ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: An innovative inlet total-pressure distortion measurement rake has been designed and developed for the F/A-18 A/B/C/D aircraft inlet. The design was conceived by NASA and General Electric Aircraft Engines (Evendale, Ohio). This rake has been flight qualified and flown in the F-18 High Alpha Research Vehicle (HARV) at NASA Dryden Flight Research Center. The rake's eight-legged, one-piece wagon wheel design was developed at a reduced cost and offers reduced installation time compared with traditional designs. The rake features 40 dual measurement ports for both low- and high-frequency pressure measurements with the high-frequency transducer mounted at the port. The high-frequency transducer offers direct absolute pressure measurements from low frequency to the highest frequency of interest, thereby allowing the rake to be used during highly dynamic aircraft maneuvers. Outstanding structural characteristics are inherent to the design through its construction and use of lightweight materials.
    Keywords: AERODYNAMICS
    Type: Fourth High Alpha Conference, Volume 2 17 p(SEE N95-14239 03-02); Fourth High Alpha Co
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: A ground test was performed to determine the effects of compressor bleed flow extraction on the performance of F404-GE-400 afterburning turbofan engines. The two engines were installed in the F/A-18 High Alpha Research Vehicle at the NASA Dryden Flight Research Facility. A specialized bleed ducting system was installed onto the aircraft to control and measure engine bleed airflow while the aircraft was tied down to a thrust measuring stand. The test was conducted on each engine and at various power settings. The bleed air extraction levels analyzed included flow rates above the manufacturer's maximum specification limit. The measured relationship between thrust and bleed flow extraction was shown to be essentially linear at all power settings with an increase in bleed flow causing a corresponding decrease in thrust. A comparison with the F404-GE-400 steady-state engine simulation showed the estimation to be within +/- 1 percent of measured thrust losses for large increases is bleed flow rate.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: AIAA PAPER 92-3092
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: An innovative inlet total pressure distortion measurement rake has been designed and developed for the F/A-18 A/B/C/D aircraft inlet. The design was conceived by NASA and General Electric Aircraft Engines personnel. This rake has been flight qualified and flown in the F/A-18 High Alpha Research Vehicle at NASA Dryden Flight Research Center, Edwards, California. The eight-legged, one-piece, wagon wheel design of the rake was developed at a reduced cost and offered reduced installation time compared to traditional designs. The rake features 40 dual-measurement ports for low- and high-frequency pressure measurements with the high-frequency transducer mounted at the port. This high-frequency transducer offers direct absolute pressure measurements from low to high frequencies of interest, thereby allowing the rake to be used during highly dynamic aircraft maneuvers. Outstanding structural characteristics are inherent to the design through its construction and use of lightweight materials.
    Keywords: AERODYNAMICS
    Type: NASA-TM-4722 , NAS 1.15:4722 , H-2078 , AIAA PAPER 94-2132 , NIPS-95-05907 , Biennial AIAA Flight Test Conference; Jun 20, 1994 - Jun 23, 1994; Colorado Springs, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The performance and distortion levels of the right inlet of the F/A-18A High Alpha Research Vehicle were assessed during maneuvers with rapidly changing angle-of-attack at the NASA Dryden Flight Research Center, Edwards, California. The distortion levels were compared with those produced by current inlet-engine compatibility evaluation techniques. The objective of these analyses was to determine whether the results obtained for steady aerodynamic conditions were adequate to describe the inlet-generated distortion levels that occur during rapid aircraft maneuvers. The test data were obtained during 46 dynamic maneuvers at Mach numbers of 0.3 and 0.4. Levels of inlet recovery, peak dynamic circumferential distortion, and peak dynamic radial distortion of dynamic maneuvers for a General Electric F404-GE-400 turbofan engine were compared with estimations based on steady aerodynamic conditions. The comparisons were performed at equivalent angle-of-attack, angle-of-sideslip, and Mach number. Results showed no evidence of peak inlet distortion levels being elevated by dynamic maneuver conditions at high angle-of-attack compared with steady aerodynamic estimations. During sweeps into high angle-of-attack, the peak distortion levels of the dynamic maneuvers rarely rose to steady aerodynamic estimations. The dynamic maneuvers were shown to be effective at identifying conditions when discrete changes in inlet behavior occur.