ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Monograph available for loan
    Monograph available for loan
    Cham : Springer
    Call number: AWI P9-20-93591
    Description / Table of Contents: This book focuses in detail on all ecologically important aspects of the Kongsfjorden system such as the marine and atmospheric environment including long-term monitoring, Ecophysiology of individual species, structure and function of the ecosystem, ecological processes and biological communities. The contributed articles include review articles and research articles that have a wider approach and bring the current research up-to-date. This book will form a baseline for future work.
    Type of Medium: Monograph available for loan
    Pages: xiii, 562 Seiten , Illustrationen, Karten , 24 cm
    ISBN: 978-3-319-46423-7
    Series Statement: Advances in polar ecology 2
    Language: English
    Note: Contents: 1 The ecosystem of Kongsfjorden, Svalbard / Haakon Hop and Christian Wiencke Part I. Atmospheric conditions 2 The atmosphere above Ny-Ålesund : climate and global warming, ozone and surface UV radiation / Marion Maturilli, Inger Hanssen-Bauer, Roland Neuber, Markus Rex, and Kåre Edvardsen Part II. Oceanography, sea ice and underwater light regime 3 The Kongsfjorden Transect : seasonal and inter-annual variability in hydrography / Vigdis Tverberg, Ragnheid Skogseth, Finlo Cottier, Arild Sundfjord, Waldemar Walczowski, Mark E. Inall, Eva Falck, Olga Pavlova, and Frank Nilsen 4 Changes in sea-ice extent and thickness in Kongsfjorden, Svalbard (2003-2016) / Olga Pavlova, Sebastian Gerland, and Haakon Hop 5 The underwater light climate in Kongsfjorden and its ecological implications / Alexey K. Pavlov, Eva Leu, Dieter Hanelt, Inka Bartsch, Ulf Karsten, Stephen R. Hudson, Jean-Charles Gallet, Finlo Cottier, Jonathan H. Cohen, Jørgen Berge, Geir Johnsen, Marion Maturilli, Piotr Kowalczuk, Sławomir Sagan, Justyna Meler, and Mats A. Granskog Part III. Pelagic production, phytoplankton and zooplankton 6 Phytoplankton seasonal dynamics in Kongsfjorden, Svalbard and the adjacent shelf / Else N. Hegseth, Philipp Assmy, Józef M. Wiktor, Józef Wiktor Jr., Svein Kristiansen, Eva Leu, Vigdis Tverberg, Tove M. Gabrielsen, Ragnheid Skogseth, and Finlo Cottier 7 Zooplankton in Kongsfjorden (1996-2016) in relation to climate change / Haakon Hop, Anette Wold, Mikko Vihtakari, Malin Daase, Slawomir Kwasniewski, Marta Gluchowska, Silke Lischka, Friedrich Buchholz and Stig Falk-Petersen Part IV. Benthic microbes, macroalgae and fauna 8 Living on cold substrata : new insights and approaches in the study of microphytobenthos ecophysiology and ecology in Kongsfjorden / Ulf Karsten, Iris Schaub, Jana Woelfel, Duygu S. Sevilgen, Carolin Schlie, Burkhard Becker, Angela Wulff, Martin Graeve, and Heiko Wagner 9 Biodiversity of benthic macro- and microalgae from Svalbard with special focus on Kongsfjorden / Stein Fredriksen, Ulf Karsten, Inka Bartsch, Jana Woelfel, Miriam Koblowsky, Rhena Schumann, Siri Røang Moy, Robert S. Steneck, Józef M. Wiktor, Haakon Hop, and Christian Wiencke 10. Kelps and environmental changes in Kongsfjorden : Stress perception and responses / Kai Bischof, Christian Buschbaum, Stein Frederiksen, Francisco J. L. Gordillo, Sandra Heinrich, Carlos Jiménez, Cornelius Lütz, Markus Molis, Michael Y. Roleda, Max Schwanitz, and Christian Wiencke 11. Ecological drivers of and responses by Arctic benthic communities, with an emphasis on Kongsfjorden, Svalbard / Markus Molis, Frank Beuchel, Jürgen Laudien, Maria Włodarska-Kowalczuk, and Christian Buschbaum Part V. Arctic fjord ecosystem model and autonomous marine observatories. 12. Outline of an Arctic fjord ecosystem model for Kongsfjorden-Krossfjorden, Svalbard / Pedro Duarte, Jan Marcin Weslawski, and Haakon Hop 13. Autonomous marine observatories in Kongsfjorden, Svalbard / Haakon Hop, Finlo Cottier, and Jørgen Berge Part VI. Kongsfjorden as harbinger of the future Arctic 14. Kongsfjorden as harbinger of the future Arctic : knowns, unknowns and research priorities / Kai Bischof, Peter Convey, Pedro Duarte, Jean-Pierre Gattuso, Maria Granberg, Haakon Hop, Clara Hoppe, Carlos Jiménez, Leonid Lisitsyn, Brezo Martinez, Michael Y. Roleda, Peter Thor, Józef M. Wiktor, and Geir Wing Gabrielsen
