effect that has masked part of the warming due to the increased greenhouse effect since pre-industrial time. Natural aerosols also respond to climate changes as shown by observations of past climates and modelling of the future climate.
    Type of Medium: Monograph available for loan
    Pages: XVII, 311 Seiten , Illustrationen
    ISBN: 9789401796484
    Uniform Title: Aérosols atmosphériques : propriétés et impacts climatiques
    Language: English
    Note: Contents: 1 General Introduction. - 1.1 The Climate System. - 1.2 The Atmosphere. - 1.3 Energy Budget and Atmospheric Composition. - 1.4 The Water Cycle. - 1.5 Aerosols and Climate Change. - 1.6 Outline of this Textbook. - References. - Further Reading (Textbooks and Articles. - 2 Atmospheric Aerosols. - 2.1 Definitions. - 2.2 Sources of Aerosols and Aerosol Precursors. - 2.2.1 Marine Aerosols. - 2.2.2 Desert Dust. - 2.2.3 Volcanic Aerosols. - 2.2.4 Biogenic Aerosols. - 2.2.5 Biomass Burning Aerosols. - 2.2.6 Aerosols from Fossil Fuel Combustion. - 2.3 Spatial and Temporal Aerosol Distributions. - 2.4 Aerosol-Cloud-Radiation Interactions. - 2.5 Climate Effects of Aerosols. - References. - Further Reading (Textbooks and Articles). - 3 Physical, Chemical and Optical Aerosol Properties. - 3.1 Fine, Accumulation and Coarse Modes. - 3.2 Size Distribution. - 3.3 Chemical Composition. - 3.3.1 Aerosol Mixture. - 3.3.2 Inorganic Aerosols. - 3.3.3 Black Carbon Aerosols. - 3.3.4 Organic Aerosols. - 3.3.5 Geographic Distribution of Aerosol Chemical Composition. - 3.4 Refractive Index. - 3.5 Deliquescence, Efflorescence and Hysteresis. - 3.6 Definition of Aerosol Optical Properties. - 3.6.1 Absorption and Scattering Cross Sections. - 3.6.2 Phase Function. - 3.6.3 Upscatter Fractions. - 3.7 Calculation of Aerosol Optical Properties. - 3.7.1 Mie Theory. - 3. 7.2 Extinction, Scattering and Absorption. - 3.7.3 Optical Depth and Angström Coefficient. - 3.8 Optical Properties of Nonspherical Aerosols. - 3.9 Aerosols and Atmospheric Visibility. - References. - Further Reading (Textbooks and Articles). - 4 Aerosol Modelling. - 4.1 Introduction. - 4.2 Emissions. - 4.2.1 Generalities. - 4.2.2 Fossil Fuels, Biofuels, and Other Anthropogenic Sources. - 4.2.3 Vegetation Fires. - 4.2.4 Sea Spray. - 4.2.5 Desert Dust. - 4.2.6 Dimethylsulphide. - 4.2.7 Biogenic Volatile Organic Compounds. - 4.2.8 Volcanoes. - 4.2.9 Resuspension. - 4.3 Atmospheric Processes. - 4.3.1 Nucleation. - 4.3.2 Condensation of Semi-Volatile Compounds. - 4.3.3 Coagulation. - 4.3.4 In-Cloud Aerosol Production. - 4.3.5 Wet Deposition. - 4.3.6 Dry Deposition. - 4.3.7 Sedimentation. - 4.3.8 Aerosol Transport. - 4.4 Modelling Approaches. - 4.4.1 Bulk Approach. - 4.4.2 Sectional Approach. - 4.4.3 Modal Approach. - 4.5 Example: The Sulphur Budget. - References. - Further Reading (Textbooks and Articles). - 5 Interactions of Radiation with Matter and Atmospheric Radiative Transfer. - 5.1 Introduction. - 5.2 Electromagnetic Radiation. - 5.2.1 Generalities. - 5.2.2 Definitions. - 5.3 Interactions of Radiation with Matter. - 5.3.1 Matter, Energy and Spectral Lines. - 5.3.2 Intensity of Spectral Lines. - 5.3.3 Spectral Line Profiles. - 5.3.4 Processes of