ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre Suchhistorie ist leer.
feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science, Ltd
    Global change biology 4 (1998), S. 0 
    ISSN: 1365-2486
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie , Energietechnik , Geographie
    Notizen: Mainly based on a simulation model, Lloyd & Farquhar (1996; Functional Ecology, 10, 4–32) predict that inherently slow-growing species and nutrient-stressed plants show a relatively strong growth response to an increased atmospheric CO2 concentration. Compiling published experiments, I conclude that these predictions are not supported by the available data. On average, inherently fast-growing species are stimulated proportionately more in biomass than slow-growing species and plants grown at a high nutrient supply respond more strongly than nutrient-stressed plants.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 67 (1986), S. 0 
    ISSN: 1399-3054
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: The hypothesis was tested that a physiologically highly plastic genotype is better adapted to a fluctuating environment than a marginally plastic genotype. For that purpose, two inbred lines of Plantago major L., which differ in their degree of physiological plasticity, were grown in tubes with quartz sand, either singly or in combination. Four treatments were applied with a different frequency of fluctuations in nutrient level. When grown singly, the relative growth rate of both genotypes reacted in the same way to the different treatments. The genotypes showed similar reactions when grown in monoculture with two plants per tube. In mixed culture (also two plants per tube) the response was different. With increasing frequency of fluctuations in nutrient level, the inbred line with the high plasticity grew faster at the expense of the marginally plastic line, whose growth was reduced.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 67 (1986), S. 0 
    ISSN: 1399-3054
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: A method is discussed to test differences in relative growth rates. This method is based on an analysis of variance, with In-transformed plant weight as dependent variable. A significant Group × Time interaction indicates differences in relative growth rates between groups. The advantages over the “classical” and “functional” growth analyses are: (1) No pairing procedure is required. (2) More than two groups may be evaluated in one analysis. (3) No decision is required about the polynomial used to fit the data. (4) By partitioning the interaction effect using orthogonal polynomials insight is gained into the nature of differences in relative growth rate. (5) By concentrating attention on the lower order terms of the polynomials, the influence of extraneous variation on conclusions may be minimized.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 61 (1984), S. 0 
    ISSN: 1399-3054
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: The influence of shoot transpiration on the rates of growth and nitrogen fixation was investigated in Pisum sativum L. cv. Rondo. In short term experiments, rates of transpiration and acetylene reduction of intact plants were measured simultaneously, using air-tight perspex vessels enclosing the basal part of the nodulated root. In long term experiments, accumulation of dry matter and reduced nitrogen in the plant were determined as well. Transpiration rate changed diurnally and was varied by manipulating the vapour saturation deficit or the flow rate of the air in the growth cabinet. The rate of acetylene reduction declined after subjecting intact plants to high transpiration rates. This decline was accompanied by a desiccation of the root nodules. Dry matter and reduced nitrogen accumulation were not affected by transpiration rate. At low transpiration rate reduced nitrogen content of the root nodules was higher than at high transpiration rate. However, in these nodules the rate of acetylene reduction was not significantly affected. It is concluded that the nitrogenase activity of pea root nodules is insensitive to changes in the flow rate and the organic N concentration of the xylem sap within a wide range of transpiration conditions under the applied growth conditions.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    Copenhagen : Munksgaard International Publishers
    Physiologia plantarum 103 (1998), S. 0 
    ISSN: 1399-3054