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-TM-104327 , NAS 1.15:104327 , H-2146 , High Angle-of-Attack Technology; Sep 17, 1996 - Sep 19, 1996; Hampton, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: A ground test was performed to determine the effects of compressor bleed flow extraction on the performance of F404-GE-400 afterburning turbofan engines. The two engines were installed in the F/A-18 High Alpha Research Vehicle at the NASA Dryden Flight Research Facility. A specialized bleed ducting system was installed onto the aircraft to control and measure engine bleed airflow while the aircraft was tied down to a thrust measuring stand. The test was conducted on each engine and at various power settings. The bleed air extraction levels analyzed included flow rates above the manufacturer's maximum specification limit. The measured relationship between thrust and bleed flow extraction was shown to be essentially linear at all power settings with an increase in bleed flow causing a corresponding decrease in thrust. A comparison with the F404-GE-400 steady-state engine simulation showed the estimation to be within +/- 1 percent of measured thrust losses for large increases in bleed flow rate.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA-TM-104247 , H-1806 , NAS 1.15:104247 , AIAA PAPER 92-3092 , AIAA Joint Propulsion Conference; Jul 06, 1992 - Jul 08, 1992; Nashville, TN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Innovative rake of pressure transducers for measuring distortion of total pressure at inlet of jet engine developed. Rake features one-piece wagon-wheel design, reducing cost and installation time relative to traditional designs. Design adaptable to inlets of other aircraft. Rake scaled to smaller and larger inlets with minimal qualification requirements.
    Keywords: MACHINERY
    Type: DRC-95-07 , NASA Tech Briefs (ISSN 0145-319X); 20; 4; P. 66
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The effects of high-angle-of-attack flight on aircraft inlet aerodynamic characteristics were investigated at NASA Dryden Flight Research Center, Edwards, California, as part of NASA's High Alpha Technology Program. The highly instrumented F/A-18A High Alpha Research Vehicle was used for this research. A newly designed inlet total-pressure rake was installed in front of the starboard F404-GE-400 engine to measure inlet recovery and distortion characteristics. One objective was to determine inlet total-pressure characteristics at steady high-angle-of-attack conditions. Other objectives include assessing whether significant differences exist in inlet distortion between rapid angle-of-attack maneuvers and corresponding steady aerodynamic conditions, assessing inlet characteristics during aircraft departures, providing data for developing and verifying computational fluid dynamic codes, and calculating engine airflow using five methods. This paper addresses the first objective by summarizing results of 79 flight maneuvers at steady aerodynamic conditions, ranging from -10 deg to 60 deg angle of attack and from -8 deg to 11 deg angle of sideslip at Mach 0.3 and 0.4. These data and the associated database have been rigorously validated to establish a foundation for understanding inlet characteristics at high angle of attack.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-TM-104329 , NAS 1.15:104329 , H-2173 , High-Angle-of-Attack Technology; Sep 17, 1996 - Sep 19, 1996; Hampton, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The F404-GE-400-powered F/A-18A High Alpha Research Vehicle (HARV) was used to examine the quality of inlet airflow during departed flight maneuvers, that is, during flight outside the normal maneuvering envelope where control surfaces have little or no effectiveness. Six nose-left and six nose-right departures were initiated at Mach numbers between 0.3 and 0.4 at an altitude of 35 kft. The entry yaw rates were approximately 40 to 90 deg/sec. Engine surges were encountered during three of the nose-left and one of the nose-right departures. Time-variant inlet-total-pressure distortion levels at the engine face did not significantly exceed those at maximum angle-of-attack and sideslip maneuvers during controlled flight. Surges caused by inlet distortion levels resulted from a combination of high levels of inlet distortion and rapid changes in aircraft position. These rapid changes indicate a combination of engine support and gyroscopic loads being applied to the engine structure that impact the aerodynamic stability of the compressor through changes in the rotor-to-case clearances. This document presents the slides from an oral presentation.
    Keywords: Aircraft Propulsion and Power
    Type: NASA-TM-104328 , NAS 1.15:104328 , H-2162 , High-Angle-of-Attack Technology; Sep 17, 1996 - Sep 19, 1996; Hampton, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...