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: AWI S1-16-89841
    Description / Table of Contents: This book covers the basics of processing and spectral analysis of monovariate discrete-time signals. The approach is practical, the aim being to acquaint the reader with the indications for and drawbacks of the various methods and to highlight possible misuses. The book is rich in original ideas, visualized in new and illuminating ways, and is structured so that parts can be skipped without loss of continuity. Many examples are included, based on synthetic data and real measurements from the fields of physics, biology, medicine, macroeconomics etc., and a complete set of MATLAB exercises requiring no previous experience of programming is provided. Prior advanced mathematical skills are not needed in order to understand the contents: a good command of basic mathematical analysis is sufficient. Where more advanced mathematical tools are necessary, they are included in an Appendix and presented in an easy-to-follow way. With this book, digital signal processing leaves the domain of engineering to address the needs of scientists and scholars in traditionally less quantitative disciplines, now facing increasing amounts of data.
    Type of Medium: Monograph available for loan
    Pages: xxiv, 900 Seiten , Illustrationen
    ISBN: 978-3-319-25466-1
    Series Statement: Signals and Communication Technology
    Language: English
    Note: Contents: 1 Introduction. - 1.1 Chapter Summary. - 1.2 The Meaning of the Book’s Title. - 1.3 Historical Background. - 1.4 How to Read This Book. - 1.5 Further Reading. - References. - PART 1 BASIC THEORETICAL CONCEPTS. - 2 Discrete-Time Signals and Systems. - 2.1 Chapter Summary. - 2.2 Basic Definitions and Concepts. - 2.3 Discrete-Time Signals: Sequences. - 2.3.1 Basic Sequence Operations. - 2.3.2 Basic Sequences. - 2.3.3 Deterministic and Random Signals. - 2.4 Linear Time-Invariant (LTI) Systems. - 2.4.1 Impulse Response of an LTI System and Linear Convolution. - 2.4.2 An Example of Linear Convolution. - 2.4.3 Interconnections of LTI Systems. - 2.4.4 Effects of Stability and Causality Constraints on the Impulse Response of an LTI System. - 2.4.5 Finite (FIR) and Infinite (IIR) Impulse Response Systems. - 2.4.6 Linear Constant-Coefficient Difference Equation (LCCDE). - 2.4.7 Examples of LCCDE. - 2.4.8 The Solutions of an LCCDE. - 2.4.9 From the LCCDE to the Impulse Response: Examples. - 2.4.10 Eigenvalues and Eigenfunctions of LTI Systems. - References. - 3 Transforms of Discrete-Time Signals. - 3.1 Chapter Summary. - 3.2 z-Transform. - 3.2.1 Examples of z-Transforms and Special Cases. - 3.2.2 Rational z-Transforms. - 3.2.3 Inverse z-Transform. - 3.2.4 The z-Transform on the Unit Circle. - 3.2.5 Selected z-Transform Properties. - 3.2.6 Transfer Function of an LTI System. - 3.2.7 Output Sequence of an LTI System. - 3.2.8 Zeros and Poles: Forms for Rational Transfer Functions. - 3.2.9 Inverse System. - 3.3 Discrete-Time Fourier Transform (DTFT). - 3.3.1 An Example of DTFT Converging in the Mean-Square Sense. - 3.3.2 Line Spectra. - 3.3.3 Inverse DTFT. - 3.3.4 Selected DTFT Properties. - 3.3.5 The DTFT of a Finite-Length Causal