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: To assess the interactions between concentration of atmospheric CO2 and N supply, the response of Plantago major ssp. pleiosperma Pilger to a doubling of the ambient CO2 concentration of 350 µl l−1 was investigated in a range of exponential rates of N addition. The relative growth rate (RGR) as a function of the internal plant nitrogen concentration (Ni), was increased by elevated CO2 at optimal and intermediate Ni. The rate of photosynthesis, expressed per unit leaf area and plotted versus Ni. was increased by 20-30% at elevated CO2 for Ni above 30 mg N g−1 dry weight. However, the rate of photosynthesis, expressed on a leaf dry matter basis and plotted versus Ni, was not affected by the CO2 concentration. The allocation of dry matter between shoot and root was not affected by the CO2 concentration at any of the N addition rates. This is in good agreement with theoretical models. based on a balance between the rate of photosynthesis of the shoot and the acquisition of N by the roots. The concentration of total nonstructural carbohydrates (TNC) was increased at elevated CO2 and at N limitation, resulting in a shift in the partitioning of photosynthates from structural to nonstructural and, in terms of carbon balance, unproductive dry matter. The increase in concentration of TNC led to a decrease in both specific leaf area (SLA) and Ni at all levels of nutrient supply, and was the cause of the increased rate of photosynthesis per unit leaf area. Correction of the relationship between RGR and Ni for the accumulation of TNC made the effect of elevated CO2 on the relationship between RGR and Ni disappear. We conclude that the shift in the relationship between RGR and Ni was due to the accumulation of TNC and not due to differences in physiological variables such as photosynthesis and shoot and root respiration, changes in leaf morphology or allocation of dry matter.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 83 (1991), S. 0 
    ISSN: 1399-3054
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: The rates of growth, net rate of nitrate uptake and root respiration of 24 wild species were compared under conditions of optimum nutrient supply. The relative growth rate (RGR)of the roots of these species varied between 110 and 370 mg g-1 day-1 and the net rate of nitrate uptake between 1 and 7 mmol (g root dry weight)-1 day-1. The rate of root respiration was positively correlated with the RGR of the roots. Root respiration was also calculated from the measured rate of growth and nitrate uptake, using previously determined values for the costs of maintenance, growth and ion uptake of two slow-growing species. The calculated rate of respiration was slightly lower than the measured one for slow-growing species, but twice as high as measured rates for rapid-growing species. This discrepancy was not due to a relatively smaller electron flow through the alternative pathway and, consequently, a more efficient ATP production in the fast-growing species. Neither could variation in specific costs for root growth or maintenance explain these differences. Therefore, we conclude that fast-growing species have lower specific respiratory costs for ion uptake than slow-growing ones. Due partly to these lower specific costs of nutrient uptake, the fraction of respiration that rapid-growing species spend on anion uptake is lower than that of slow-growing species, in spite of the much higher rate of ion uptake of the fast-growing ones.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 75 (1989), S. 0 
    ISSN: 1399-3054
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: A method of calculating relative growth rates (RGR) and net assimilation rates is presented. The method is based on the fitting of a polynomial through the relative growth rate values calculated by the ‘classical’ approach rather than through the In-transformed plant weights as in the ‘functional’ method. Additional ways of reducing the harvest-to-harvest variation characteristic of the classical approach are discussed. The main advantages of the present approach over the functional one are: (1) The degree of the polynomial can be increased (within certain limits) without inducing spurious fluctuations in RGR. Thus, quite complex trends in RGR can be described. (2) There is little interference between RGR values in different parts of the experiment. The main advantages over the classical approach are: (1) The erratic fluctuations in RGR are dampened. (2) As frequent small harvests are allowed, the workload at each harvest can be diminished and a more reliable impression of ontogenetic drift in RGR can be obtained. (3) RGR is described by a continuous function, thus facilitating further calculations and compilations.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 73 (1988), S. 0 
    ISSN: 1399-3054
