ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biochemistry and Biotechnology  (13,095)
Collection
Publisher
Years
  • 11
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 56 (1997), S. 605-609 
    ISSN: 0006-3592
    Keywords: affinity immobilization ; glycoenzymes ; thermal stability ; non-inhibitory antienzyme antibodies ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Polyclonal antibodies directed against the yeast invertase glycosyls were raised by immunizing rabbits with neoglycoprotein-I and neoglycoprotein-II. The neoglycoproteins were prepared by separately coupling the N-linked large and small molecular weight yeast invertase oligosaccharides respectively to bovine serum albumin with the help of glutaraldehyde. Antibodies specifically recognizing the invertase oligosaccharides were purified from the sera of rabbits immunized with either neoglycoprotein using an affinity column of sepharose 4B-linked yeast invertase. Specific immunoaffinity supports for the immobilization of invertase were constructed by coupling the affinity-purified antineoglycoprotein-I or antineoglycoprotein-II antibodies to cyanogen bromide activated sepharose-4B. Both the affinity adsorbants were effective in binding and improving the thermal stability of invertase. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 605-609, 1997.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 56 (1997), S. 618-625 
    ISSN: 0006-3592
    Keywords: albumin ; silicon ; hydrophobicity ; adsorption ; Tween 20 ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The ability of Tween 20 to reduce the adsorption of albumin on silicon surfaces of different hydrophobicity was investigated by ellipsometry. As expected, protein adsorption was found to depend on the degree of hydrophobicity of the surfaces and on the concentration of the surfactant. A reduction of 90% in albumin adsorption on hydrophobic methylated surfaces by 0.05% Tween 20 was achieved, whereas a reduction of only 15% on hydrophilic surfaces was observed. Experiments of time-dependent protein adsorption in both pure protein and protein-surfactant mixtures were conducted to ascertain the stability of physically adsorbed Tween 20 films on intermediate silicon surfaces. It was found that the adsorbed Tween 20 film was robust and there was no evidence of exchange of the Tween molecules with albumin for up to 240 min exposure. Adsorption minima were confirmed to correlate with minima in contact angle and critical micelle concentration (CMC). © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 618-625, 1997.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 46-54 
    ISSN: 0006-3592
    Keywords: smooth muscle ; polyglycolic acid ; biodegradable ; tissue engineering ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The engineering of functional smooth muscle (SM) tissue is critical if one hopes to successfully replace the large number of tissues containing an SM component with engineered equivalents. This study reports on the effects of SM cell (SMC) seeding and culture conditions on the cellularity and composition of SM tissues engineered using biodegradable matrices (5 × 5 mm, 2-mm thick) of polyglycolic acid (PGA) fibers. Cells were seeded by injecting a cell suspension into polymer matrices in tissue culture dishes (static seeding), by stirring polymer matrices and a cell suspension in spinner flasks (stirred seeding), or by agitating polymer matrices and a cell suspension in tubes with an orbital shaker (agitated seeding). The density of SMCs adherent to these matrices was a function of cell concentration in the seeding solution, but under all conditions a larger number (approximately 1 order of magnitude) and more uniform distribution of SMCs adherent to the matrices were obtained with dynamic versus static seeding methods. The dynamic seeding methods, as compared to the static method, also ultimately resulted in new tissues that had a higher cellularity, more uniform cell distribution, and greater elastin deposition. The effects of culture conditions were next studied by culturing cell-polymer constructs in a stirred bioreactor versus static culture conditions. The stirred culture of SMC-seeded polymer matrices resulted in tissues with a cell density of 6.4 ± 0.8 × 108 cells/cm3 after 5 weeks, compared to 2.0 ± 1.1 × 108 cells/cm3 with static culture. The elastin and collagen synthesis rates and deposition within the engineered tissues were also increased by culture in the bioreactors. The elastin content after 5-week culture in the stirred bioreactor was 24 ± 3%, and both the elastin content and the cellularity of these tissues are comparable to those of native SM tissue. New tissues were also created in vivo when dynamically seeded polymer matrices were implanted in rats for various times. In summary, the system defined by these studies shows promise for engineering a tissue comparable in many respects to native SM. This engineered tissue may find clinical applications and provide a tool to study molecular mechanisms in vascular development. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 46-54, 1998.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 55 (1997), S. 807-814 
    ISSN: 0006-3592
