ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
1
Monograph available for loan
Monograph available for loan
Washington, D.C. : Mineralogical Society of America
Call number: 11/M 04.0341
In: Reviews in mineralogy & geochemistry
Description / Table of Contents: Our understanding of rock forming geological processes and thereby of geodynamic processes depends largely on a sound basis of knowledge of minerals. Due to the application of new analytical techniques, the number of newly discovered minerals increases steadily, and what used to be a simple mineral may have turned into a complex group. A continuous update is necessary, and the Reviews in Mineralogy and Geochemistry series excellently fulfills this requirement. The epidote minerals have not yet been covered and we felt that this gap should be filled. The epidote mineral group consists of important rock-forming minerals such as clinozoisite and epidote, geochemical important accessory minerals such as allanite, and minerals typical for rare bulk compositions such as hancockite. Zoisite, the orthorhombic polymorph of clinozoisite, is included here because of its strong structural and paragenetic similarity to the epidote minerals. Epidote minerals occur in a wide variety of rocks, from near-surface conditions up to high- and ultrahigh-pressure metamorphic rocks and as liquidus phases in magmatic systems. They can be regarded as the low-temperature and high-pressure equivalent of Ca-rich plagioclase, and thus are equally important as this feldspar for petrogenetic purposes. In addition, they belong to the most important Fe3+ bearing minerals, and give important information about the oxygen fugacity and the oxidation state of a rock. Last but not least, they can incorporate geochemically relevant minor and trace elements such as Sr, Pb, REE, V, and Mn. The epidote minerals are undoubtedly very important from a petrogenetic and geochemical point of view, and have received a lot of attention in the last years from several working groups in the field of experimental studies and spectroscopic work. As a result, the thermodynamic database of epidote minerals has been significantly enlarged during the last decade. Recent studies have revealed the importance of zoisite in subduction zone processes as a carrier of H2O and suggested zoisite to be the main H2O source in the pressure interval between about 2.0 and 3.0 GPa. Many studies have shown that an understanding of trace element geochemical processes in high-pressure rocks is impossible without understanding the geochemical influence of the epidote minerals. Recent advances in microanalytical techniques have also shown that epidote minerals record detailed information on their geological environment. W. A. Deer, R. A. Howie and J. Zussmann edited the last comprehensive review on this mineral group almost 20 years ago in 1986. In 1990, on the occasion of the 125th anniversary of the discovery of the famous Knappenwand locality in the Tauern/Austria, an epidote conference was held in Neukirchen/Austria organized by the Austrian Mineralogical Society by V. Höck and F. Koller. In 1999, there was a special symposium at the EUG 10 in Strasbourg, convened by R. Gieré and F. Oberli, entitled Recent advances in studies of the epidote group that highlighted the relevance of the epidote minerals for Earth science. However, there are many open questions in the community regarding the epidote minerals and there is a need for a new overview that brings together the recent knowledge on this interesting group of minerals. The present volume of the Reviews in Mineralogy and Geochemistry reviews the current state of knowledge on the epidote minerals with special emphasis on the advances that were made since the comprehensive review of Deer et al. (1986). We hope that it will serve to outline the open questions and direction of future research. In the Introduction, we review the structure, optical data and crystal chemistry of this mineral group, all of which form the basis for understanding much of the following material in the volume. In addition, we provide some information on special topics, such as morphology and growth, deformation behavior, and gemology. Thermodynamic properties (Chapter 2, Gottschalk), the spectroscopy of the epidote minerals (Chapter 3, Liebscher) and a review of the experimental studies (Chapter 4, Poli and Schmidt) constitute the first section of chapters. These fields are closely related, and all three chapters show the significant progress over the last years, but that some of the critical questions such as the problem of miscibility and miscibility gaps are still not completely solved. This section concludes with a review of fluid inclusion studies (Chapter 5, Klemd), a topic that turned out to be of large interest for petrogenetic interpretation, and leads to the description of natural epidote occurrences in the second section of the book. These following chapters review the geological environments of the epdiote minerals, from low temperature in geothermal fields (Chapter 6, Bird and Spieler), to common metamorphic rocks (Chapter 7, Grapes and Hoskin) and to high- and ultrahigh pressure (Chapter 8, Enami, Liou and Mattinson) and the magmatic regime (Chapter 9, Schmidt and Poli). Allanite (Chapter 10, Gieré and Sorensen) and piemontite (Chapter 11, Bonazzi and Menchetti), on which a large amount of information is now available, are reviewed in separate chapters. Finally trace element (Chapter 12, Frei, Liebscher, Franz and Dulski) and isotopic studies, both stable and radiogenic isotopes (Chapter 13, Morrison) are considered. We found it unavoidable that there is some overlap between individual chapters. This is an inherited problem in a mineral group such as the epidote minerals, which forms intensive solid solutions between the major components of rock forming minerals as well as with trace elements.
Type of Medium: Monograph available for loan
Pages: XVII, 628 S. , zahlr. Ill., graph. Darst
ISBN: 0-939950-68-5 , 978-0-939950-68-3
ISSN: 1529-6466
Series Statement: Reviews in mineralogy & geochemistry 56
Classification:
Geochemistry
Note: Chapter 1. Physical and Chemical Properties of the Epidote Minerals ≠ An Introduction by Gerhard Franz and Axel Liebscher, p. 1 - 82 Chapter 2. Thermodynamic Properties of Zoisite, Clinozoisite and Epidote by Matthias Gottschalk, p. 83 - 124 Chapter 3. Spectroscopy of Epidote Minerals by Axel Liebscher, p. 125 - 170 Chapter 4. Experimental Subsolidus Studies on Epidote Minerals by Stefano Poli and Max W. Schmidt, p. 171 - 196 Chapter 5. Fluid Inclusions in Epidote Minerals and Fluid Development in Epidote-Bearing Rocks by Reiner Klemd, p. 197 - 234 Chapter 6. Epidote in Geothermal Systems by Dennis K. Bird and Abigail R. Spieler, p. 235 - 300 Chapter 7. Epidote Group Minerals in Low≠Medium Pressure Metamorphic Terranes by Rodney M. Grapes and Paul W. O. Hoskin, p. 301 - 346 Chapter 8. Epidote Minerals in High P/T Metamorphic Terranes: Subduction Zone and High- to Ultrahigh-Pressure Metamorphism by M. Enami, J.G. Liou, and C. G. Mattinson, p. 347 - 398 Chapter 9. Magmatic Epidote by Max W. Schmidt and Stefano Poli, p. 399 - 430 Chapter 10. Allanite and Other REE-Rich Epidote-Group Minerals by Reto Gieré and Sorena S. Sorensen, p. 431 - 494 Chapter 11. Manganese in Monoclinic Members of the Epidote Group: Piemontite and Related Minerals by by Paola Bonazzi and Silvio Menchetti, p. 495 - 552 Chapter 12. Trace Element Geochemistry of Epidote Minerals by by Dirk Frei, Axel Liebscher, Gerhard Franz, and Peter Dulski, p. 553 - 606 Chapter 13. Stable and Radiogenic Isotope Systematics in Epidote Group Minerals by Jean Morrison, p. 607 - 628
Location: Reading room
Branch Library: GFZ Library
Location Call Number Expected Availability
BibTip Others were also interested in ...
