ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2017-02-06
    Description: Within the context of the predicted and observed increase in droughts and floods with climate change, large summer floods are likely to become more frequent. These extreme events can alter typical biogeochemical patterns in coastal systems. The extreme Elbe River flood in June 2013 not only caused major damages in several European countries but also generated large-scale biogeochemical changes in the Elbe estuary and the adjacent German Bight. The high-frequency monitoring network within the Coastal Observing System for Northern and Arctic Seas (COSYNA) captured the flood influence on the German Bight. Data from a FerryBox station in the Elbe estuary (Cuxhaven) and from a FerryBox platform aboard the M/V Funny Girl ferry (traveling between Büsum and Helgoland) documented the salinity changes in the German Bight, which persisted for about 2 months after the peak discharge. The Elbe flood generated a large influx of nutrients and dissolved and particulate organic carbon on the coast. These conditions subsequently led to the onset of a phytoplankton bloom, observed by dissolved oxygen supersaturation, and higher than usual pH in surface coastal waters. The prolonged stratification also led to widespread bottom water dissolved oxygen depletion, unusual for the southeastern German Bight in the summer.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-09
    Description: Within the context of predicted and observed increase in droughts and floods with climate change, large summer floods are likely to become more frequent. These extreme events can alter typical biogeochemical patterns in coastal systems. The extreme Elbe River flood in June, 2013 not only caused major damages in several European countries, but also generated large scale biogeochemical changes in the Elbe Estuary and the adjacent German Bight. Due to a number of well documented and unusual atmospheric conditions, the early summer of 2013 in Central and Eastern Europe was colder and wetter than usual, with saturated soils, and higher than average cumulative precipitation. Additional precipitation at the end of May, and beginning of June, 2013, caused widespread floods within the Danube and Elbe Rivers, as well as billions of euros in damages. The floods generated the largest summer discharge on record within the last 140 years. The high-frequency monitoring network in the German Bight available within the Coastal Observing System for Northern and Arctic Seas (COSYNA) captured the flood influence on the German Bight. Monitoring data from a FerryBox station in the Elbe Estuary (Cuxhaven) and from a FerryBox platform aboard the M/V Funny Girl Ferry (traveling between Büsum and Helgoland) documented the salinity changes on the German Bight, which persisted for about 2 months after the peak discharge. The flood generated a large influx of nutrients, dissolved and particulate organic carbon on the coast. These conditions subsequently led to the onset of a chlorophyll bloom within the German Bight, observed by dissolved oxygen supersaturation, and higher than usual pH in surface coastal waters. The prolonged stratification also led to widespread bottom water dissolved oxygen depletion, unusual for the south eastern German Bight in the summer.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-03-14
    Description: Autoclaved natural seawater collected in the North Pacific Ocean was used as a reference material for nutrients in seawater (RMNS) during an inter-laboratory comparison (I/C) study conducted in 2008. This study was a follow-up to previous studies conducted in 2003 and 2006. A set of six samples was distributed to each of 58 laboratories in 15 countries around the globe, and results were returned by 54 of those laboratories (15 countries). The homogeneities of samples used in the 2008 I/C study, based on analyses for three determinants, were improved compared to those of samples used in the 2003 and 2006 I/C studies. Results of these I/C studies indicate that most of the participating laboratories have an analytical technique for nutrients that is sufficient to provide data of high comparability. The differences between reported concentrations from the same laboratories in the 2006 and 2008 I/C studies for the same batch of RMNS indicate that most of the laboratories have been maintaining internal comparability for two years. Thus, with the current high level of performance in the participating laboratories, the use of a common reference material and the adaptation of an internationally accepted nutrient scale system would increase comparability among laboratories worldwide, and the use of a certified reference material would establish traceability. In the 2008 I/C study we observed a problem of non-linearity of the instruments of the participating laboratories similar to that observed among the laboratories in the 2006 I/C study. This problem of non-linearity should be investigated and discussed to improve comparability for the full range of nutrient concentrations. For silicate comparability in particular, we see relatively larger consensus standard deviations than those for nitrate and phosphate.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Biogeosciences, COPERNICUS GESELLSCHAFT MBH, 14(3), pp. 541-557, ISSN: 1726-4170
    Publication Date: 2017-06-06
    Description: Within the context of predicted and observed increase in droughts and floods with climate change, large summer floods are likely to become more frequent. These extreme events can alter typical biogeochemical patterns in coastal systems. The extreme Elbe River flood in June, 2013 not only caused major damages in several European countries, but also generated large scale biogeochemical changes in the Elbe Estuary and the adjacent German Bight. Due to a number of well documented and unusual atmospheric conditions, the early summer of 2013 in Central and Eastern Europe was colder and wetter than usual, with saturated soils, and higher than average cumulative precipitation. Additional precipitation at the end of May, and beginning of June, 2013, caused widespread floods within the Danube and Elbe Rivers, as well as billions of euros in damages. The floods generated the largest summer discharge on record within the last 140 years. The high-frequency monitoring network in the German Bight available within the Coastal Observing System for Northern and Arctic Seas (COSYNA) captured the flood influence on the German Bight. Monitoring data from a FerryBox station in the Elbe Estuary (Cuxhaven) and from a FerryBox platform aboard the M/V Funny Girl Ferry (traveling between Büsum and Helgoland) documented the salinity changes on the German Bight, which persisted for about 2 months after the peak discharge. The flood generated a large influx of nutrients, dissolved and particulate organic carbon on the coast. These conditions subsequently led to the onset of a chlorophyll bloom within the German Bight, observed by dissolved oxygen supersaturation, and higher than usual pH in surface coastal waters. The prolonged stratification also led to widespread bottom water dissolved oxygen depletion, unusual for the south eastern German Bight in the summer.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...