Sequence. - 3.4 Discrete Fourier Series (DFS). - 3.4.1 Selected DFS Properties. - 3.4.2 Sampling in the Frequency Domain and Aliasing in the Time Domain. - 3.5 Discrete Fourier Transform (DFT). - 3.5.1 The Inverse DFT in Terms of the Direct DFT. - 3.5.2 Zero Padding. - 3.5.3 Selected DFT Properties. - 3.5.4 Circular Convolution Versus Linear Convolution. - 3.6 Fast Fourier Transform (FFT). - 3.7 Discrete Trigonometric Expansion. - 3.8 Appendix: Mathematical Foundations of Signal Representation. - 3.8.1 Vector Spaces. - 3.8.2 Inner Product Spaces. - 3.8.3 Bases in Vector Spaces. - 3.8.4 Signal Representation by Orthogonal Bases. - 3.8.5 Signal Representation by Standard Bases. - 3.8.6 Frames and Biorthogonal Bases. - 3.8.7 Summary and Complements. - References. - 4 Sampling of Continuous-Time Signals. - 4.1 Chapter Summary. - 4.2 Sampling Theorem. - 4.3 Reconstruction of a Continuous-Time Signal from Its Samples. - 4.4 Aliasing in the Frequency Domain and Anti-Aliasing Filter. - 4.5 The Uncertainty Principle for the Analog Fourier Transform. - 4.6 Support of a Continuous-Time Signal in the Time and Frequency Domains. - 4.7 Appendix: Analog and Digital Frequency Variables. - References. - 5 Spectral Analysis of Deterministic Discrete-Time Signals. - 5.1 Chapter Summary. - 5.2 Issues in Practical Spectral Analysis. - 5.2.1 The Effect of Windowing. - 5.2.2 The Effect of Spectral Sampling. - 5.3 Classical Windows. - 5.4 The Kaiser Window. - 5.5 Energy and Power Signals and Their Spectral Representations. - 5.6 Correlation of Deterministic Discrete-Time Signals. - 5.6.1 Correlation of Energy Signals. - 5.6.2 Correlation of Power Signals. - 5.6.3 Effect of an LTI System on Correlation Properties of Input and Output Signals. - 5.7 Wiener-Khinchin Theorem. - 5.7.1 Energy Signals and Energy Spectrum. - 5.7.2 Power Signals and Power Spectrum. - References. - PART 2 DIGITAL FILTERS. - 6 Digital Filter Properties and Filtering Implementation. - 6.1 Chapter Summary. - 6.2 Frequency-Selective Filters. - 6.3 Real-Causal-Stable-Rational (RCSR) Filters. - 6.4 Amplitude Response. - 6.5 Phase Response. - 6.5.1 Phase Discontinuities and Zero-Phase Response. - 6.5.2 Linear Phase (LP). - 6.5.3 Generalized Linear Phase (GLP). - 6.5.4 Constraints on GLP Filters. - 6.6 Digital Filtering Implementation. - 6.6.1 Direct Forms. - 6.6.2 Transposed-Direct Forms. - 6.6.3 FIR Direct and Transposed-Direct Forms. - 6.6.4 Direct and Transposed-Direct Forms for LP FIR Filters. - 6.6.5 Cascade and Parallel Forms. - 6.7 Zero-Phase Filtering. - 6.8 An Incorrect Approach to Filtering. - 6.9 Filtering After Downsampling. - 6.9.1 Theory of Downsampling. - 6.9.2 An Example of Filtering After Downsampling. - References. - 7 FIR Filter Design. - 7.1 Chapter Summary. - 7.2 Design Process. - 7.3 Specifications of Digital Filters. - 7.3.1 Constraints on the Magnitude Response. - 7.3.2 Constraints on the Phase Response. - 7.4 Selection of Filter Type: IIR or FIR?. - 7.5 FIR-Filter Design Methods and Approximation Criteria. - 7.6 Properties of GLP FIR Filters. - 7.6.1 Factorization of the Zero-Phase Response. - 7.6.2 Zeros of the Transfer Function. - 7.6.3 Another Form of the Adjustable Term. - 7.7 Equiripple FIR Filter Approximations: Minimax Design. - 7.8 Predicting the Minimum Filter Order. - 7.9 MPR Algorithm. - 7.10 Properties of Equiripple FIR Filters. - 7.11 The Minimax Method for Bandpass Filters. - References. - 8 IIR Filter Design. - 8.1 Chapter Summary. - 8.2 Design Process. - 8.3 Lowpass Analog Filters. - 8.3.1 Laplace Transform. - 8.3.2 Transfer Function and Design Parameters. - 8.4 Butterworth Filters. - 8.5 Chebyshev Filters. - 8.5.1 Chebyshev-I Filters. - 8.5.2 Chebyshev-II Filters. - 8.6 Elliptic Filters. - 8.7 Normalized and Non-normalized