ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (935)
Collection
  • Articles  (935)
Publisher
Journal
Topic
  • 1
    Publication Date: 2021-04-29
    Description: The mouse, as a model organism to study the brain, gives us unprecedented experimental access to the mammalian cerebral cortex. By determining the cortex's cellular composition, revealing the interaction between its different components, and systematically perturbing these components, we are obtaining mechanistic insight into some of the most basic properties of cortical function. In this review, we describe recent advances in our understanding of how circuits of cortical neurons implement computations, as revealed by the study of mouse primary visual cortex. Further, we discuss how studying the mouse has broadened our understanding of the range of computations performed by visual cortex. Finally, we address how future approaches will fulfill the promise of the mouse in elucidating fundamental operations of cortex. Expected final online publication date for the Annual Review of Neuroscience, Volume 44 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0147-006X
    Electronic ISSN: 1545-4126
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-04-29
    Description: Maps of the nervous system inspire experiments and theories in neuroscience. Advances in molecular biology over the past decades have revolutionized the definition of cell and tissue identity. Spatial transcriptomics has opened up a new era in neuroanatomy, where the unsupervised and unbiased exploration of the molecular signatures of tissue organization will give rise to a new generation of brain maps. We propose that the molecular classification of brain regions on the basis of their gene expression profile can circumvent subjective neuroanatomical definitions and produce common reference frameworks that can incorporate cell types, connectivity, activity, and other modalities. Here we review the technological and conceptual advances made possible by spatial transcriptomics in the context of advancing neuroanatomy and discuss how molecular neuroanatomy can redefine mapping of the nervous system. Expected final online publication date for the Annual Review of Neuroscience, Volume 44 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0147-006X
    Electronic ISSN: 1545-4126
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-04-21
    Description: Adaptive behavior in a complex, dynamic, and multisensory world poses some of the most fundamental computational challenges for the brain, notably inference, decision-making, learning, binding, and attention. We first discuss how the brain integrates sensory signals from the same source to support perceptual inference and decision-making by weighting them according to their momentary sensory uncertainties. We then show how observers solve the binding or causal inference problem—deciding whether signals come from common causes and should hence be integrated or else be treated independently. Next, we describe the multifarious interplay between multisensory processing and attention. We argue that attentional mechanisms are crucial to compute approximate solutions to the binding problem in naturalistic environments when complex time-varying signals arise from myriad causes. Finally, we review how the brain dynamically adapts multisensory processing to a changing world across multiple timescales. Expected final online publication date for the Annual Review of Neuroscience, Volume 44 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0147-006X
    Electronic ISSN: 1545-4126
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-04-16
    Description: Neurons in the brain represent information in their collective activity. The fidelity of this neural population code depends on whether and how variability in the response of one neuron is shared with other neurons. Two decades of studies have investigated the influence of these noise correlations on the properties of neural coding. We provide an overview of the theoretical developments on the topic. Using simple, qualitative, and general arguments, we discuss, categorize, and relate the various published results. We emphasize the relevance of the fine structure of noise correlation, and we present a new approach to the issue. Throughout this review, we emphasize a geometrical picture of how noise correlations impact the neural code. Expected final online publication date for the Annual Review of Neuroscience, Volume 44 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0147-006X
    Electronic ISSN: 1545-4126
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-04-16
    Description: What changes in neural architecture account for the emergence and expansion of dexterity in primates? Dexterity, or skill in performing motor tasks, depends on the ability to generate highly fractionated patterns of muscle activity. It also involves the spatiotemporal coordination of activity in proximal and distal muscles across multiple joints. Many motor skills require the generation of complex movement sequences that are only acquired and refined through extensive practice. Improvements in dexterity have enabled primates to manufacture and use tools and humans to engage in skilled motor behaviors such as typing, dance, musical performance, and sports. Our analysis leads to the following synthesis: The neural substrate that endows primates with their enhanced motor capabilities is due, in part, to ( a) major organizational changes in the primary motor cortex and ( b) the proliferation of output pathways from other areas of the cerebral cortex, especially from the motor areas on the medial wall of the hemisphere. Expected final online publication date for the Annual Review of Neuroscience, Volume 44 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0147-006X
    Electronic ISSN: 1545-4126
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-04-06