    Keywords: sulphate reduction ; sulphite reduction ; biofilm ; immobilization ; gas-lift reactor ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Feasibility of thermophilic (55°C) sulphate and sulphite reduction with H2 and CO2 gas-mixtures was studied in gas-lift reactors, which contained pumice particles as carrier material. Particular attention was paid to biomass retention and the competition between hydrogenotrophic sulphate-reducers and other hydrogenotrophic thermophiles. A model medium with defined mineral nutrients was used.The results of the experiments clearly demonstrate that sulphate conversion rates up to 7.5 g SO42-/L per day can be achieved. With sulphite, a reduction rate of 3.7 g S/L per day was obtained, which equals a sulphate conversion rate of 11.1 g SO42-/L per day. Under the applied conditions, a strong competition for hydrogen between hydrogenotrophic sulphate-reducers, tentatively designated as Desulfotomaculum sp., and hydrogenotrophic methanogens was observed. The outcome of the competition could not be predicted. Growth of the mixed culture was totally inhibited at an H2S concentration of 250 mg/L. Poor attachment of sulphate-reducing bacteria was observed in all experiments. The biomass concentration did not exceed 1.2 g/L, despite the presence of 50 g/L of pumice. The reason for this phenomenon remains to be understood. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 807-814, 1997.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 55 (1997), S. 821-830 
    ISSN: 0006-3592
    Keywords: Citrobacter ; actinides ; nitrate ; biomineralization ; biocatalysis ; phosphatase ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A Citrobacter sp. accumulates heavy metals as cell-bound metal phosphates, utilizing phosphate released by the enzymatic cleavage of a phosphomonoester substrate. The effect of increased substrate (glycerol 2-phosphate, G2P) concentration on phosphate release and heavy metal accumulation was evaluated using a stirred tank reactor (STR) and a plug flow reactor (PFR). A significant improvement in metal removal was achieved with increased substrate concentration using immobilized Citrobacter cells in the PFR, which was not observed using free cells in the STR. Nitrate is an inhibitor of the Citrobacter phosphatase. This inhibition was concentration dependent and reversible. The rate of product release was restored by increasing the concentration of substrate (G2P). The ratio of rates of phosphate release under two different conditions (different nitrate and G2P concentrations) can be described by a equation developed from Michaelis-Menten kinetics. The concentration of substrate required for restoration of maximum velocity, Vmax, in a batch and continuous-flow system can be predicted by substitution and calculation; this was confirmed by an experiment in model systems using cell suspensions and polyacrylamide gel immobilized cells in a flow-though column. For use in industrial situations it may be uneconomical or infeasible to supply additional substrate. Bioreactor activity was also restored by increasing the flow residence time, in accordance with a Michaelis-Menten-based model to describe removal of lanthanum from nitrate-supplemented flow in a PFR. © 1997 John Wiley & Sons, Inc. Biotechnol Biotechnol Bioeng 55:821-830, 1997.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 55 (1997), S. 527-534 
    ISSN: 0006-3592
    Keywords: Catharanthus roseus ; hairy roots ; indole alkaloids ; organic acids ; nutrients ; growth association ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The kinetics of growth, the uptake of macronutrients, and the accumulation of indole alkaloids were investigated in long-term, heterotrophically cultured transgenic (“hairy”) roots of Catharanthus roseus.Tabersonine, ajmalicine, and serpentine were monitored over a 70-day period. The doubling time [dry-weight (DW) basis] of C. roseus hairy roots in B5/2 nutrients supplemented with 3% sucrose was 3.6 days. NH4+, NO3,- and Pi were depleted sequentially from culture medium by hairy roots, while sugars remained undepleted. The growth-limiting nutrient was inorganic nitrogen, NH4+ and NO3-, with exponential-phase overall biomass yields of 34.1 and 5.0 g DW/g nutrient, respectively. Extracellular pH decreased to 4.8 in early exponential phase of culture growth from the initially adjusted value of 5.7, increased subsequently to a maximum of 7.7 in late exponential phase of growth coincident with the maximum of fresh weight (FW)/DW ratio, before decreasing to 5.5-5.0. The organic acids, pyruvate, formate, lactate, and succinate were excreted by hairy roots starting in late phase of exponential growth, possibly resulting in the late-culture pH decrease. Tabersonine accumulation was distinctly growth associated with maximum specific and total yields of 1.15 mg/g DW and 5.6 mg/L, respectively, in late-exponential phase of growth. Serpentine accumulation was non growth associated with increasing specific and total levels in stationary growth phase: 1.3 mg/g DW and 10.5 mg/L, respectively. The accumulation of ajmalicine also appeared growth associated. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 527-534, 1997.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 55 (1997), S. 542-546 
    ISSN: 0006-3592