lnteractions of Radiation with Matter. - 5.4 Modelling of the Interaction Processes. - 5.4.1 Molecular Absorption Coefficient. - 5.4.2 Scattering Phase Function. - 5.4.3 Molecular Scattering. - 5.4.4 Absorption and Scattering by Aerosols. - 5.4.5 Thermal Emission. - 5.5 Atmospheric Radiative Transfer. - 5.5.1 Equation of Radiative Transfer. - 5.5.2 Extinction Only. - 5.5.3 Scattering Medium. - 5.5.4 Plane-Parallel Atmosphere. - 5.5.5 Resolution of the Equation of Radiative Transfer. - 5.6 Absorption Bands, Energy, and Actinic Fluxes. - 5.6.1 Main Molecular Absorption Bands in the Atmosphere. - 5.6.2 Radiative Flux. - 5.6.3 Two-Flux Method. - 5.6.4 Stefan-Boltzmann Law. - 5.6.5 Radiative Budget. - 5.6.6 Actinic Fluxes. - 5.6.7 Polarization of Radiation. - References. - Further Reading (Textbooks and Articles). - 6 In Situ and Remote Sensing Measurements of Aerosols. - 6.1 Introduction to Aerosol Remote Sensing. - 6.2 Passive Remote Sensing: Measurement of the Extinction. - 6.2.1 General Principles. - 6.2.2 Ground-Based Photometry. - 6.2.3 Spaceborne Occultation Measurements. - 6.2.4 Retrieval of Aerosol Size Distribution. - 6.3 Passive Remote Sensing: Measurement of the Scattering. - 6.3.1 General Principles. - 6.3.2 Ground-Based Measurement of Scattered Radiation. - 6.3.3 Spaceborne Measurements of Scattered Radiation. - 6.4 Measurement of Infrared Radiation. - 6.4.1 General Principles. - 6.4.2 Spaceborne Nadir Measurement of Infrared Radiation. - 6.4.3 Spaceborne Limb Measurement of Infrared Radiation. - 6.5 Active Remote Sensing: Lidar. - 6.5.1 General Principles. - 6.5.2 The Lidar Equation. - 6.5.3 Raman Lidar. - 6.6 In Situ Aerosol Measurements. - 6.6.1 Measurement of Aerosol Concentrations. - 6.6.2 Measurement of Aerosol Chemical Composition. - 6.6.3 Measurement of Aerosol Scattering. - 6.6.4 Measurement of Aerosol Absorption. - 6.7 Conclusions. - References. - Further Reading (Textbooks and Articles). - 7 Aerosol Data Assimilation. - 7.1 Introduction. - 7.2 Basic Principles of Data Assimilation. - 7.3 Applications of Data Assimilation for Aerosols. - References. - Further Reading (Textbooks and Articles). - 8 Aerosol-Radiation Interactions. - 8.1 Introduction. - 8.2 Atmospheric Radiative Effects Due to Aerosols. - 8.2.1 Simplified Equation for Scattering Aerosols. - 8.2.2 Simplified Equation for Absorbing Aerosols. - 8.2.3 Radiative Transfer Calculations. - 8.2.4 Global Estimates and Sources of Uncertainty. - 8.3 Rapid Adjustments to Aerosol-Radiation Interactions. - 8.4 Radiative Impact of Aerosols on Surface Snow and Ice. - References. - Further Reading (Textbooks and Articles). - 9 Aerosol-Cloud lnteractions. - 39.1 Introduction. - 9 .1.1 Cloud Formation. - 9 .1.2 Cloud Distribution. - 9 .1.3 Aerosol-Cloud Interactions. - 9.2 Aerosol Effects on Liquid Clouds. - 9 .2.1 Saturation Pressure of Water Vapour. - 9.2.2 Kelvin Effect. - 9.2.3 Raoult's Law. - . - 9.2.4 Köhler Theory. - 9.2.5 Extensions to the Köhler Theory. - 9.2.6 CCN and Supersaturation in the Cloud. - 9.2.7 Dynamical and Radiative Effects in Clouds. - 9.2.8 Principle of the Cloud Albedo Effect. - 9.2.9 Observations of the Cloud Albedo Effect. - 9.2.10 Adjustments in Liquid Water