Associated Volumes
  • 2
    Monograph available for loan
    Monograph available for loan
    Chantilly, Va. : Mineralogical Society of America
    Call number: 11/M 05.0616
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: As geomicrobiologists, we seek to understand how some of nature's most complex systems work, yet the very complexity we seek to understand has placed many of the insights out of reach. Recent advances in cultivation methodologies, the development of ultrahigh throughput DNA sequencing capabilities, and new methods to assay gene expression and protein function open the way for rapid progress. In the eight years since the first Geomicrobiology volume (Geomicrobiology: Interactions between microbes and minerals; volume 35 in this series) we have transformed into scientists working hand in hand with biochemists, molecular biologists, genome scientists, analytical chemists, and even physicists to reveal the most fundamental molecular-scale underpinnings of biogeochemical systems. Through synthesis achieved by integration of diverse perspectives, skills, and interests, we have begun to learn how organisms mediate chemical transformations, the ways in which the environment determines the architecture of microbial communities, and the interplay between evolution and selection that shapes the biodiversity of the planet. This volume presents chapters written by leaders in the rapidly maturing field we refer to as molecular geomicrobiology. Most of them are relatively young researchers who share their approaches and insights and provide pointers to exciting areas ripe for new advances. This volume ties together themes common to environmental microbiology, earth science, and astrobiology. The resesarch presented here, the associated short course, and the volume production were supported by funding from many sources, notably the Mineralogical Society of America, the Geochemical Society, the US Department of Energy Chemical Sciences Program and the NASA Astrobiology Institute.
    Type of Medium: Monograph available for loan
    Pages: XIV, 294 S.
    ISBN: 0-939950-71-5 , 978-0-939950-71-3
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 59
    Classification:
    Geochemistry
    Note: Chapter 1. The search for a molecular-level understanding of the processes that underpin the Earth's biogeochemical cycles by Jillian F. Banfield, Gene W. Tyson, Eric E. Allen, and Rachel J. Whitaker, p. 1 - 8 Chapter 2. What genetics offers geobiology by Dianne K. Newman and Jeffrey A. Gralnick, p. 9 - 26 Chapter 3. Enzymology of electron transport: energy generation with geochemical consequences by Thomas J. DiChristina, Jim K. Fredrickson, and John M. Zachara, p. 27 - 52 Chapter 4. Siderophores and the dissolution of iron-bearing minerals in marine systems by Stephan M. Kraemer, Alison Butler, Paul Borer, and Javiera Cervini-Silva, p. 53 - 84 Chapter 5. Geomicrobiological cycling of iron by Andreas Kappler and Kristina L. Straub, p. 85 - 108 Chapter 6. Molecular-scale processes involving nanoparticulate minerals in biogeochemical systems by Benjamin Gilbert, Jillian F. Banfield, p. 109 - 156 Chapter 7. The organic-mineral interface in biominerals by Pupa Gilbert, Mike Abrecht, and Bradley H. Frazer, p. 157 - 186 Chapter 8. Catalysis and prebiotic synthesis by James P. Ferris, p. 187 - 210 Chapter 9. The evolution of biological carbon and nitrogen cycling-a genomic perspective by Jason Raymond, p. 211 - 232 Chapter 10. Building the biomarker tree of life by Jchen J. Brocks and Ann Pearson, p. 233 - 258 Chapter 11. Population dynamics through the lens of extreme environments by Rachel J. Whitaker and Jillian F. Banfield, p. 259 - 278 Chapter 12. Metabolism and genomics: adventures derived from complete genome sequencing by Kenneth H. Nealson and Barbara Methe, p. 279 - 294
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Call number: 11/M 04.0008
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: In the two decades since J. Alexander Speer's Zircon chapter in Orthosilicates (Reviews in Mineralogy, Vol. 5), much has been learned about the internal textures, trace-element and isotope geochemistry (both radiogenic and stable) and chemical and mechanical stability of zircon. The application of this knowledge and the use of zircon in geologic studies have become widespread. Today, the study of zircon exists as the pseudo-discipline of "zirconology" that involves materials scientists and geoscientists from across a range of sub-disciplines including stable and radiogenic isotopes, sedimentology, petrology, trace elements and experimental mineralogy. Zirconology has become an important field of research, so much so that coverage of the mineral zircon in a review volume that included zircon as one of many accessory minerals would not meet the needs or interests of the zirconology community in terms of depth or breadth of coverage. The sixteen chapters in this volume cover the most important aspects of zircon-related research over the past twenty-years and highlight possible future research avenues. Finch and Hanchar (Chapter 1) review the structure of zircon and other mineral (and synthetic) phases with the zircon structure. In most rock types where zircon occurs it is a significant host of the rare-earth elements, Th and U. The abundances of these elements and the form of chondrite-normalized rare-earth element patterns may provide significant information on the processes that generate igneous and metamorphic rocks. The minor and trace element compositions of igneous, metamorphic and hydrothermal zircons are reviewed by Hoskin and Schaltegger in Chapter 2. The investigation of melt inclusions in zircon is an exciting line of new research. Trapped melt inclusions can provide direct information of the trace element and isotopic composition of the melt from which the crystal formed as a function of time throughout the growth of the crystal. Thomas et a!. (Chapter 3) review the study of melt inclusions in zircon. Hanchar and Watson (Chapter 4) review experimental and natural studies of zircon saturation and the use of zircon saturation thermometry for natural rocks. Cation diffusion and oxygen diffusion in zircon is discussed by Cherniak and Watson (Chapter 5). Diffusion studies are essential for providing constraints on the quality of trace element and isotope data and for providing estimates of temperature exposure in geological environments. Zircon remains the most widely utilized accessory mineral for U- Th-Pb isotope geochronology. Significant instrumental and analytical developments over the past thirty years mean that zircon has an essential role in early