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: The effect of an elevated atmospheric CO2 concentration on growth, photosynthesis and root respiration of Plantago major L. ssp. major L. was investigated. Plants were grown in a nutrient solution in growth chambers at 350 and 700 μl I−1 CO2 during 7 weeks. The total dry weight of the Co2-enriched plants at the end of this period was 50% higher than that of control plants. However, the relative growth rate (RGR) was stimulated only during the first half of the growing period. The transient nature of the stimulation of the RGR was not likely to be due to end-product inhibition of photosynthesis. It is suggested that in P. major, a rosette plant, self-shading causes a decline in photosynthesis and results in an increase in the shoot: root ratio and a decrease in RGR. CO2-enriched plants grow faster and cosequently suffer more from self-shading. Corrected for this ontogenetic drift, high CO2 concentrations stimulated the RGR of P. major throughout the entire experiment.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Digitale Medien
    Digitale Medien
    Springer
    Oecologia 116 (1998), S. 26-37 
    ISSN: 1432-1939
    Schlagwort(e): Key words Interspecific variation ; Nitrogen ; Photosynthesis ; Photosynthetic nitrogen use efficiency ; Specific leaf area
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract Factors that contribute to interspecific variation in photosynthetic nitrogen-use efficiency (PNUE, the ratio of CO2 assimilation rate to leaf organic nitrogen content) were investigated, comparing ten dicotyledonous species that differ inherently in specific leaf area (SLA, leaf area:leaf dry mass). Plants were grown hydroponically in controlled environment cabinets at two irradiances (200 and 1000 μmol m–2 s–1). CO2 and irradiance response curves of photosynthesis were measured followed by analysis of the chlorophyll, Rubisco, nitrate and total nitrogen contents of the leaves. At both irradiances, SLA ranged more than twofold across species. High-SLA species had higher in situ rates of photosynthesis per unit leaf mass, but similar rates on an area basis. The organic N content per unit leaf area was lower for the high-SLA species and consequently PNUE at ambient light conditions (PNUEamb) was higher in those plants. Differences were somewhat smaller, but still present, when PNUE was determined at saturating irradiances (PNUEmax). An assessment was made of the relative importance of the various factors that underlay interspecific variation in PNUE. For plants grown under low irradiance, PNUEamb of high-SLA species was higher primarily due to their lower N content per unit leaf area. Low-SLA species clearly had an overinvestment in photosynthetic N under these conditions. In addition, high SLA-species allocated a larger fraction of organic nitrogen to thylakoids and Rubisco, which further increased PNUEamb. High-SLA species grown under high irradiance showed higher PNUEamb mainly due to a higher Rubisco specific activity. Other factors that contributed were again their lower contents of Norg per unit leaf area and a higher fraction of photosynthetic N in electron transport and Rubisco. For PNUEmax, differences between species in organic leaf nitrogen content per se were no longer important and higher PNUEmax of the high SLA species was due to a higher fraction of N in␣photosynthetic compounds (for low-light plants) and a higher Rubisco specific activity (for high-light grown plants).
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Digitale Medien
    Digitale Medien
    Springer
    Oecologia 83 (1990), S. 553-559 
    ISSN: 1432-1939
    Schlagwort(e): Interspecific variation ; Leaf area ratio ; Net assimilation rate ; Relative growth rate ; Specific leaf area
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Summary Which factors cause fast-growing plant species to achieve a higher relative growth rate than slow-growing ones? To answer this question 24 wild species were grown from seed in a growth chamber under conditions of optimal nutrient supply and a growth analysis was carried out. Mean relative growth rate, corrected for possible ontogenetic drift, ranged from 113 to 356 mg g−1 day−1. Net assimilation rate, the increase in plant dry weight per unit leaf area and unit time, varied two-fold between species but no correlation with relative growth rate was found. The correlation between leaf area ratio, the ratio between total leaf area and total plant weight, and relative growth rate was very high. This positive correlation was mainly due to the specific leaf area, the ratio between leaf area and leaf weight, and to a lesser extent caused by the leaf weight ratio, the fraction of plant biomass allocated to the leaves. Differences in relative growth rate under conditions of optimum nutrient supply were correlated with the soil fertility in the natural habitat of these species. It is postulated that natural selection in a nutrient-rich environment has favoured species with a high specific leaf area and a high leaf weight ratio, and consequently a high leaf area ratio, whereas selection in nutrient-poor habitats has led to species with an inherently low specific leaf area and a higher fraction of root mass, and thus a low leaf area ratio.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...