Filters. - 8.8 Comparison Among the Four Analog Filter Types. - 8.9 From the Analog Lowpass Filter to the Digital One. - 8.9.1 Bilinear Transformation. - 8.9.2 Design Procedure. - 8.9.3 Examples. - 8.10 Frequency Transformations. - 8.10.1 From a Lowpass to a Highpass Filter. - 8.10.2 From a Lowpass to a Bandpass Filter. - 8.10.3 From a Lowpass to a Bandstop Filter . - 8.11 Direct Design of IIR Filters. - 8.12 Appendix. - 8.12.1 Trigonometric Functions with Complex Argument. - 8.12.2 Elliptic Integrals. - 8.12.3 Jacobi Elliptic Functions. - 8.12.4 Landen-Gauss Transformation. - 8.12.5 Elliptic Rational Function. - References. - PART 3 SPECTRAL ANALYSIS. - 9 Statistical Approach to Signal Analysis. - 9.1 Chapter Summary. - 9.2 Preliminary Considerations. - 9.3 Random Variables. - 9.4 Ensemble Averages. - 9.5 Stationary Random Processes and Signals. - 9.6 Ergodicity. - 9.7 Wiener-Khinchin Theorem for Random Signals and Power Spectrum. - 9.8 Cross-Power Spectrum of Two Random Signals. - 9.9 Effect of an LTI System on a Random Signal. - 9.10 Estimation of the Averages of Ergodic Stationary Signals. - 9.10.1 General Concepts in Estimation Theory. - 9.10.2 Mean and Variance Estimation. - 9.10.3 Autocovariance Estimation. - 9.10.4 Cross-Covariance Estimation. - 9.11 Appendix: A Road Map to the Analysis of a Data Record. - References. - 10 Non-Parametric Spectral Methods. - 10.1 Chapter Summary. - 10.2 Power Spectrum Estimation. - 10.3 Periodogram. - 10.3.1 Bias. - 10.3.2 Variance. - 10.3.3 Examples. - 10.3.4 Variance Reduction by Band- and Ensemble-Averaging. - 10.4 Bartlett’s Method. - 10.5 Modified Periodogram. - 10.6 Welch’s Method. - 10.7 Blackman-Tukey Method. - 10.8 Statistical Significance of Spectral Peaks. - 10.9 MultiTaper Method. - 10.10 Estimation of the Cross-Power Spectrum of Two Random Signals. - 10.11 Use of the FFT in Power Spectrum Estimation. - 10.12 Power Spectrum Normalization. - References. - 11 Parametric Spectral Methods. - 11.1 Chapter Summary. - 11.2 Signals with Rational Spectra . - 11.3 Stochastic Models and Processes. - 11.3.1 Autoregressive-Moving Average (ARMA) Model. - 11.3.2 Autoregressive (AR) Model. - 11.3.3 Moving Average (MA) Model. - 11.3.4 How the AR and MA Modeling Approaches Are Theoretically Related. - 11.3.5 First-Order AR and MA Models: White, Red and Blue Noise. - 11.3.6 Higher-Order AR Models. - 11.4 The AR Approach to Spectral Estimation. - 11.5 AR Modeling and Linear Prediction. - 11.6
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Monograph available for loan
    Monograph available for loan
    Cham : Springer
    Call number: AWI G6-15-89028
    Description / Table of Contents: The book offers a modern, comprehensive, and holistic view of natural gas seepage, defined as the visible or invisible flow of gaseous hydrocarbons from subsurface sources to Earth’s surface. Beginning with definitions, classifications for onshore and offshore seepage, and fundamentals on gas migration mechanisms, the book reports the latest findings for the global distribution of gas seepage and describes detection methods. Seepage implications are discussed in relation to petroleum exploration, environmental impacts (hazards, pollution, atmospheric emissions, and past climate change), emerging scientific issues (abiotic gas and methane on Mars), and the role of seeps in ancient cultures. With an updated bibliography and an integrated analysis of available data, the book offers a new fundamental awareness - gas seepage is more widespread than previously thought and influences all of Earth’s external “spheres”, including the hydrosphere, atmosphere, biosphere, and anthroposphere.
    Type of Medium: Monograph available for loan
    Pages: XIII, 199 S. , Ill., graph. Darst.