Achaean studies, magma genesis, and astrobiology. Four chapters are devoted to different aspects of zircon geochronology. The first of these four, Chapter 6 by Davis et a!., reviews the historical development of zircon geochronology from the mid-1950s to the present; the following three chapters focus on particular techniques for zircon geochronology, namely ID-TIMS (Parrish and Noble, Chapter 7), SIMS (Ireland and Williams, Chapter 8) and ICP-MS (Kosier and Sylvester, Chapter 9). The application of zircon chronology in constraining sediment provenance.and the calibration ofthe geologic time-scale are reviewed by Fedo et al. (Chapter 10) and Bowring and Schmitz (Chapter 11), respectively. Other isotopic systematics are reviewed for zircon by Kinny and Maas (Chapter 12), who discuss the application of Nd-Sm and Lu-Hf isotopes in zircon to petrogenetic studies, and by Valley (Chapter 13), who discusses the importance of oxygen isotopic studies in traditional and emerging fields of geologic study. As a host of U and Th, zircon is subject to radiation damage. Radiation damage is likely responsible for isotopic disturbance and promotes mechanical instability. There is increasing interest in both the effect of radiation damage on the zircon crystal structure and mechanisms of damage and recrystallization, as well as the structure of the damaged phase. These studies contribute to an overall understanding of how zircon may behave as a waste-form for safe disposal of radioactive waste and are discussed by Ewing et a!. (Chapter 14). The spectroscopy of zircon, both crystalline and metamict is reviewed by Nadsala et a!. (Chapter 15). The final chapter, by Corfu et al. (Chapter 16), is an atlas of internal textures of zircon. The imaging of internal textures in zircon is essential for directing the acquisition of geochemical data and to the integrity of conclusions reached once data has been collected and interpreted. This chapter, for the first time, brings into one place textural images that represent common and not so common textures reported in the literature, along with brief interpretations of their significance. There is presently no comparable atlas. It is intended that this chapter will become a reference point for future workers to compare and contrast their own images against. The chapters in this volume of Reviews in Mineralogy and Geochemistry were prepared for presentation at a Short Course, sponsored by the Mineralogical Society of America (MSA) in Freiburg, Germany, April 3-4, 2003. This preceded a joint meeting of the European Union of Geology, the American Geophysical Union and the European Geophysical Society held in Nice, France, April 6-11, 2003.
    Type of Medium: Monograph available for loan
    Pages: XVII, 500 S.
    ISBN: 0-939950-65-0 , 978-0-939950-65-2
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 53
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. Structure and chemistry of zircon and zircon-group minerals by Robert J. Finch and John M. Hanchar, p. 1 - 26 Chapter 2. The composition of zircon and igneous and metamorphic petrogenesis by Paul W. O. Hoskin and Urs Schaltegger, p. 27 - 62 Chapter 3. Melt inclusions in zircon by J. B. Thomas, Robert J. Bodnar, Nobumichi Shimizu, and Craig A. Chesner, p. 63 - 88 Chapter 4. Zircon saturation thermometry by John M. Hanchar and E. Bruce Watson, p. 89 - 112 Chapter 5. Diffusion in zircon by Daniele J. Cherniak and E. Bruce Watson, p. 113 - 144 Chapter 6. Historical development of zircon geochronology by Donald W. Davis, Ian S. Williams, and Thomas E. Krogh, p. 145 - 182 Chapter 7. Zircon U-Th-Pb geochronology by isotope dilution—thermal ionization mass spectrometry (ID-TIMS) by Randall R. Parrish and Stephen R. Noble, p. 183 - 214 Chapter 8. Considerations in zircon geochronology by SIMS by Trevor R. Ireland and Ian S. Williams, p. 215 - 242 Chapter 9. Present trends and the future of zircon in geochronology: laser ablation ICPMS by Jan Kosler and Paul J. Sylvester, p. 243 - 276 Chapter 10. Detrital zircon analysis of the sedimentary record by Christopher M. Fedo, Keith N. Sircombe, and Robert H. Rainbird, p. 277 - 304 Chapter 11. High-precision U-Pb zircon geochronology and the stratigraphic record by Samuel A. Bowring and Mark D. Schmitz, p. 305 - 326 Chapter 12. Lu-Hf and Sm-Nd isotope systems in zircon by Peter D. Kinny and Roland Maas, p. 327 - 342 Chapter 13. Oxygen isotopes in zircon by John W. Valley, p. 343 - 386 Chapter 14. Radiation effects in zircon by Rodney C. Ewing, Alkiviathes Meldrum, LuMin Wang, William J. Weber, and L. René Corrales, p. 387 - 426 Chapter 15. Spectroscopic methods applied to zircon by Lutz Nasdala, Ming Zhang, Ulf Kempe, Gérard Panczer, Michael Gaft, Michael Andrut, and Michael Plotze, p. 427 - 468 Chapter 16. Atlas of zircon textures by Fernando Corfu, John M. Hanchar, Paul W.O. Hoskin, and Peter Kinny, p. 469 - 500
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Monograph available for loan
    Monograph available for loan
    Washington, D.C. : Mineralogical Society of America
    Call number: 11/M 04.0009
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: Since the dawn of life on earth, organisms have played roles in mineral formation in processes broadly known as biomineralization. This biologically-mediated organization of aqueous ions into amorphous and crystalline materials results in materials that are as simple as adventitious precipitates or as complex as exquisitely fabricated structures that meet specialized functionalities. The purpose of this volume of Reviews in Mineralogy and Geochemistry is to provide students and professionals in the earth sciences with a review that focuses upon the various processes by which organisms direct the formation of minerals. Our framework of examining biominerals from the viewpoints of major mineralization strategies distinguishes this volume from most previous reviews. The review begins by introducing the reader to over-arching principles that are needed to investigate biomineralization phenomena and shows the current state of knowledge regarding the major approaches to mineralization that organisms have developed over the course of Earth history. By exploring the complexities that underlie the "synthesis" of biogenic materials, and therefore the basis for how compositions and structures of biominerals are mediated (or not), we believe this volume will be instrumental in propelling studies of biomineralization to a new level of research questions that are grounded in an understanding of the underlying biological phenomena.
    Type of Medium: Monograph available for loan
    Pages: xiii, 381 S.