Clouds. - 9.2.11 Rapid Adjustments Occurring in Liquid Clouds. - 9.3 Aerosols Effects on Mixed-Phased and Ice Clouds. - 9.3.1 Elements of Microphysics of Ice Clouds. - 9.3.2 Impact of Anthropogenic Aerosols on Ice Clouds. - 9.4 Forcing Due to Aerosol-Cloud lnteractions. - 9.5 Aerosols, Contrails and Aviation-Induced Cloudiness. - 9.5.1 Formation of Condensation Trails. - 9.5.2 Estimate of the Climate Impact of Contrails. - References. - Further Reading (Textbooks and Articles). - 10 Climate Response to Aerosol Forcings. - 10.1 Introduction. - 10.2 Radiative Forcing, Feedbacks and Climate Response. - 10.2.1 Radiative Forcing. - 10.2.2 Climate Feedbacks. - 10.2.3 Rapid Adjustments and Effective Radiative Forcing. - 10.2.4 Climate Response and Climate Efficacy. - 10.3 Climate Response to Aerosol Forcings. - 10.3.1 Equilibrium Response. - 10.3.2 Past Emissions. - 10.3.3 Detection and Attribution of Aerosol Impacts. - 10.3.4 Future Emissions Scenarios. - 10.4 Nuclear Winter. - References. - Further Reading (Textbooks and Articles). - 11 Biogeochemical Effects and Climate Feedbacks of Aerosols. - 11 .1 Introduction. - 11.2 Impact of Aerosols on Terrestrial Ecosystems. - 11.2.1 Diffuse Radiation and Primary Productivity. - 11.2.2 Aerosols as a Source of Nutrients. - 11.2.3 Acidification of Precipitation. - 11.3 Impact of Aerosols on Marine Ecosystems. - 11.4 Aerosols-Atmospheric Chemistry Interactions. - 11.4.1 Interactions with Tropospheric Chemistry. - 11.4.2 Impact of Stratospheric Aerosols on the Ozone Layer and Ultravialet Radiation. - 11.5 Climate Feedbacks Involving Marine Aerosols. - 11.5.1 Sulphate Aerosols from DMS Emissions. - 11.5.2 Marine Aerosols. - 11.5.3 Other Aerosols of Maritime Origin. - 11.6 Climate Feedbacks Involving Continental Aerosols. - 11.6.1 Secondary Organic Aerosols. - 11.6.2 Primary Aerosols of Biogenic Origin. - 11.6.3 Aerosols from Vegetation Fires. - 11.6.4 Desert Dust. - 11.7 Climate Feedbacks Involving Stratospheric Aerosols. - References. - Further Reading (Textbooks and Articles). - 12 Strato
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Monograph available for loan
    Monograph available for loan
    Hoboken, NJ : Wiley
    Call number: AWI A14-15-0008
    Description / Table of Contents: The cryosphere, that region of the world where water is temporarily or permanently frozen, plays a crucial role on our planet. Recent developments in remote sensing techniques, and the acquisition of new data sets, have resulted in significant advances in our understanding of all components of the cryosphere and its processes. This book, based on contributions from 40 leading experts, offers a comprehensive and authoritative overview of the methods, techniques and recent advances in applications of remote sensing of the cryosphere. Examples of the topics covered include: snow extent, depth, grain size and impurities; surface and subsurface melting; glaciers; accumulation over the Greenland and Antarctica ice sheets; ice thickness and velocities; gravimetric measurements from space; sea, lake and river ice; frozen ground and permafrost; fieldwork activities; recent and future cryosphere-oriented missions and experiments.