    Description: Oxytocin regulates parturition, lactation, parental nurturing, and many other social behaviors in both sexes. The circuit mechanisms by which oxytocin modulates social behavior are receiving increasing attention. Here, we review recent studies on oxytocin modulation of neural circuit function and social behavior, largely enabled by new methods of monitoring and manipulating oxytocin or oxytocin receptor neurons in vivo. These studies indicate that oxytocin can enhance the salience of social stimuli and increase signal-to-noise ratios by modulating spiking and synaptic plasticity in the context of circuits and networks. We highlight oxytocin effects on social behavior in nontraditional organisms such as prairie voles and discuss opportunities to enhance the utility of these organisms for studying circuit-level modulation of social behaviors. We then discuss recent insights into oxytocin neuron activity during social interactions. We conclude by discussing some of the major questions and opportunities in the field ahead. Expected final online publication date for the Annual Review of Neuroscience, Volume 44 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0147-006X
    Electronic ISSN: 1545-4126
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-03-26
    Description: The large number of ion channels found in all nervous systems poses fundamental questions concerning how the characteristic intrinsic properties of single neurons are determined by the specific subsets of channels they express. All neurons display many different ion channels with overlapping voltage- and time-dependent properties. We speculate that these overlapping properties promote resilience in neuronal function. Individual neurons of the same cell type show variability in ion channel conductance densities even though they can generate reliable and similar behavior. This complicates a simple assignment of function to any conductance and is associated with variable responses of neurons of the same cell type to perturbations, deletions, and pharmacological manipulation. Ion channel genes often show strong positively correlated expression, which may result from the molecular and developmental rules that determine which ion channels are expressed in a given cell type. Expected final online publication date for the Annual Review of Neuroscience, Volume 44 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0147-006X
    Electronic ISSN: 1545-4126
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-03-24
    Description: Advances in the instrumentation and signal processing for simultaneously acquired electroencephalography and functional magnetic resonance imaging (EEG-fMRI) have enabled new ways to observe the spatiotemporal neural dynamics of the human brain. Central to the utility of EEG-fMRI neuroimaging systems are the methods for fusing the two data streams, with machine learning playing a key role. These methods can be dichotomized into those that are symmetric and asymmetric in terms of how the two modalities inform the fusion. Studies using these methods have shown that fusion yields new insights into brain function that are not possible when each modality is acquired separately. As technology improves and methods for fusion become more sophisticated, the future of EEG-fMRI for noninvasive measurement of brain dynamics includes mesoscale mapping at ultrahigh magnetic resonance fields, targeted perturbation-based neuroimaging, and using deep learning to uncover nonlinear representations that link the electrophysiological and hemodynamic measurements. Expected final online publication date for the Annual Review of Neuroscience, Volume 44 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0147-006X
    Electronic ISSN: 1545-4126
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-03-22
    Description: As a frontal node in the primate social brain, the medial prefrontal cortex (MPFC) plays a critical role in coordinating one's own behavior with respect to that of others. Current literature demonstrates that single neurons in the MPFC encode behavior-related variables such as intentions, actions, and rewards, specifically for self and other, and that the MPFC comes into play when reflecting upon oneself and others. The social moderator account of MPFC function can explain maladaptive social cognition in people with autism spectrum disorder, which tips the balance in favor of self-centered perspectives rather than taking into consideration the perspective of others. Several strands of evidence suggest a hypothesis that the MPFC represents different other mental models, depending on the context at hand, to better predict others’ emotions and behaviors. This hypothesis also accounts for aberrant MPFC activity in autistic individuals while they are mentalizing others. Expected final online publication date for the Annual Review of Neuroscience, Volume 44 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0147-006X
    Electronic ISSN: 1545-4126
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-03-17
    Description: Many of our daily activities, such as riding a bike to work or reading a book in a noisy cafe, and highly skilled activities, such as a professional playing a tennis match or a violin concerto, depend upon the ability of the brain to quickly make moment-to-moment adjustments to our behavior in response to the results of our actions. Particularly, they depend upon the ability of the neocortex to integrate the information provided by the sensory organs (bottom-up information) with internally generated signals such as expectations or attentional signals (top-down information). This integration occurs in pyramidal cells (PCs) and their long apical dendrite, which branches extensively into a dendritic tuft in layer 1 (L1). The outermost layer of the neocortex, L1 is highly conserved across cortical areas and species. Importantly, L1 is the predominant input layer for top-down information, relayed by a rich, dense mesh of long-range projections that provide signals to the tuft branches of the PCs. Here, we discuss recent progress in our understanding of the composition of L1 and review evidence that L1 processing contributes to functions such as sensory perception, cross-modal integration, controlling states of consciousness, attention, and learning. Expected final online publication date for the Annual Review of Neuroscience, Volume 44 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0147-006X
    Electronic ISSN: 1545-4126
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...