    ISBN: 0-939950-66-9 , 978-0-939950-66-9
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 54
    Classification:
    Mineralogy
    Language: English
    Note: Chapter 1. An Overview of Biomineralization Processes and the Problem of the Vital Effect by Steve Weiner and Patricia M. Dove, p. 1 - 30 Chapter 2. Principles of Molecular Biology and Biomacromolecular Chemistry by John S. Evans, p. 31 - 56 Chapter 3. Principles of Crystal Nucleation and Growth by James J. De Yoreo and Peter G. Vekilov, p. 57 - 94 Chapter 4. Biologically Induced Mineralization by Bacteria by Richard B. Frankel and Dennis A. Bazylinskn, p. 95 - 114 Chapter 5. The Source of Ions for Biomineralization in Foraminifera and Their Implications for Paleoceanographic Proxies by Jonathan Erez, p. 115 - 150 Chapter 6. Geochemical Perspectives on Coral Mineralization by Anne L. Cohen and Ted A. McConnaughey, p. 151 - 188 Chapter 7. Biomineralization Within Vesicles: The Calcite of Coccoliths by Jeremy R. Young and Karen Henriksen, p. 189 - 216 Chapter 8. Biologically Controlled Mineralization in Prokaryotes by Dennis A. Bazylinski and Richard B. Frankel, p. 217 - 248 Chapter 9. Mineralization in Organic Matrix Frameworks by Arthur Veis, p. 249 - 290 Chapter 10. Silicification: The Processes by Which Organisms Capture and Mineralize Silica by Carole C. Perry, p. 291 - 328 Chapter 11. Biomineralization and Evolutionary History by Andrew H Knoll, p. 329 - 356 Chapter 12. Biomineralization and Global Biogeochemical Cycles by Philippe Van Cappellen, p. 357 -381
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Monograph available for loan
    Monograph available for loan
    Chantilly, Va. : Mineralogical Society of America
    Call number: 11/M 06.0639
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: Medical Mineralogy and Geochemistry is an emergent, highly interdisciplinary field of study. The disciplines of mineralogy and geochemistry are integral components of cross-disciplinary investigations that aim to understand the interactions between geomaterials and humans as well as the normal and pathological formation of inorganic solid precipitates in vivo. Research strategies and methods include but are not limited to: stability and solubility studies of earth materials and biomaterials in biofluids or their proxies (i.e., equilibrium thermodynamic studies), kinetic studies of pertinent reactions under conditions relevant to the human body, molecular modeling studies, and geospatial and statistical studies aimed at evaluating environmental factors as causes for activating certain chronic diseases in genetically predisposed individuals or populations. Despite its importance, the area of Medical Mineralogy and Geochemistry has received limited attention by scientists, administrators, and the public. The objectives of this volume are to highlight some of the existing research opportunities and challenges, and to invigorate exchange of ideas between mineralogists and geochemists working on medical problems and medical scientists working on problems involving geomaterials and biominerals. Examples presented in this volume (Table of contents below) include the effects of inhaled dust particles in the lung (Huang et al. 2006; Schoonen et al. 2006), biomineralization of bones and teeth (Glimcher et al. 2006), the formation of kidney-stones, the calcification of arteries, the speciation exposure pathways and pathological effects of heavy metal contaminants (Reeder et al. 2006; Plumlee et al. 2006), the transport and fate of prions and pathological viruses in the environment (Schramm et al. 2006), the possible environmental-genetic link in the occurrence of neurodegenerative diseases (Perl and Moalem 2006), the design of biocompatible, bioactive ceramics for use as orthopaedic and dental implants and related tissue engineering applications (Cerruti and Sahai 2006) and the use of oxide-encapsulated living cells for the development of biosensors (Livage and Coradin 2006).
    Type of Medium: Monograph available for loan
    Pages: xi, 332 S.
    ISBN: 0-939950-76-6 , 978-0939950-76-8
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 64
    Classification:
    Applied Geology
    Note: Chapter 1. The Emergent Field of Medical Mineralogy and Geochemistry by Nita Sahai, Martin A. A. Schoonen, and H. Catherine W. Skinner, p. 1 - 4 Chapter 2. The Toxicological Geochemistry of Earth Materials: An Overview of Processes and the Interdisciplinary Methods Used to Understand Them by Geoffrey S. Plumlee, Suzette A. Morman, and Thomas L. Ziegler, p. 5 - 58 Chapter 3. Metal Speciation and Its Role in Bioaccessibility and Bioavailability by Richard J. Reeder, Martin A. A. Schoonen, and Antonio Lanzirotti, p. 59 - 114 Chapter 4. Aluminum, Alzheimer's Disease and the Geospatial Occurrence of Similar Disorders by Daniel P. Perl and Sharon Moalem, p. 115 - 134 Chapter 5. Potential Role of Soil in the Transmission of Prion Disease by P. T. Schramm, C. J. Johnson, N. E. Mathews, D. McKenzie, J. M. Aiken, and Joel A. Pedersen, p. 135 - 152 Chapter 6. Interaction of Iron and Calcium Minerals in Coals and their Roles in Coal Dust-Induced Health and Environmental Problems by Xi Huang, Terry Gordon, William N. Rom, and Robert B. Finkelman, p. 153 - 178 Chapter 7. Mineral-Induced Formation of Reactive Oxygen Species by Martin A. A. Schoonen, Corey A. Cohn, Elizabeth Roemer, Richard Laffers, Sanford R. Simon, Thomas O'Riordan, p. 179 - 222 Chapter 8. Bone: Nature of the Calcium Phosphate Crystals and Cellular, Structural, and Physical Chemical Mechanisms in Their Formation by Melvin J. Glimcher, p. 223 - 282 Chapter 9. Silicate Biomaterials for Orthopaedic and Dental Implants by Marta Cerruti and Nita Sahai, p. 283 - 314 Chapter 10. Living Cells in Oxide Glasses by Jacques Livage and Thibaud Coradin, p. 315 - 332
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Monograph available for loan
    Monograph available for loan
    Chantilly, Va. : Mineralogical Society of America
    Call number: 11/M 06.0638
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: For over half a century neutron scattering has added valuable information about the structure of materials. Unlike X-rays that have quickly become a standard laboratory technique and are available to all modern researchers in physics, chemistry, materials and earth sciences, neutrons have been elusive and reserved for specialists. A primary reason is that neutron beams, at least so far, are only produced at large dedicated facilities with nuclear reactors and accelerators and access to those has been limited. Yet there are a substantial number of experiments that use neutron scattering. While earth science users are still a small minority, neutron scattering has nevertheless contributed valuable information on geological materials for well over half a century. Important applications have been in crystallography (e.g. atomic positions of hydrogen and Al-Si ordering in feldspars and zeolites, Mn-Fe-Ti distribution in oxides), magnetic structures, mineral physics at non-ambient conditions and investigations of anisotropy and residual strain in structural geology and rock mechanics. Applications range from structure determinations of large single crystals, to powder refinements and short-range order determination in amorphous materials. Zeolites, feldspars, magnetite, carbonates, ice, clathrates are just some of the minerals where knowledge has greatly been augmented by neutron scattering experiments. Yet relatively few researchers in earth sciences are taking advantage of the unique opportunities provided by modern neutron facilities. The goal of this volume, and the associated short course by the Mineralogical Society of America held December 7-9 in Emeryville/Berkeley