    Type of Medium: Monograph available for loan
    Pages: 408 Seiten , Illustrationen
    Edition: 1. edition
    ISBN: 9781118368855
    Series Statement: The cryosphere science series
    Language: English
    Note: Table of Contents: List of contributors. - Cryosphere Science: Series Preface. - Preface. - Acknowledgments. - About the companion website. - 1 Remote sensing and the cryosphere. - 1.1 Introduction. - 1.2 Remote sensing. - 1.2.1 The electromagnetic spectrum and blackbody radiation. - 1.2.2 Passive systems. - 1.2.3 Active systems. - 1.3 The cryosphere. - References. - 2 Electromagnetic properties of components of the cryosphere. - 2.1 Electromagnetic properties of snow. - 2.1.1 Visible/near-infrared and thermal infrared. - 2.1.2 Microwave region. - 2.2 Electromagnetic properties of sea ice. - 2.2.1 Visible/near-infrared and thermal infrared. - 2.2.2 Microwave region. - 2.3 Electromagnetic properties of freshwater ice. - 2.4 Electromagnetic properties of glaciers and ice sheets. - 2.4.1 Visible/near-infrared and thermal infrared. - 2.4.2 Microwave region. - 2.5 Electromagnetic properties of frozen soil. - 2.5.1 Visible/near-infrared and thermal infrared. - 2.5.2 Microwave region. - References. - Acronyms. - Websites cited. - 3 Remote sensing of snow extent. - 3.1 lntroduction. - 3.2 Visible/near-infrared snow products. - 3.2.1 The normalized difference snow index (NDSI). - 3.3 Passive microwave products. - 3.4 Blended VNIR/PM products. - 3.5 Satellite snow extent as input to hydrological models. - 3.6 Concluding remarks. - Acknowledgments. - References. - Acronyms. - Websites cited. - 4 Remote sensing of snow albedo, grain size, and pollution from space. - 4.1 Introduction. - 4.2 Forward modeling. - 4.3 Local optical properties of a snow layer. - 4.4 Inverse problem. - 4.5 Pitfalls of retrievals. - 4.6 Conclusions. - Acknowledgments. - References. - Acronyms. - Websites cited. - 5 Remote sensing of snow depth and snow water equivalent. - 5.1 Introduction. - 5.2 Photogrammetry. - 5.3 LiDAR. - 5.4 Gamma radiation. - 5.5 Gravity data. - 5.6 Passive microwave data. - 5.7 Active microwave data. - 5.8 Conclusions. - References. - Acronyms. - Websites cited. - 6 Remote sensing of melting snow and ice. - 6.1 Introduction. - 6.2 General considerations on optical/thermal and microwave sensors and techniques for remote sensing of melting. - 6.2.1 Optical and thermal sensors. - 6.2.2 Microwave sensors. - 6.2.3 Electromagnetic properties of dry and wet snow. - 6.3 Remote sensing of melting over land. - 6.4 Remote sensing of melting over Greenland. - 6.4.1 Thermal infrared sensors. - 6.4.2 Microwave sensors. - 6.5 Remote sensing of melting over Antarctica. - 6.6 Conclusions. - References. - Acronyms. - 7 Remote sensing of glaciers. - 7.1 Introduction. - 7.2 Fundamentals. - 7.3 Satellite instruments for glacier research. - 7.4 Methods. - 7.4.1 Image classification for glacier mapping. - 7.4.2 Mapping debris-covered glaciers. - 7.4.3 Glacier mapping with SAR data. - 7.4.4 Assessing glacier changes. - 7.4.5 Area and length changes. - 7.4.6 Volumetrie glacier changes. - 7.4.7 Glacier velocity. - 7.5 Glaciers of the Greenland ice sheet. - 7.5.1 Surface elevation. - 7.5.2 Glacier extent. - 7.5.3 Glacier dynamics. - 7.6 Summary. - References. - Acronyms. - Websites cited. - 8 Remote sensing of accumulation over the Greenland and Antarctic ice sheets. - 8.1 Introduction to accumulation. - 8.2 Spaceborne methods for determining accumulation over ice sheets. - 8.2.1 Microwave remote sensing. - 8.2.2 Other remote sensing techniques and combined methods. - 8.3 Airborne and ground-based measurements of accumulation. - 8.3.1 Ground-based. - 8.3.2 Airborne. - 8.4 Modeling of accumulation. - 8.5 The future for remote sensing of accumulation. - 8.6 Conclusions. - References. - Acronyms. - Website cited. - 9 Remote sensing of ice thickness and surface velocity. - 9.1 Introduction. - 9.1.1 Electrical properties of glacial ice. - 9.2 Radar principles. - 9.2.1 Radar sounder. - 9.2.2 Radar equation. - 9.3 Pulse compression. - 9.4 Antennas. - 9.5 Example results. - 9.6 SAR and array processing. - 9.7 SAR Interferometry. - 9. 