    ISBN: 978-3-319-14600-3
    Language: English
    Note: Contents: 1 Introduction. - 1.1 Basic Concepts and Definitions. - 1.1.1 What Gas Seepage Is, What It Is Not. - 1.1.2 A Jungle of Names: Seeps, Macroseeps, Microseepage, Microseeps, and Miniseepage. - 1.1.3 Seepage id est Migration. - 1.1.4 Microbial, Thermogenic, and Abiotic Methane. - 1.2 Significance of Seepage and Implications. - 1.2.1 Seepage and Petroleum Exploration. - 1.2.2 Marine Seepage on the Crest of the Wave. - 1.2.3 From Sea to Land. - 1.2.4 A New Vision. - References. - 2 Gas Seepage Classification and Global Distribution. - 2.1 Macro-Seeps. - 2.1.1 Gas Seeps. - 2.1.2 Oil Seeps. - 2.1.3 Gas-Bearing Springs. - 2.1.4 Mud Volcanoes. - 2.1.5 Miniseepage. - 2.1.6 The Global Distribution of Onshore Macro-Seeps. - 2.2 Microseepage. - 2.3 Marine Seepage Manifestations. - References. - 3 Gas Migration Mechanisms. - 3.1 Fundamentals. - 3.1.1 Sources and Pathways. - 3.1.2 Diffusion and Advection. - 3.2 Actual Mechanisms and Migration Forms. - 3.2.1 Bubble and Microbubble Flow. - 3.2.2 Gas Seepage Velocity. - 3.2.3 Matter Transport by Microbubbles. - 3.2.4 The Concept of Carrier Gas and Trace Gas. - References. - 4 Detecting and Measuring Gas Seepage. - 4.1 Gas Detection Methods. - 4.1.1 Above-Ground (Atmospheric) Measurements. - 4.1.2 Ground Measurements. - 4.1.3 Measurements in Aqueous Systems. - 4.2 Indirect Methods. - 4.2.1 Chemical-Mineralogical Alterations of Soils. - 4.2.2 Vegetation Changes (Geobotanical Anomalies). - 4.2.3 Microbiological Analyses of Soils. - 4.2.4 Radiometric Surveys. - 4.2.5 Geophysical Techniques. - References. - 5 Seepage in Field Geology and Petroleum Exploration. - 5.1 Seepage and Faults. - 5.2 Microseepage Applied to Areal Petroleum Exploration. - 5.2.1 Which Gas Can Be Measured?. - 5.2.2 Microseepage Methane Flux Measurements. - 5.3 Seep Geochemistry for Petroleum System Evaluation. - 5.3.1 Recognising Post-genetic Alterations of Gases. - 5.3.2 Assessing Gas Source Type and Maturity. - 5.3.3 The Presence of Undesirable Gases (CO2, H2S, N2). - 5.3.4 Helium in Seeps… for Connoisseurs. - References. - 6 Environmental Impact of Gas Seepage. - 6.1 Geohazards. - 6.1.1 Methane Explosiveness. - 6.1.2 The Toxicity of Hydrogen Sulphide. - 6.1.3 Mud Expulsions and the Degradation of Soil-Sediments. - 6.2 Stray Gas, Natural versus Man-Made. - 6.3 Hypoxia in Aquatic Environments. - 6.4 Gas Emissions to the Atmosphere. - 6.4.1 Methane Fluxes and the Global Atmospheric Budget. - 6.4.2 Ethane and Propane Seepage, a Forgotten Potential Source of Ozone Precursors. - 6.5 Natural Seepage and CO2 Geological Sequestration. - References. - 7 Seepage in Serpentinised Peridotites and on Mars. - 7.1 Seeps and Springs in Active Serpentinisation Systems. - 7.1.1 Where Abiotic Methane Is Seeping. - 7.1.2 How Abiotic Methane in Land-Based Serpentinisation Systems Is Formed. - 7.1.3 How to Distinguish Abiotic and Biotic Methane. - 7.1.4 Seepage to the Surface. - 7.1.5 Is Abiotic Gas Seepage Important for the Atmospheric Methane Budget?. - 7.2 Potential Methane Seepage on Mars. - 7.2.1 Looking for Methane on Mars. - 7.2.2 A Theoretical Martian Seepage. - References. - 8 Gas Seepage and Past Climate Change. - 8.1 Past Seepage Stronger than Today. - 8.2 Potential Proxies of Past Seepage. - 8.3 Methane and Quaternary Climate Change. - 8.3.1 Traditional Models: Wetlands versus Gas Hydrates. - 8.3.2 Adding Submarine Seeps. - 8.3.3 Considering Onshore and Offshore Seepage in Total. - 8.3.4 CH4 Isotope Signatures in Ice Cores. - 8.4 Longer Geological Time Scale Changes. - 8.4.1 The Concept of Sedimentary Organic Carbon Mobilization. - 8.4.2 Paleogene Changes. - References. - 9 Seeps in the Ancient World: Myths, Religions, and Social Development. - 9.1 Seeps in Mythology and Religion. - 9.2 Seeps in Social and Technological Development. - References. - Epilogue. - Index.
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...