CA, is to attract new users to this field and introduce them to the wide range of applications. As the following chapters will illustrate, neutron scattering offers unique opportunities to quantify properties of earth materials and processes. Focus of this volume is on scientific applications but issues of instrumental availabilities and methods of data processing are also covered to help scientists from such diverse fields as crystallography, mineral physics, geochemistry, rock mechanics, materials science, biomineralogy become familiar with neutron scattering. A few years ago European mineralogists spearheaded a similar initiative that resulted in a special issue of the European Journal of Mineralogy (Volume 14, 2002). Since then the field has much advanced and a review volume that is widely available is highly desirable. At present there is really no easy access for earth scientists to this field and a more focused treatise can complement Bacon's (1955) book, now in its third edition, which is still a classic. The purpose of this volume is to provide an introduction for those not yet familiar with neutrons by describing basic features of neutrons and their interaction with matter as well illustrating important applications. The volume is divided into 17 Chapters. The first two chapters introduce properties of neutrons and neutron facilities, setting the stage for applications. Some applications rely on single crystals (Chapter 3) but mostly powders (Chapters 4-5) and bulk polycrystals (Chapters 15-16) are analyzed, at ambient conditions as well as low and high temperature and high pressure (Chapters 7-9). Characterization of magnetic structures remains a core application of neutron scattering (Chapter 6). The analysis of neutron data is not trivial and crystallographic methods have been modified to take account of the complexities, such as the Rietveld technique (Chapter 4) and the pair distribution function (Chapter 11). Information is not only obtained about solids but about liquids, melts and aqueous solutions as well (Chapters 11-13). In fact this field, approached with inelastic scattering (Chapter 10) and small angle scattering (Chapter 13) is opening unprecedented opportunities for earth sciences. Small angle scattering also contributes information about microstructures (Chapter 14). Neutron diffraction has become a favorite method to quantify residual stresses in deformed materials (Chapter 16) as well as preferred orientation patterns (Chapter 15). The volume concludes with a short introduction into neutron tomography and radiography that may well emerge as a principal application of neutron scattering in the future (Chapter 17).
    Type of Medium: Monograph available for loan
    Pages: xx, 471 S.
    ISBN: 0-939950-75-8 , 978-0939950-75-1
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 63
    Note: Chapter 1. Introduction to Neutron Properties and Applications by John B. Parise, p. 1 - 26 Chapter 2. Neutron Production, Neutron Facilities and Neutron Instrumentation by Sven C. Vogel and Hans-Georg Priesmeyer, p. 27 - 58 Chapter 3. Single-Crystal Neutron Diffraction: Present and Future Applications by Nancy L. Ross and Christina Hoffman, p. 59 - 80 Chapter 4. Neutron Rietveld Refinement by Robert B. Von Dreele, p. 81 - 98 Chapter 5. Application of Neutron Powder-Diffraction to Mineral Structures by Karsten Knorr and Wulf Depmeier, p. 99 - 112 Chapter 6. Neutron Diffraction of Magnetic Materials by Richard J. Harrison, p. 113 - 144 Chapter 7. Neutron Powder Diffraction Studies of Order-Disorder Phase Transitions and Kinetics by Simon A.T. Redfern, p. 145 - 170 Chapter 8. Time-Resolved Neutron Diffraction Studies with Emphasis on Water Ices and Gas Hydrates by Werner F. Kuhs and Thomas C. Hansen, p. 171 - 204 Chapter 9. High Pressure Studies by John B. Parise, p. 205 - 232 Chapter 10. Inelastic Scattering and Applications by Chun-Keung Loong, p. 233 - 254 Chapter 11. Analysis of Disordered Materials Using Total Scattering and the Atomic Pair Distribution Function by Thomas Proffen, p. 255 - 274 Chapter 12. Structure of Glasses and Melts by Martin C. Wilding and Chris J. Benmore, p. 275 - 312 Chapter 13. Neutron Scattering and Diffraction Studies of Fluids and Fluid-Solid Interactions by David R. Cole, Kenneth W. Herwig, Eugene Mamontov and John Z. Larese, p. 313 - 362 Chapter 14. Small-Angle Neutron Scattering and the Microstructure of Rocks by Andrzej P. Radlinski, p. 363 - 398 Chapter 15. Neutron Diffraction Texture Analysis by Hans-Rudolf Wenk, p. 399 - 426 Chapter 16. Internal Stresses in Deformed Crystalline Aggregates by Mark R. Daymond, p. 427 - 458 Chapter 17. Applications of Neutron Radiography and Neutron Tomography by Bjoern Winkler, p. 459 - 471
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Monograph available for loan
    Monograph available for loan
    Chantilly, Va. : Mineralogical Society of America
    Call number: 11/M 07.0317
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: Fluids rich in water, carbon and sulfur species and a variety of dissolved salts are a ubiquitous transport medium for heat and matter in the Earth’s interior. Fluid transport through the upper mantle and crust controls the origin of magmatism above subduction zones and results in natural risks of explosive volcanism. Fluids passing through rocks affect the chemical and heat budget of the global oceans, and can be utilized as a source of geothermal energy on land. Fluid transport is a key to the formation and the practical utilization of natural resources, from the origin of hydrothermal mineral deposits, through the exploitation of gaseous and liquid hydrocarbons as sources of energy and essential raw materials, to the subsurface storage of waste materials such as CO2. Different sources of fluids and variable paths of recycling volatile components from the hydrosphere and atmosphere through the solid interior of the Earth lead to a broad range of fluid compositions, from aqueous liquids and gases through water-rich silicate or salt melts to carbon-rich endmember compositions. Different rock regimes in the crust and mantle generate characteristic ranges of fluid composition, which depending on pressure, temperature and composition are miscible to greatly variable degrees. For example, aqueous liquids and vapors are increasingly miscible at elevated pressure and temperature. The degree of this miscibility is, however, greatly influenced by the presence of additional carbonic or salt components. A wide range of fluid–fluid interactions results from this partial miscibility of crustal fluids. Vastly different chemical and physical properties of variably miscible fluids, combined with fluid flow from one pressure – temperature regime to another, therefore have major consequences for the chemical and physical evolution of the crust and mantle. Several recent textbooks and review articles have addressed the role and diverse aspects of fluids in crustal processes. However, immiscibility of fluids and the associated phenomena of m ultiphase fluid flow are generally dealt with only in subsections with respect to specific environments and aspects of fluid mediated processes. This volume of Reviews in Mineralogy and Geochemistry attempts to fill this gap and to explicitly focus on the role that co-existing fluids play in the diverse geologic environments. It brings together the previously somewhat detached literature on fluid–fluid interactions in continental, volcanic, submarine and subduction zone environments. It emphasizes that fluid mixing and unmixing are widespread processes that may occur in all geologic environments of the entire crust and upper mantle. Despite different P-T conditions, the fundamental processes are analogous in the different settings.
