ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Monograph available for loan
    Monograph available for loan
    Chantilly, Va. : Mineralogical Society of America
    Associated volumes
    Call number: 11/M 07.0317
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: Fluids rich in water, carbon and sulfur species and a variety of dissolved salts are a ubiquitous transport medium for heat and matter in the Earth’s interior. Fluid transport through the upper mantle and crust controls the origin of magmatism above subduction zones and results in natural risks of explosive volcanism. Fluids passing through rocks affect the chemical and heat budget of the global oceans, and can be utilized as a source of geothermal energy on land. Fluid transport is a key to the formation and the practical utilization of natural resources, from the origin of hydrothermal mineral deposits, through the exploitation of gaseous and liquid hydrocarbons as sources of energy and essential raw materials, to the subsurface storage of waste materials such as CO2. Different sources of fluids and variable paths of recycling volatile components from the hydrosphere and atmosphere through the solid interior of the Earth lead to a broad range of fluid compositions, from aqueous liquids and gases through water-rich silicate or salt melts to carbon-rich endmember compositions. Different rock regimes in the crust and mantle generate characteristic ranges of fluid composition, which depending on pressure, temperature and composition are miscible to greatly variable degrees. For example, aqueous liquids and vapors are increasingly miscible at elevated pressure and temperature. The degree of this miscibility is, however, greatly influenced by the presence of additional carbonic or salt components. A wide range of fluid–fluid interactions results from this partial miscibility of crustal fluids. Vastly different chemical and physical properties of variably miscible fluids, combined with fluid flow from one pressure – temperature regime to another, therefore have major consequences for the chemical and physical evolution of the crust and mantle. Several recent textbooks and review articles have addressed the role and diverse aspects of fluids in crustal processes. However, immiscibility of fluids and the associated phenomena of m ultiphase fluid flow are generally dealt with only in subsections with respect to specific environments and aspects of fluid mediated processes. This volume of Reviews in Mineralogy and Geochemistry attempts to fill this gap and to explicitly focus on the role that co-existing fluids play in the diverse geologic environments. It brings together the previously somewhat detached literature on fluid–fluid interactions in continental, volcanic, submarine and subduction zone environments. It emphasizes that fluid mixing and unmixing are widespread processes that may occur in all geologic environments of the entire crust and upper mantle. Despite different P-T conditions, the fundamental processes are analogous in the different settings.
    Type of Medium: Monograph available for loan
    Pages: xii, 430 S.
    ISBN: 0-939950-77-4 , 978-0-939950-77-5
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 65
    Classification:
    Mineralogy
    Note: Chapter 1. Fluid–Fluid Interactions in the Earth’s Lithosphere by Axel Liebscher and Christoph A. Heinrich, p. 1 - 14 Chapter 2. Experimental Studies in Model Fluid Systems by Axel Liebscher, p. 15 - 48 Chapter 3. Equations of State for Complex Fluids by Matthias Gottschalk, p. 49 - 98 Chapter 4. Liquid Immiscibility in Silicate Melts and Related Systems by Alan B. Thompson, Maarten Aerts, and Alistair C. Hack, p. 99 - 128 Chapter 5. Phase Relations Involving Hydrous Silicate Melts, Aqueous Fluids, and Minerals by Alistair C. Hack, Alan B. Thompson, and Maarten Aerts, p. 129 - 186 Chapter 6. Numerical Simulation of Multiphase Fluid Flow in Hydrothermal Systems by Thomas Driesner and Sebastian Geiger, p. 187 - 212 Chapter 7. Fluid Phase Separation Processes in Submarine Hydrothermal Systems by Dionysis I. Foustoukos and William E. Seyfried, Jr., p. 213 - 240 Chapter 8. Fluids in Hydrocarbon Basins by Karen S. Pedersen and Peter L. Christensen, p. 241 - 258 Chapter 9. Fluid-Fluid Interactions in Geothermal Systems by Stefan Arnorsson and Andri Stefansson, Jon Orn Bjarnason, p. 259 - 312 Chapter 10. Fluid Immiscibility in Volcanic Environment by James D. Webster and Charles W. Mandeville, p. 313 - 362 Chapter 11. Fluid-Fluid Interactions in Magmatic-Hydrothermal Ore Formation by Christoph A. Heinrich, p. 363 - 388 Chapter 12. Fluid Immiscibility in Metamorphic Rocks by Wilhelm Heinrich, p. 389 - 430
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: MR 90.0272
    Type of Medium: Monograph available for loan
    Pages: 214 S.
