ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (4)
Collection
Years
  • 1
    Publication Date: 2008-11-06
    Description: Temporal dynamics and vertical patterns in bacterial abundances and activities were studied in a shallow subtidal sand flat in the Sylt-Rømø Basin (North Frisian Wadden Sea, Germany.) Extracellular enzymatic activities, bacterial carbon production and community respiration showed strong (factor of 4–5) temporal variations that were mostly related to seasonal temperature change, but also to changes in substrate availability. These temporal patterns in activity were barely reflected in bacterial (200–400 mmol C m−2) and microphytobenthic biomass (800–1500 mmol C m−2) or the sedimentary carbohydrate inventory (1300–2900 mmol C m−2), suggesting that grazing controls the standing stocks of the microphytobenthic and bacterial assemblages. Despite their exposure to strong hydrodynamic forces such as tidal currents and wind-induced wave surge, the subtidal sandy sediments showed persistent vertical gradients in bacterial abundances, bacterial carbon production and extracellular enzymatic activities at all times. The vertical distribution of these parameters was tightly coupled to that of the microphytobenthos, dominated by diatoms. Despite the low organic carbon content typical for surge-exposed sandy sediments, high extracellular enzymatic activities and bacterial carbon production rates indicate a very active heterotrophic bacterial community, with a gross secondary productivity of 30–180 mmol C m−2, and a biomass turnover time of 2–18 days. Our data suggest that this high activity is supported by the rapid flux of carbohydrates from microphytobenthic primary productivity. Accordingly, the potential activities of enzymes hydrolyzing carbohydrates cover most of the total bacterial carbon demand during all seasons.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-07-10
    Description: Temporal dynamics and vertical patterns in bacterial abundances and activities were studied in a shallow subtidal sand flat in the Sylt-Rømø Basin (North Frisian Wadden Sea, Germany). Extracellular enzymatic activities, bacterial carbon production and community respiration showed strong (factor of 4–5) temporal variations that were mostly related to seasonal temperature change and to changes in substrate availability. These temporal patterns in enzymatic activity were barely reflected in bacterial (200–400 mmol C m−2) and microphytobenthic biomass (800–1500 mmol C m−2) or the sedimentary carbohydrate inventory (1300–2900 mmol C m−2), suggesting that grazing controls the standing stocks of the microphytobenthic and bacterial assemblages. Despite their exposure to strong hydrodynamic forces such as tidal currents and wind-induced wave surge, the subtidal sandy sediments showed persistent vertical gradients in bacterial abundances, carbon production and extracellular enzymatic activities at all times. The vertical distribution of these parameters was tightly coupled to that of the microphytobenthos, dominated by diatoms. Despite the low organic carbon content typical for surge-exposed sandy sediments, high extracellular enzymatic activities and bacterial carbon production rates indicate a very active heterotrophic bacterial community, with a gross secondary productivity of 30–180 mmol C m−2, and a biomass turnover time of 2–18 days. Our data suggest that this high activity is supported by the rapid flux of carbohydrates from microphytobenthic primary productivity. Accordingly, the potential activities of enzymes hydrolyzing carbohydrates cover most of the total bacterial carbon demand during all seasons.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-03-15
    Description: Marine snow aggregates are heavily colonized by heterotrophic microorganisms that express high levels of hydrolytic activities, making aggregates hotspots for carbon remineralization in the ocean. To assess how aggregate formation influences the ability of seawater microbial communities to access organic carbon, we compared hydrolysis rates of six polysaccharides in coastal seawater after aggregates had been formed (via incubation on a roller table) with hydrolysis rates in seawater from the same site that had not incubated on a roller table (referred to as whole seawater). Hydrolysis rates in the aggregates themselves were up to three orders of magnitude higher on a volume basis than in whole seawater. The enhancement of enzyme activity in aggregates relative to whole seawater differed by substrate, suggesting that the enhancement was under cellular control, rather than due to factors such as lysis or grazing. A comparison of hydrolysis rates in whole seawater with those in aggregate-free seawater, i.e. the fraction of water from the roller bottles that did not contain aggregates, demonstrated a nuanced microbial response to aggregate formation. Activities of laminarinase and xylanase enzymes in aggregate-free seawater were higher than in whole seawater, while activities of chondroitin, fucoidan, and arabinogalactan hydrolyzing enzymes were lower than in whole seawater. These data suggest that aggregate formation enhanced production of laminarinase and xylanase enzymes, and the enhancement also affected the surrounding seawater. Decreased activities of chondroitin, fucoidan, and arabinoglactan-hydrolyzing enzymes in aggregate-free seawaters relative to whole seawater are likely due to shifts in enzyme production by the aggregate-associated community, coupled with the effects of enzyme degradation. Enhanced activities of laminarin- and xylan-hydrolyzing enzymes in aggregate-free seawater were due at least in part to cell-free enzymes. Measurements of enzyme lifetime using commercial enzymes suggest that hydrolytic cell-free enzymes may be active over timescales of days to weeks. Considering water residence times of up to 10 days in the investigation area (Apalachicola Bay), enzymes released from aggregates may be active over timescales long enough to affect carbon cycling in the Bay as well as in the adjacent Gulf of Mexico. Aggregate formation may thus be an important mechanism shaping the spectrum of enzymes active in the ocean, stimulating production of cell-free enzymes and leading to spatial and temporal decoupling of enzyme activity from the microorganisms that produced them.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-12-01
    Description: Marine snow aggregates are heavily colonized by heterotrophic microorganisms that express high levels of hydrolytic activities, making aggregates hotspots for carbon remineralization in the ocean. To assess how aggregate formation influences the ability of seawater microbial communities to access organic carbon, we compared hydrolysis rates of six polysaccharides in coastal seawater after aggregates had been formed (via incubation on a roller table) with hydrolysis rates in seawater from the same site that had not incubated on a roller table (referred to as whole seawater). Hydrolysis rates in the aggregates themselves were up to three orders of magnitude higher on a volume basis than in whole seawater. The enhancement of enzyme activity in aggregates relative to whole seawater differed by substrate, suggesting that the enhancement was under cellular control, rather than due to factors such as lysis or grazing. A comparison of hydrolysis rates in whole seawater with those in aggregate-free seawater, i.e. the fraction of water from the roller bottles that did not contain aggregates, demonstrated a nuanced microbial response to aggregate formation. Activities of laminarinase and xylanase enzymes in aggregate-free seawater were higher than in whole seawater, while activities of chondroitin, fucoidan, and arabinogalactan hydrolyzing enzymes were lower than in whole seawater. These data suggest that aggregate formation enhanced production of laminarinase and xylanase enzymes, and the enhancement also affected the surrounding seawater. Decreased activities of chondroitin, fucoidan, and arabinoglactan-hydrolyzing enzymes in aggregate-free seawater relative to whole seawater are likely due to shifts in enzyme production by the aggregate-associated community, coupled with the effects of enzyme degradation. Enhanced activities of laminarin- and xylan-hydrolyzing enzymes in aggregate-free seawater were due at least in part to cell-free enzymes. Measurements of enzyme lifetime using commercial enzymes suggest that hydrolytic lifetimes of cell-free enzymes may be sufficiently long to affect carbon remineralization in areas far from their site of production. Aggregate formation may be an important mechanism shaping the spectrum of enzymes active in the ocean, stimulating production of cell-free enzymes and leading to spatial and temporal decoupling of enzyme activity from the microorganisms that produced them.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...