7.1 Introduction. - 9.7.2 Basic theory. - 9.7.3 Practical considerations of InSAR systems. - 9.7.4 Application of InSAR to Cryosphere remote sensing. - 9.8 Conclusions. - References. - Acronyms. - 10 Gravimetry measurements from space. - 10.1 Introduction. - 10.2 Observing the Earth's gravity field with inter-satellite ranging. - 10.3 Surface mass variability from GRACE. - 10.4 Results. - 10.5 Conclusions. - References. - Acronyms. - 11 Remote sensing of sea ice. - 11.1 Introduction. - 11.2 Sea ice concentration and extent. - 11.2.1 Passive microwave radiometers. - 11.2.2 Active microwave - scatterometry and radar. - 11.2.3 Visible and infrared. - 11.2.4 Operational sea ice analyses. - 11.3 Sea ice drift. - 11.4 Sea ice thickness and age, and snow depth. - 11.4.1 Altimetric thickness estimates. - 11.4.2 Radiometric thickness estimates. - 11.4.3 Sea ice age estimates as a proxy for ice thickness. - 11.5 Sea ice melt onset and freeze-up, albedo, melt pond fraction and surface temperature. - 11.5.1 Melt onset and freeze-up. - 11.5.2 Sea ice albedo and melt pond fraction. - 11.5.3 Sea ice surface temperature. - 11.6 Summary, challenges and the road ahead. - References. - Acronyms. - Website cited. - 12 Remote sensing of lake and river ice. - 12.1 Introduction. - 12.2 Remote sensing of lake ice. - 12.2.1 Ice concentration, extent and phenology. - 12.2.2 Ice types. - 12.2.3 Ice thickness and snow on ice. - 12.2.4 Snow/ice surface temperature. - 12.2.5 Floating and grounded ice: the special case of shallow Arctic/sub-Arctic lakes. - 12.3 Remote sensing of river ice. - 12.3.1 Ice extent and phenology. - 12.3.2 lce types, ice jams and flooded areas. - 12.3.3 Ice thickness. - 12.3.4 Surface flow velocities. - 12.3.5 Incorporating SAR-derived ice information into a GIS-based system in support of river-flow modeling and flood forecasting. - 12.4 Conclusions and outlook. - Acknowledgments. - References. - Acronyms. - Websites cited. - 13 Remote sensing of permafrost and frozen ground. - 13.1 Permafrost - an essential climate variable of the "Global Climate Observing System". - 13.2 Mountain permafrost. - 13.2.1 Remote sensing of surface features and permafrost landforms. - 13.2.2 Generation of digital elevation models. - 13.2.3 Terrain elevation change and displacement. - 13.3 Lowland permafrost - identification and mapping of surface features. - 13.3.1 Land cover and vegetation. - 13.3.2 Permafrost landforms. - 13.3.3 Landforms and processes indicating permafrost degradation. - 13.4 Lowland permafrost - remote sensing of physical variables related to the thermal permafrost state. - 13.4.1 Land surface temperature through thermal remote sensing. - 13.4.2 Freeze-thaw state of the surface soil through microwave remote sensing. - 13.4.3 Permafrost mapping with airborne electromagnetic surveys. - 13.4.4 Regional surface deformation through radar interferometry. - 13.4.5 A gravimetric signal of permafrost thaw?. - 13.5 Outlook - remote sensing data and permafrost models. - References. - Acronyms. - 14 Field measurements for remote sensing of the cryosphere. - 14.1 Introduction. - 14.2 Physical properties of interest. - 14.2.1 Surface properties. - 14.2.2 Sub-surface properties. - 14.3 Standard techniques for direct measurements of physical properties. - 14.3.1 Topography. - 14.3.2 Snow depth. - 14.3.3 Snow water equivalent and density. - 14.3.4 Temperature. - 14.3.5 Stratigraphy. - 14.3.6 Sea ice depth and ice thickness. - 14.4 New techniques for high spatial resolution measurements. - 14.4.1 Topography. - 14.4.2 Surface properties. - 14.4.3 Sub-surface properties. - 14.5 Simulating airborne and spaceborne observations from the ground. - 14.5.1 Active microwave. - 14.5.2 Passive microwave. - 14.6 Sampling strategies for remote sensing field campaigns: concepts and examples. - 14.6.1 Ice sheet campaigns. - 14.6.2 Seasonal snow campaigns. - 14.6.3 Sea ice campaigns. - 14.7 Conclusions. - References. - Acronyms. - Websites cited. - 15 Remote sensing missions and the cryosphere. - 15.1 In
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Call number: ZSP-201-20
    In: SIPRE report, 20
    Description / Table of Contents: Work carried out at the SIPRE Test Site, Site 2, on the Greenland Ice Cap,during the summer 1954, included: (1) Excavation of trenches, a circular tunnel and a deep pit; (2) Instrumentation of excavations for pressure and deformation measurements; (3) Tests on the properties of snow from the deep pit; (4) Construction of a snow house as an experimental structure and to provide a heated shelter for an observer stationed at the site for the winter. Observations and measurements over a period of five years are expected to provide sufficient information for the establishment of satisfactory design criteria for all kinds of surface and subsurface military installations on high polar ice caps.