    Type of Medium: Monograph available for loan
    Pages: xii, 430 S.
    ISBN: 0-939950-77-4 , 978-0-939950-77-5
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 65
    Classification:
    Mineralogy
    Note: Chapter 1. Fluid–Fluid Interactions in the Earth’s Lithosphere by Axel Liebscher and Christoph A. Heinrich, p. 1 - 14 Chapter 2. Experimental Studies in Model Fluid Systems by Axel Liebscher, p. 15 - 48 Chapter 3. Equations of State for Complex Fluids by Matthias Gottschalk, p. 49 - 98 Chapter 4. Liquid Immiscibility in Silicate Melts and Related Systems by Alan B. Thompson, Maarten Aerts, and Alistair C. Hack, p. 99 - 128 Chapter 5. Phase Relations Involving Hydrous Silicate Melts, Aqueous Fluids, and Minerals by Alistair C. Hack, Alan B. Thompson, and Maarten Aerts, p. 129 - 186 Chapter 6. Numerical Simulation of Multiphase Fluid Flow in Hydrothermal Systems by Thomas Driesner and Sebastian Geiger, p. 187 - 212 Chapter 7. Fluid Phase Separation Processes in Submarine Hydrothermal Systems by Dionysis I. Foustoukos and William E. Seyfried, Jr., p. 213 - 240 Chapter 8. Fluids in Hydrocarbon Basins by Karen S. Pedersen and Peter L. Christensen, p. 241 - 258 Chapter 9. Fluid-Fluid Interactions in Geothermal Systems by Stefan Arnorsson and Andri Stefansson, Jon Orn Bjarnason, p. 259 - 312 Chapter 10. Fluid Immiscibility in Volcanic Environment by James D. Webster and Charles W. Mandeville, p. 313 - 362 Chapter 11. Fluid-Fluid Interactions in Magmatic-Hydrothermal Ore Formation by Christoph A. Heinrich, p. 363 - 388 Chapter 12. Fluid Immiscibility in Metamorphic Rocks by Wilhelm Heinrich, p. 389 - 430
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Monograph available for loan
    Monograph available for loan
    Chantilly, Va. : Mineralogical Society of America
    Call number: 11/M 07.0430
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: Over 25 years ago, Volume 9 of Reviews in Mineralogy: Amphiboles and Other Hydrous Pyriboles seemed to contain all that was possible to know about this group of fascinating minerals. The subsequent twenty-five years have shown that this assessment was wrong: Nature was keeping a lot in reserve, and has since revealed considerable new complexity in the constitution and behavior of amphiboles. Some of the advances in knowledge have been due to the use of new experimental techniques, some have been due to the investigation of hitherto neglected rock-types, and some have been due to the development of new ideas. The identification and systematic investigation of variable LLE (Light Lithophile Elements), particularly Li and H, led to the identification of several new amphibole species and the recognition that variable Li and H play an important role in chemical variations in amphiboles from both igneous and metamorphic parageneses. In turn, this work drove the development of microbeam SIMS to analyze LLE in amphiboles. Detailed mineralogical work on metasyenites showed hitherto unexpected solid-solution between Na and Li at the M(4) site in monoclinic amphiboles, a discovery that has upset the current scheme of amphibole classification and nomenclature and initiated new efforts in this direction. Systematic and well-planned synthesis of amphiboles, combined with careful spectroscopy, has greatly furthered our understanding of cation and anion order in amphiboles. The use of bond-valence theory to predict patterns of SRO (Short-Range Order) in amphiboles, and use of these predictions to understand the infrared spectra of well-characterized synthetic-amphibole solid-solutions, has shown that SRO is a major feature of the amphibole structure, and has resulted in major advances in our understanding of SRO in minerals. There has been significant progress relating changes in amphibole composition and cation ordering to petrogenetic conditions and trace-element behavior. Work on the nature of fibrous amphiboles and their toxicity and persistence in living organisms has emphasized the importance of accurate mineralogical characterization in environmental and health-related problems. The current volume has taken a different approach from previous volumes concerned with major groups of rock-forming minerals. Some of the contents have previously been organized by the investigative technique or groups of similar techniques: crystal-structure refinement, spectroscopy, TEM etc. Here, we have taken an approach that focuses on aspects of amphiboles rather than experimental techniques: crystal chemistry, new compositions, long-range order, short-range order etc., and all experimental results germane to these topics are discussed in each chapter. The intent of this approach is to focus on amphiboles, and to emphasize that many techniques are necessary to fully understand each aspect of the amphiboles and their behavior in both natural and industrial processes.
    Type of Medium: Monograph available for loan
    Pages: XV, 545 S. , graph. Darst.