    Language: German
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Unknown
    Chantilly, Va. : Mineralogical Society of America
    Description / Table of Contents: Fluids rich in water, carbon and sulfur species and a variety of dissolved salts are a ubiquitous transport medium for heat and matter in the Earth’s interior. Fluid transport through the upper mantle and crust controls the origin of magmatism above subduction zones and results in natural risks of explosive volcanism. Fluids passing through rocks affect the chemical and heat budget of the global oceans, and can be utilized as a source of geothermal energy on land. Fluid transport is a key to the formation and the practical utilization of natural resources, from the origin of hydrothermal mineral deposits, through the exploitation of gaseous and liquid hydrocarbons as sources of energy and essential raw materials, to the subsurface storage of waste materials such as CO2. Different sources of fluids and variable paths of recycling volatile components from the hydrosphere and atmosphere through the solid interior of the Earth lead to a broad range of fluid compositions, from aqueous liquids and gases through water-rich silicate or salt melts to carbon-rich endmember compositions. Different rock regimes in the crust and mantle generate characteristic ranges of fluid composition, which depending on pressure, temperature and composition are miscible to greatly variable degrees. For example, aqueous liquids and vapors are increasingly miscible at elevated pressure and temperature. The degree of this miscibility is, however, greatly influenced by the presence of additional carbonic or salt components. A wide range of fluid–fluid interactions results from this partial miscibility of crustal fluids. Vastly different chemical and physical properties of variably miscible fluids, combined with fluid flow from one pressure – temperature regime to another, therefore have major consequences for the chemical and physical evolution of the crust and mantle. Several recent textbooks and review articles have addressed the role and diverse aspects of fluids in crustal processes. However, immiscibility of fluids and the associated phenomena of m ultiphase fluid flow are generally dealt with only in subsections with respect to specific environments and aspects of fluid mediated processes. This volume of Reviews in Mineralogy and Geochemistry attempts to fill this gap and to explicitly focus on the role that co-existing fluids play in the diverse geologic environments. It brings together the previously somewhat detached literature on fluid–fluid interactions in continental, volcanic, submarine and subduction zone environments. It emphasizes that fluid mixing and unmixing are widespread processes that may occur in all geologic environments of the entire crust and upper mantle. Despite different P-T conditions, the fundamental processes are analogous in the different settings.
    Pages: Online-Ressource (XII, 430 Seiten)
    ISBN: 0939950774
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 81 (1982), S. 30-38 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract In the southern Adula nappe (Central Alps), two stages of regional metamorphism have affected mafic and pelitic rocks. Earlier eclogite facies with a regional zonation from glaucophane eclogites to kyanite-hornblende eclogites was followed by a Tertiary overprint which varied from greenschist to high-grade amphibolite facies. Despite a common metamorphic history, contrasting equilibration conditions are often recorded by high-pressure mafic eclogite and adjacent predominantly lower-pressure pelite assemblages. This pressure contrast may be explained by different overprinting rates of the two bulk compositions during unloading. The rates are controlled by a mechanism in which dehydrating metapelites provide the H2O required for simultaneous overprinting of enclosed mafic eclogites by hydration. Quantitative mass balance modelling based on corona textures is used to show that overprinting of metapelites during unloading involved dehydration reactions. The relatively rapid rate of dehydration reactions led to nearly complete reequilibration of metapelites to amphibolite facies assemblages. After the formation during high-pressure metamorphism of mafic eclogites, later lower-pressure reequilibration by hydration to amphibolites was slow, and therefore incomplete, because it depended on large scale transport of H2O from adjacent, dehydrating metapelites. The facies contrast observed between rocks of different bulk composition is thus a consequence of the general tendency of metamorphic rocks to retain the most dehydrated assemblage as the final recorded state.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2002-01-01
    Description: Single zircons from several porphyry dykes bracketing the time of formation of the Elatsite porphyry Cu-Au deposit (Bulgaria) were dated by high-precision U-Pb isotope analysis, using thermal ionization mass spectrometry (TIMS). On the basis of cross-cutting relationships, and the mineralogy and geochemistry of igneous and altered rocks, five dyke units are distinguished. The earliest porphyry dyke is associated with, and overprinted by, the main stage of ore-related veining and potassic alteration. U-Pb analyses of zircons yield a mean 206Pb/238U age of 92.1 {+/-} 0.3 Ma, interpreted to reflect the time of intrusion. Zircons of the latest ore forming dyke, crosscutting the main stage veins but still associated with minor potassic alteration and veining, give an intrusion age of 91.84 {+/-} 0.3 Ma. Thus, ore mineralization is confined by individually dated igneous events, indicating that the entire time span for the ore-forming magmatism and high temperature hydrothermal activity extended over a maximum duration of 1.1 Ma, but probably much less. Zircon analyses of a late ore dyke cutting all ore veins and hosting pyrite as the only sulphide mineral give a concordant 206Pb/238U age of 91.42 {+/-} 0.15 Ma. Based on a spatial relationships of the magnetite-bornite-chalcopyrite assemblage with coarse-grained hydrothermal biotite and K-feldspar, a Rb-Sr age of 90.55 {+/-} 0.8 Ma is calculated using the two K-rich minerals. This age is interpreted as a closing date for the Rb-Sr system at T {approx} 300 {degrees}C consistent with published K-Ar data. Therefore the entire lifespan of the magmatic-hydrothermal system is estimated to have lasted about 1.2 Ma. Soon after, the Cretaceous complex was exposed by erosion, as shown by palaeontologically dated (Turonian; 91-88.5 Ma) sandstones containing fragments of porphyry dykes. Geochemical discrimination ratios suggest a mixed mantle and crustal source of the Cretaceous magma. Isotope analyses of Sr, Nd and Hf confirm the conclusion that all porphyry rocks within and around the Elatsite deposit originate from an enriched mantle source at Cretaceous times, with crustal contamination indicated by moderately radiogenic Pb.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-10-01