    Type of Medium: Series available for loan
    Pages: 31 Seiten , Illustrationen
    Series Statement: SIPRE report 20
    Language: English
    Note: Contents I. Introduction, by H. Bader II. Excavation of trenches and tunnels, by R.W. Waterhouse III. Excavation of deep pit, by J.K. Landauer IV. Trench covering, framing, and instrumentation, by R.W. Waterhouse V. The snow house, by R.W. Waterhouse VI. Load measurements in the N-S trench, by R.W. Waterhouse VII. Deformation measurements, by J.K. Landauer VIII. Distance changes on the ice cap, by B.L. Hansen and H. Bader IX. Annual accumulation, by H. Bader X. Snow density and snow load in deep pit, by J.K. Landauer XI. Air permeability of snow from deep pit, by J.A. Bender XII. Viscosity of snow from deep pit, by J.K. Landauer XIII. Crushing strength of snow from deep pit, by T.R. Butkovich XIV. Shear strength of snow from deep pit, by T.R. Butkovich XV. Tensiel strength of snow from deep pit, by T.R. Butkovich XVI. Angle of internal friction of snow from deep pit, by T.R. Butkovich XVII. Snow temperatures, by J.K. Landauer
    Location: AWI Archive
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Monograph available for loan
    Monograph available for loan
    København : Lunos
    Associated volumes
    Call number: ZSP-553-156,5
    In: Meddelelser om Grønland
    Type of Medium: Monograph available for loan
    Series Statement: Meddelelser om Grønland 156,5
    Language: English
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Call number: ZSP-553-159,4
    In: Meddelelser om Grønland
    Type of Medium: Monograph available for loan
    Pages: 17 S. : Ill.
    Series Statement: Meddelelser om Grønland 159,4
    Language: English
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Series available for loan
    Series available for loan
    Wilmette, Ill. : Snow, Ice and Permafrost Research Establishment
    Associated volumes
    Call number: ZSP-201-30
    In: SIPRE report, 30
    Description / Table of Contents: Mining Research Corporation, Inc., under contract with Snow Ice, and Permafrost Research Establishment, Corps of Engineers, U.S. Army, conducted explosion tests in frozen Keweenaw silt, to determine; (1) the most efficient type of explosive for blasts in frozen ground, (2) the fundamental relation between weight of explosive and depth of charge, (3) the proper position of the charge relative to the frozen-ground interface, (4) the feasibility of fracturing the frozen layer by placing a charge in the underlying unfrozen material, and (5) the effect of the diameter of the borehole and of the shape of the charge upon the resultsof blasting. Information obtained from the tests applies to the specific problem of excavating in frozen ground and to fundamental explosives research. Conclusions and recommendations based on this information are presented here concerning the feasibility of using explosives for fox-holes in frozen ground; methods of placing the charge; mechanics of crater formation; the crater equation; future instrumentation; classification of explosives; and correlation of blast data.