    ISBN: 0-939950-79-0 , 978-0-939950-79-9
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 67
    Classification:
    Geochemistry
    Note: Chapter 1. Amphiboles: Crystal Chemistry by Frank C. Hawthorne and Roberta Oberti, p. 1 - 54 Chapter 2. Classification of the Amphiboles by Frank C. Hawthorne and Roberta Oberti, p. 55 - 88 Chapter 3. New Amphibole Compositions: Natural and Synthetic by Roberta Oberti, Giancarlo Della Ventura, and Fernando Cámara, p. 89 - 124 Chapter 4. Long-Range Order in Amphiboles by Roberta Oberti, Frank C. Hawthorne, Elio Cannillo, and Fernando Cámara, p. 125 - 172 Chapter 5. Short-Range Order in Amphiboles by Frank C. Hawthorne and Giancarlo Della Ventura, p. 173 - 222 Chapter 6. Non-Ambient in situ Studies of Amphiboles by Mark D. Welch, Fernando Camara, Giancarlo Della Ventura, and Gianluca Iezzi, p. 223 - 260 Chapter 7. The Synthesis and Stability of Some End-Member Amphiboles by Bernard W. Evans, p. 261 - 286 Chapter 8. The Significance of the Reaction Path in Synthesizing Single-Phase Amphibole of Defined Composition by Walter V. Maresch and Michael Czank, p. 287 - 322 Chapter 9. Amphiboles in the Igneous Environment by Robert F. Martin, p. 323 - 358 Chapter 10. Metamorphic Amphiboles: Composition and Coexistence by John C. Schumacher, p. 359 - 416 Chapter 11. Trace-Element Partitioning Between Amphibole and Silicate Melt by Massimo Tiepolo, Roberta Oberti, Alberto Zanetti, Riccardo Vannucci, and Stephen F. Foley, p. 417 - 452 Chapter 12. Amphiboles: Environmental and Health Concerns by Mickey E. Gunter, Elena Belluso, and Annibale Mottana, p. 453 - 516 Chapter 13. Amphiboles: Historical Perspective by Curzio Cipriani, p. 517 - 546
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Monograph available for loan
    Monograph available for loan
    Chantilly, Va. : Mineralogical Society of America
    Call number: 11/M 07.0429
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: The idea for this book was conceived in early June, 2005 at a paleoaltimetry workshop held at Lehigh University, Lehigh, Pennsyalvania and organized by Dork Sahagian. The workshop was funded by the tectonics program at NSF, and was designed to bring together researchers in paleoaltimetry to discuss different techniques and focus the community on ways of improving paleoelevation estimates and consequent interpretations of geodynamics and tectonics. At this meeting, some commented that a comprehensive volume describing the different methods could help advance the field. I offered to contact the Mineralogical Society of America and the Geochemical Society about publishing a RiMG volume on paleoaltimetry. Because many of the techniques used to infer paleoelevations are geochemically-based or deal with thermodynamic principles, the GS and MSA agreed to the project. Two years and roughly 1000 e-mails later, our book has arrived. The book is organized into 4 sections: Geodynamic and geomorphologic rationale (Clark). This chapter provides the broad rationale behind paleoaltimetry, i.e., why we study it. Stable isotope proxies. These 4 chapters cover theory of stable isotopes in precipitation and their response to altitudinal gradients (Rowley), and stable isotopes sytematics in paleosols (Quade, Garzione and Eiler), silicates (Mulch and Chamberlain) and fossils (Kohn and Dettman). Proxies of atmospheric properties. These 4 chapters cover temperature lapse rates (Meyer), entropy (Forest), and atmospheric pressure proxies, including total atmospheric pressure from gas bubbles in basalt (Sahagian and Proussevitch), and the partial pressure of CO2 (Kouwenberg, Kürshner, and McElwain). Note that clumped isotope thermometry (Quade, Garzione and Eiler) also provides direct estimates of temperature. Radiogenic and cosmogenic nuclides. These 2 chapters cover low-temperature thermochronologic approaches (Reiners) and cosmogenic isotopes (Riihimaki and Libarkin). Some chapters overlap in general content (e.g., basic principles of stable isotopes in precipitation are covered to different degrees in all stable isotope chapters), but no attempt was made to limit authors' discussion of principles, or somehow attempt to arrive at a "consensus view" on any specific topic. Because science advances by critical discussion of concepts, such restrictions were viewed as counterproductive. This does mean that different chapters may present different views on reliability of paleoelevation estimates, and readers are advised to read other chapters in the book on related topics – they may be more closely linked than they might at first appear! I hope readers of this book will discover and appreciate the synergy among paleoaltimetry, climate change, and tectonic geomorphology. These interrelationships create a complex, yet rich field of scientific enquiry that in turn offers insights into climate and geodynamics.
    Type of Medium: Monograph available for loan
    Pages: X, 278 S. , graph. Darst.
    ISBN: 0-939950-78-2 , 978-0-939950-78-2
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 66
    Classification:
    Geochemistry
    Note: Chapter 1. The Significance of Paleotopography by Marin K. Clark, p. 1 - 22 Chapter 2. Stable Isotope-Based Paleoaltimetry: Theory and Validation by David B. Rowley, p. 23 - 52 Chapter 3. Paleoelevation Reconstruction Using Pedogenic Carbonates by Jay Quade, Carmala Garzione, and John Eiler, p. 53 - 88 Chapter 4. Stable Isotope Paleoaltimetry in Orogenic Belts – The Silicate Record in Surface and Crustal Geological Archives by Andreas Mulch and C. Page Chamberlain, p. 89 - 118 Chapter 5. Paleoaltimetry from Stable Isotope Compositions of Fossils by Matthew J. Kohn and David L. Dettman, p. 119 - 154 Chapter 6. A Review of Paleotemperature–Lapse Rate Methods for Estimating Paleoelevation from Fossil Floras by Herbert W. Meyer, p. 155 - 172 Chapter 7. Paleoaltimetry: A Review of Thermodynamic Methods by Chris E. Forest, p. 173 - 194 Chapter 8. Paleoelevation Measurement on the Basis of Vesicular Basalts by Dork Sahagian and Alex Proussevitch, p. 195 - 214 Chapter 9. Stomatal Frequency Change Over Altitudinal Gradients: Prospects for Paleoaltimetry by Lenny L. R. Kouwenberg, Wolfram M. Kürschner, and Jennifer C. McElwain, p. 215 - 242 Chapter 10. Thermochronologic Approaches to Paleotopography by Peter W. Reiners, p. 243 - 268 Chapter 11. Terrestrial Cosmogenic Nuclides as Paleoaltimetric Proxies by Catherine A. Riihimaki and Julie C. Libarkin, p. 269 - 278
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Monograph available for loan
    Monograph available for loan
    Chantilly, Va. : Mineralogical Society of America
    Call number: 11/M 08.0443