    Print ISSN: 0016-7037
    Electronic ISSN: 1872-9533
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-03-01
    Description: The giant Bingham Canyon porphyry Cu-Mo-Au deposit (Utah) is associated with Eocene subvolcanic intrusions. It shows a distinct metal zonation above a barren core, with dominantly shallow Cu-Au mineralization (Cu stage) following the early quartz monzonite porphyry (QMP) intrusion, and spatially deeper Mo mineralization (Mo stage) occurring in a separate vein set exclusively after a late quartz latite porphyry (QLP) intrusion that truncates earlier Cu-Au veins. To understand this metal separation and the geochemical process of molybdenite mineralization, we investigated fluid inclusions by microthermometry, Raman spectroscopy, and laser ablation inductively couple plasma mass spectrometry (LA-ICP-MS) microanalysis in low- and high-grade quartz veins of both mineralization stages.In deep, low-grade quartz veins interpreted to represent the root zone of the Cu stage we found high concentrations of Cu, S, and Mo in the fluid inclusions, whereas in low-grade Mo-stage veins, we found lower Cu, but similar concentrations of S and Mo, compared to the inferred input fluids to the Cu stage. Sulfur and copper concentrations were similar in intermediate-density-type fluid inclusions in deep low-grade Cu-stage samples, whereas intermediate-density-type inclusions in low-grade Mo-stage veins have S contents that exceed their Cu contents. In high-grade Mo-stage vein, we found large variations of Mo concentrations in coexisting brine and vapor inclusions. Compared to the P-T conditions of the Cu precipitation stage (90–260 bars and 320°–430°C), the Mo-precipitating fluids were trapped at higher pressures and temperatures of 140 to 710 bars and 360° to 580°C. Mass-balance calculation based on the compositions of intermediate-density inclusions and brine + vapor assemblages, interpreted to be derived by phase separation during decompression of the ascending single-phase intermediate-density fluid, indicate that the mass of vapor phase exceeded that of brine by about 9:1 in both mineralization stages. Combining this mass balance with the analyzed vapor/brine partitioning data indicates that more than 70% of Mo and S (by mass) in the deposit were deposited from the vapor phase. Earlier Cu-Au deposition was similarly dominated by vapor, but recently published data about postentrapment Cu diffusion in and out of fluid inclusions cast doubt on previous quantifications, suggesting that almost none of the copper was deposited by brine.Mo is less likely to be modified by selective diffusion, and high Mo contents (max 0.0054 Mo/Na in intermediate density; 380 µg/g Mo in brine) in the hydrothermal fluids were maintained from the early Cu stage to the late Mo stage. This indicates that Mo concentration was not the decisive factor for separate precipitation of late Mo ore at Bingham Canyon. Instead, the metal separation may be explained by a reduction in redox potential and an increase in acidity in the evolving source region of the fluids, i.e., a large subvolcanic magma reservoir. This is indicated by the stoichiometry of chalcopyrite and molybdenite precipitation reactions, a tentative difference in the Fe/Mn ratio in fluids of both veining stages, incipient muscovite alteration along high-temperature molybdenite veins, and an increasing tendency for Mo to fractionate from brine to vapor. We suggest that the early Cu-stage fluids were slightly more oxidized and neutral, allowing Cu-Fe sulfides to saturate first, while molybdenite saturation was suppressed and Mo was lost from the early ore stage. By contrast during the later Mo stage, the fluids were more reduced and acidic, thereby allowing selective saturation of molybdenite as the first precipitating sulfide in the cooling and expanding two-phase fluid, consistent with textural observations. This interpretation may imply more generally that small differences in redox potential and acid/base balance of the magmatic source of porphyry-mineralizing systems may be decisive in the temporal and spatial separation of the two metals.
    Print ISSN: 0361-0128
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-01
    Description: Magmatic-hydrothermal copper ore formation involves multiple pulses of subvolcanic porphyry intrusion, vein opening, and hydrothermal ore deposition. It is driven by larger subjacent magma reservoirs, acting as the source of fluid and ore-forming components. High-precision U-Pb ages of individual zircon crystals from porphyries immediately predating and postdating Cu-Au mineralization at Bingham Canyon (Utah, United States) and Bajo de la Alumbrera (northwestern Argentina) show a significant spread of reliably concordant ages. This demonstrates zircon crystal formation over a protracted period of [~]1 m.y., which is interpreted to record the lifetime of the magma reservoir from which porphyries and ore fluids were extracted. The youngest zircons in all pre-ore and post-ore intrusions overlap within a much shorter time interval of 0.32 m.y. at Bingham Canyon and 0.090 m.y. at Alumbrera; these youngest zircons of each intrusion are interpreted to bracket the maximum duration of porphyry emplacement and ore formation to short periods, consistent with thermal constraints. This study illustrates that age brackets based on individual magmatic zircon grains are geologically more informative than the calculation of means and standard deviations based on apparently normal age distributions in zircon populations.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...