    Type of Medium: Series available for loan
    Pages: 97 Seiten , Illustrationen
    Series Statement: SIPRE report 30
    Language: English
    Note: CONTENTS Preface Abstract Chapter I. Introduction to problem 1. Previous attempts at blasting frozen ground 2. Necessity for fundamental approach 3. Terminology 4. Description, objectives, and scope of the Keweenaw Tests 5. Selection of explosives 6. Classification and properties of commercial explosives 7. Characteristics of explosives in the Keweenaw Tests 8. Comparison of Atlas, Hercules, and Du Pont nitroglycerine-base explosives Chapter II. Test program Section I. Field tests 1. General 2. Test site 3. Field test procedure a. Site preparation b. Instrumentation c. Snow removal d. Determining depth of frozen ground e. Soil sampling and coring f. Layout of the test site g. Spacing of blast holes h. Blast-hole drilling i. Blasting procedure j. Field analysis and crater surveys k. Data-sheet computations l. Photography Section II. Laboratory tests 1. Soil handling and storage 2. Soil classification tests a. Specimen preparation b. Test procedure c. Test results 3. Tests to determine stress-strain relationship a. General b. Specimen preparation for unconfined compression tests c. Test procedure d. Results e. Observations Chapter III. Analysis of blast tests Section I. Mechanics of crater formation in frozen Keweenaw silt 1. Introduction 2. Shock phenomena 3. Expansion of the gas bubble 4. Rupture of surface and conversion of pressure head to velocity head Section II. Blast Test A - Relationships of explosive, radius of crater, volume of crater, and depth of crater 1. Introduction 2. Description 3. Results and analysis 4. Summary of observations Section Ill. Blast Test B - Energy utilization in blasting 1. Introduction 2. Description 3. Results and analysis 4. Summary of observation Section IV. Blast Test C - The frozen-ground interface 1. Introduction 2. Relation of frozen-ground interface to scaling laws 3. Relation between the ratio of chamber volume to crater volume and the volume-utilization factor 4. Increase in volum.e-utilization factor for charges placed below the frozen layer 5. Position of the gas bubble relative to the frozen-ground interface 6. Igloo-type foxhole construction Section V. Blast Test D - Foxhole construction 1. Introduction 2. Application of shaped charges to foxhole construction 3. Application of hand-auget drilling to foxhole construction 4. Conclusions Section VI. Blast Test E - Temperature effect 1. Introduction 2. Description 3. Results and analysis 4. Summary of observations Section VII. Blast Test F - Effect of charge shape 1. Introduction 2. Description 3. Conclusions Chapter IV. Summary of objectives; conclusions and recommendations Section I. Summary of objectives 1. Introduction 2. Objective 1: Most efficientt type of explosive for blasts in frozen ground 3. Objective 2: Fundamental relation between weight of explosive and depth of charge 4. Objective 3: Proper position of charge relative to the frozen-ground interface 5. Objective 4: Feasibility of fracturing the frozen layer by placing a charge in the underlying unfrozen material 6. Objective 5: Effect of diameter of the borehole and shape of charge on results of blasting Section II. Conclusions and recommendations 1. Feasibility of using explosives for constructing foxholes in frozen ground 2. Methods of placing the charge 3. Mechanics of crater formation 4. The crater equation 5. Future instrumentation 6. Classification of explosives 7. Correlation of blast data Appendix: Data sheets, Experiments 1-13
    Location: AWI Archive
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Call number: ZSP-553-159,2
    In: Meddelelser om Grønland
    Type of Medium: Monograph available for loan
    Pages: 14 S. : Ill.
    Series Statement: Meddelelser om Grønland 159,2
    Language: English
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Monograph available for loan
    Monograph available for loan
    Baltimore, Md. : Johns Hopkins University Pr.