    Keywords: virus ; antibody ; imaging ; real-time ; phage T7 ; diffusion ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The design and implementation of controlled environments to continuously culture and evolve viruses provides a means to track how their populations respond to natural and designed anti-viral agents. We have previously demonstrated how the growth of viruses in spreading plaques enables detection and characterization of their evolutionary dynamics. Using plaques of phage T7 growing on E. coli as a model system, we observe here that velocities of propagation can be readily controlled by the level of anti-viral antiserum incorporated into the propagation medium. Further, we develop a simple analytic expression for the radial velocity of propagation in terms of the microscopic rates of viral amplification, Fickian diffusion of the virions and their neutralization by antiserum. Our analysis captures the essential dependence of propagation velocity on antiserum concentration. This study provides an ex vivo foundation for exploring how medically relevant viruses escape suppression by the immune system. © 1997 John Wiley & Son, Inc. Biotechnol Bioeng 55: 542-546, 1997.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 55 (1997), S. 571-576 
    ISSN: 0006-3592
    Keywords: substrate-sufficient culture ; anabolism ; catabolism ; energy uncoupling ; growth yield ; residual substrate concentration ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The growth yields (Yobs) are greater under substrate-limited conditions than those under substrate-sufficient conditions in continuous cultures. This indicates that the excess substrate should cause uncoupling between anabolism and catabolism, which leads to energy spilling. Although the uncoupling between anabolism and catabolism has already been recognized in the microbiology literature, how to quantitatively describe such uncoupling remains unclear. Based on a balance on substrate reaction, a growth yield model was developed in relation to residual substrate concentration for substrate-sufficient continuous cultures. On the basis of that yield model, the concept of an uncoupling coefficient between anabolism and catabolism is defined in this work. A model describing the effect of the residual substrate concentration on the uncoupling coefficient of anabolism to catabolism is proposed. This model agrees very well with literature data. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 571-576, 1997.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 55 (1997), S. 556-564 
    ISSN: 0006-3592
    Keywords: cumulative sedimentation analysis ; cell debris size ; Escherichia coli ; homogenization ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A new method to measure Escherichia coli cell debris size after homogenization is presented. It is based on cumulative sedimentation analysis under centrifugal force, coupled with Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) analysis of sedimented proteins. The effects that fermentation and homogenization conditions have on the resulting debris distributions were investigated using this method. Median debris size decreased significantly from approximately 0.5 μm to 0.3 μm as the number of homogenization passes increased from 2 to 10. Under identical homogenization conditions, uninduced host cells in stationary phase had a larger debris size than exponential cells after 5 homogenizer passes. This difference was not evident after 2 or 10 passes, possibly because of confounding intact cells and the existence of a minimum debris size for the conditions investigated. Recombinant cells containing protein inclusion bodies had the smallest debris size following homogenization. The method was also used to measure the size distribution of inclusion bodies. This result compared extremely well with an independent determination using centrifugal disc photosedimentation (CDS), thus validating the method. This is the first method that provides accurate size distributions of E. coli debris without the need for sample pretreatment, theoretical approximations (e.g. extinction coefficients), or the separation of debris and inclusion bodies prior to analysis. © 1997 John Wiley & Sons, Inc. Biotechnol Bioang 55: 556-564, 1997.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 55 (1997), S. 565-570 
    ISSN: 0006-3592
    Keywords: hybridoma ; hypoosmotic stress ; specific antibody productivity ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: To investigate the response of hybridoma cells to hypoosmotic stress, S3H5/γ2bA2 and DB9G8 hybridomas were cultivated in the hypoosmolar medium [Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% serum] resulting from sodium chloride subtraction. Both hybridomas showed similar responses to hypoosmotic stress in regard to cell growth and antibody production. The cell growth and antibody production at 276 mOsm/kg were comparable to those at 329 mOsm/kg (standard DMEM). Both cells grew well at 219 mOsm/kg, though their growth and antibody production were slightly decreased. When the osmolality was further decreased to 168 mOsm/kg, the cell growth did not occur. When subjected to hyperosmotic stress, both cells displayed significantly enhanced specific antibody productivity (qAb). However, the cells subjected to hypoosmotic stress did not display enhanced qAb. Taken together, both hyperosmotic and hypoosmotic stresses depressed the growth of S3H5/γ2bA2 and DB9G8 hybridomas. However, their response to hypoosmotic stress in regard to qAb was different from that to hyperosmotic stress. © 1997 John Wiley & Sons, Inc. Biotechnol Biong 55: 565-570, 1997.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...