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: Minerals are intrinsically resistant to the processes that homogenize silicate liquids—their compositions thus yield an archive of volcanic and magmatic processes that are invisible at the whole rock scale. New experiments, and recent advances in micro-analytical techniques open a new realm of detail regarding the mineralogical record; this volume summarizes some of this progress. The alliance of the sub-fields reviewed in this volume bear upon fundamental issues of volcanology: At what depths are eruptions triggered, and over what time scales? Where and why do magmas coalesce before ascent? If magmas stagnate for thousands of years, what forces are responsible for initiating final ascent, or the degassing processes that accelerate upward motion? To the extent that we can answer these questions, we move towards formulating tests of mechanistic models of volcanic eruptions (e.g., Wilson, 1980; Slezin, 2003; Scandone et al., 2007), and hypotheses of the tectonic controls on magma transport (e.g., ten Brink and Brocher, 1987; Takada, 1994; Putirka and Busby, 2007). Our goal, in part, is to review how minerals can be used to understand volcanic systems and the processes that shape them; we also hope that this work will spur new and integrated studies of volcanic systems. Our review begins by tracing the origins of mineral grains, and methods to estimate pressures (P) and temperatures (T) of crystallization. Hammer shows how "dynamic" experiments (conducted with varying P or T) yield important insights into crystal growth. Chapters by Putirka, Anderson, and Blundy and Cashman review various igneous geothermometers and geobarometers and introduce new calibrations. Among these chapters are many familiar models involving olivine, amphibole, feldspar, pyroxene, and spinel. Blundy and Cashman introduce new methods based on phase equilibria, and in another chapter, Hansteen and Klügel review P estimation based on densities of entrapped fluids and appropriate equations of state. Rutherford's chapter returns to the issue of disequilibrium, with a review of methods to estimate magma ascent rates, and a summary of results. Our volume then moves to a review of melt inclusions. Kent shows how pre-mixed magma compositions can be preserved as inclusions, providing a window into pre-eruptive conditions. Métrich and Wallace review the volatile contents in basaltic melt inclusions and "magma degassing paths". Such methods rely upon vapor saturation pressures, which are derived from experimentally calibrated models. Chapters by Moore and Blundy and Cashman test two of the most important models, by Newman and Lowenstern (2002) (VolatileCalc) and Papale et al. (2006). Moore provides a guide to the appropriate use of these models, and their respective errors. The next four chapters document insights obtained from isotopic studies and diffusion profiles. Ramos and Tepley review developments of micro-analytical isotope measurements, which now have the potential to elucidate even the most cryptic of open system behaviors. Cooper and Reid examine the time scales for such processes through U-series age dating techniques, and Bindeman reviews oxygen isotopes and their uses as tracers of both magmas and crystals. Costa then reviews yet another means to estimate the rates of magmatic processes, using mineral diffusion profiles, with important implications for magma processing. In the next two chapters, Streck reviews an array of imaging methods and mineral textures, and their potential for disentangling mixed magmas, and Armienti takes a new look at the analysis of crystal size distributions (CSD), with applications to Mt. Etna. Our volume concludes with a chapter by Bachmann and Bergantz summarizing compositional zonations and a review of the thermal and compositional forces that drive open system behavior. Finally, descriptions of many of the most common analytical approaches are also reviewed within these chapters. Analytical topics include: secondary ion mass spectrometry (Blundy and Cashman; Kent); electron microprobe (Blundy and Cashman; Kent; Métrich and Wallace; laser ablation ICP-MS (Kent; Ramos and Tepley); Fourier transform infrared spectroscopy (Moore; Métrich and Wallace); microsampling and isotope mass spectrometry (Ramos and Tepley); U-series measurement techniques (Cooper and Reid); Nomarski differential interference contrasts (Streck); micro-Raman spectroscopy (Métrich and Wallace); back-scattered electron microscopy, and cathodoluminescence (Blundy and Cashman). As noted, our hope is that integrated studies can bring us closer to understanding how volcanic systems evolve and why eruptions occur. Our primary goal is to review how minerals can be used to understand volcanic systems; we also hope that this review might spur new and integrated studies of volcanic systems.
    Type of Medium: Monograph available for loan
    Pages: xiv, 674 S. , Ill., graph. Darst.
    ISBN: 0-939950-83-9 , 978-0-939950-83-6
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 69
    Classification:
    Petrology, Petrography
    Note: Chapter 1. Introduction to Minerals, Inclusions and Volcanic Processes by Keith D. Putirka, p. 1 - 8 Chapter 2. Experimental Studies of the Kinetics and Energetics of Magma Crystallization by Julia E. Hammer, p. 9 - 60 Chapter 3. Thermometers and Barometers for Volcanic Systems by Keith D. Putirka, p. 61 - 120 Chapter 4. Thermometers and Thermobarometers in Granitic Systems by J. Lawford Anderson, Andrew P. Barth, Jospeh L. Wooden, and Frank Mazdab, p. 121 - 142 Chapter 5. Fluid Inclusion Thermobarometry as a Tracer for Magmatic Processes by Thor H. Hansteen and Andreas Klügel, p. 143 - 178 Chapter 6. Petrologic Reconstruction of Magmatic System Variables and Processes by Jon Blundy and Kathy Cashman, p. 179 - 240 Chapter 7. Magma Ascent Rates by Malcolm J. Rutherford, p. 241 - 272 Chapter 8. Melt Inclusions in Basaltic and Related Volcanic Rocks by Adam J.R. Kent, p. 273 - 332 Chapter 9. Interpreting H2O and CO2 Contents in Melt Inclusions: Constraints from Solubility Experiments and Modeling by Gordon Moore, p. 333 - 362 Chapter 10. Volatile Abundances in Basaltic Magmas and Their Degassing Paths Tracked by Melt Inclusions by Nicole Métrich and Paul J. Wallace, p. 363 - 402 Chapter 11. Inter- and Intracrystalline Isotopic Disequilibria: Techniques and Applications by Frank C. Ramos and Frank J. Tepley III, p. 403 - 444 Chapter 12. Oxygen Isotopes in Mantle and Crustal Magmas as Revealed by Single Crystal Analysis by Ilya Bindeman, p. 445 - 478 Chapter 13. Uranium-series Crystal Ages by Kari M. Cooper, Mary R. Reid, p. 479 - 544 Chapter 14. Time Scales of Magmatic Processes from Modeling the Zoning Patterns of Crystals by Fidel Costa, Ralf Dohmen, and Sumit Chakraborty, p. 545 - 594 Chapter 15. Mineral Textures and Zoning as Evidence for Open System Processes by Martin J. Streck, p. 595 - 622 Chapter 16. Decryption of Igneous Rock Textures: Crystal Size Distribution Tools by Pietro Armienti, p. 623 - 650 Chapter 17. Deciphering Magma Chamber Dynamics from Styles of Compositional Zoning in Large Silicic Ash Flow Sheets by Olivier Bachmann and George W. Bergantz, p. 651 - 674
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...