    Call number: AWI E1-15-89213
    Description / Table of Contents: Alfred Wegener aimed to create a revolution in science which would rank with those of Nicolaus Copernicus and Charles Darwin. After completing his doctoral studies in astronomy at the University of Berlin, Wegener found himself drawn not to observatory science but to rugged fieldwork, which allowed him to cross into a variety of disciplines. The author of the theory of continental drift - the direct ancestor of the modern theory of plate tectonics and one of the key scientific concepts of the past century - Wegener also made major contributions to geology, geophysics, astronomy, geodesy, atmospheric physics, meteorology, and glaciology. Remarkably, he completed this pathbreaking work while grappling variously with financial difficulty, war, economic depression, scientific isolation, illness, and injury. He ultimately died of overexertion on a journey to probe the Greenland ice cap and calculate its rate of drift. This landmark biography - the only complete account of the scientist's fascinating life and work - is the culmination of more than twenty years of intensive research. In Alfred Wegener, Mott T. Greene places Wegener's background and theoretical advances in earth science in the context of his brilliantly eclectic career, bringing Wegener to life by analyzing his published scientific work, delving into all of his surviving letters and journals, and tracing both his passionate commitment to science and his thrilling experiences as a polar explorer, a military officer during World War I, and a world record-setting balloonist. In the course of writing this book, Greene traveled to every place that Alfred Wegener lived and worked - to Berlin, rural Brandenburg, Marbug, Hamburg, and Heidelberg in Germany; to Innsbruck and Graz in Austria; and onto the Greenland ice cap. He also pored over archives in Copenhagen, Munich, Marburg, Graz, and Bremerhaven, where the majority of Wegener's surviving papers are found. Written with great immediacy and descriptive power, Alfred Wegener is a powerful portrait of the scientist who pioneered the modern notion of unified earth science. The book should be of interest not only to earth scientists, students of polar travel and exploration, and historians but to all readers who are fascinated by the great minds of science.
    Type of Medium: Monograph available for loan
    Pages: xiv, 675 S. , Ill., Kt.
    ISBN: 9781421417127
    Language: English
    Note: Contents: Preface. - Acknowledgements. - 1. The boy: Berlin and Brandenburg, 1880-1899. - 2. The student: Berlin - Heidelberg - Innsbruck - Berlin, 1899-1901. - 3. The astronomer: Berlin, 1901-1904. - 4. The aerologist: Lindenberg, 1905-1906. - 5. The polar meteorologist: Greenland, 1906. - 6. The Arctic explorer (1): Greenland, 1907-1908. - 7. The atmospheric physicist (1): Berlin und Marburg, 1908-1910. - 8. The atmospheric physicist (2): Marburg, 1910. - 9. At a crossroads: Marburg, 1911. - 10. The theorist of continental drift (1): Marburg, December 1911 - February 1912. - 11. The theorist of continental drift (2): Marburg, February - April 1912. - 12. The Arctic explorer (2): Greenland, 1912-1913. - 13. The soldier: Marburg and "The Field", 1913-1915. - 14. The meteorologist: "In the field", 1916-1918. - 15. The geophysicist: Hamburg, 1919-1920. - 16. From geophysicist to climatologist: Hamburg, 1920-1922. - 17. The paleoclimatologist: Hamburg, 1922-1924. - 18. The professor: Graz, 1924-1928. - 19. Theorist and Arctic explorer: Graz and Greenland, 1928-1929. - 20. The expedition leader: Graz and Greenland, 1929-1930. - Epilogue. - Notes. - Bibliographical essay. - Index.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Series available for loan
    Series available for loan
    Akureyri : International Arctic Science Committee
    Associated volumes
    Call number: AWI P5-17-90721
    In: IASC ... bulletin, 2017
    Type of Medium: Series available for loan
    Pages: 86 S. , Ill., graph. Darst., Kt.
    ISBN: 978-9935-24155-9
    ISSN: 1654-7594
    Series Statement: IASC Bulletin 2017
    Language: English
    Note: Content: Preface. - 1 IASC Internal Development. - IASC Organization. - IASC Council . - IASC Executive Committee. - IASC Secretariat. - Allen Pope New IASC Executive Secretary. - IASC Secretariat Moves to Iceland. - IASC Future Strategy. - IASC Medal 2017. - 2 IASC Working Groups. - Cross-Cutting Initiatives. - Atmosphere Working Group (AWG). - Cryosphere Working Group (CWG). - Marine Working Group (MWG). - Social and Human Working Group (SHWG). - Terrestrial Working Group (TWG). - 3 Arctic Science Summit Week 2016. - Upcoming ASSWs. - 4 Data and Observations. - Arctic Data Committee (ADC). - Sustaining Arctic Observing Networks (SAON). - 5 Partnerships. - Asian Forum for Polar Sciences (AFoPS). - Arctic Council. - 6 Capacity Building. - IASC Fellowship Program. - Overview of Supported Early Career Scientists. - Annex. - Polar Acronyms.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...