ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Global Change Biology 24 (2018):1538-1547, doi:10.1111/gcb.13936.
    Description: Temperature is a crucial factor in determining the rates of ecosystem processes, e.g. leaf respiration (R) − the flux of plant respired CO2 from leaves to the atmosphere. Generally, R increases exponentially with temperature and formulations such as the Arrhenius equation are widely used in earth system models. However, experimental observations have shown a consequential and consistent departure from an exponential increase in R. What are the principles that underlie these observed patterns? Here, we demonstrate that macromolecular rate theory (MMRT), based on transition state theory for enzyme-catalyzed kinetics, provides a thermodynamic explanation for the observed departure and the convergent temperature response of R using a global database. Three meaningful parameters emerge from MMRT analysis: the temperature at which the rate of respiration would theoretically reach a maximum (the optimum temperature, Topt), the temperature at which the respiration rate is most sensitive to changes in temperature (the inflection temperature, Tinf) and the overall curvature of the log(rate) versus temperature plot (the change in heat capacity for the system, ∆Cp‡). On average the highest potential enzyme-catalyzed rates of respiratory enzymes for R is predicted to occur at 67.0±1.2 °C and the maximum temperature sensitivity at 41.4±0.7 °C from MMRT. The average curvature (average negative ∆Cp‡) was -1.2±0.1 kJ.mol-1K-1. Interestingly, Topt, Tinf and ∆Cp‡ appear insignificantly different across biomes and plant functional types (PFTs), suggesting that thermal response of respiratory enzymes in leaves could be conserved. The derived parameters from MMRT can serve as thermal traits for plant leaves that represents the collective temperature response of metabolic respiratory enzymes and could be useful to understand regulations of R under a warmer climate. MMRT extends the classic transition state theory to enzyme-catalyzed reactions and provides an accurate and mechanistic model for the short-term temperature response of R around the globe.
    Description: This research was supported by the University of Waikato.
    Description: 2018-10-14
    Keywords: MMRT ; Heat ; Capacity ; Temperature ; Response ; Thermodynamics ; Leaf ; Respiration ; Climate ; Change ; Arrhenius
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecology and Evolution 3 (2013): 1149–1162, doi:10.1002/ece3.525.
    Description: Direct and indirect effects of warming are increasingly modifying the carbon-rich vegetation and soils of the Arctic tundra, with important implications for the terrestrial carbon cycle. Understanding the biological and environmental influences on the processes that regulate foliar carbon cycling in tundra species is essential for predicting the future terrestrial carbon balance in this region. To determine the effect of climate change impacts on gas exchange in tundra, we quantified foliar photosynthesis (Anet), respiration in the dark and light (RD and RL, determined using the Kok method), photorespiration (PR), carbon gain efficiency (CGE, the ratio of photosynthetic CO2 uptake to total CO2 exchange of photosynthesis, PR, and respiration), and leaf traits of three dominant species – Betula nana, a woody shrub; Eriophorum vaginatum, a graminoid; and Rubus chamaemorus, a forb – grown under long-term warming and fertilization treatments since 1989 at Toolik Lake, Alaska. Under warming, B. nana exhibited the highest rates of Anet and strongest light inhibition of respiration, increasing CGE nearly 50% compared with leaves grown in ambient conditions, which corresponded to a 52% increase in relative abundance. Gas exchange did not shift under fertilization in B. nana despite increases in leaf N and P and near-complete dominance at the community scale, suggesting a morphological rather than physiological response. Rubus chamaemorus, exhibited minimal shifts in foliar gas exchange, and responded similarly to B. nana under treatment conditions. By contrast, E. vaginatum, did not significantly alter its gas exchange physiology under treatments and exhibited dramatic decreases in relative cover (warming: −19.7%; fertilization: −79.7%; warming with fertilization: −91.1%). Our findings suggest a foliar physiological advantage in the woody shrub B. nana that is further mediated by warming and increased soil nutrient availability, which may facilitate shrub expansion and in turn alter the terrestrial carbon cycle in future tundra environments.
    Description: This study was supported by the National Science Foundation #0732664; Australian Research Council DP0986823; and Marsden Fund of the Royal Society of New Zealand.
    Keywords: Betula nana nana ; Carbon gain efficiency ; Eriophorum vaginatum ; Kok effect ; Photosynthesis ; Respiration ; Rubus chamaemorus ; Tundra shrub encroachment
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 8 (2017): 1602, doi:10.1038/s41467-017-01774-z.
    Description: Land-atmosphere exchanges influence atmospheric CO2. Emphasis has been on describing photosynthetic CO2 uptake, but less on respiration losses. New global datasets describe upper canopy dark respiration (Rd) and temperature dependencies. This allows characterisation of baseline Rd, instantaneous temperature responses and longer-term thermal acclimation effects. Here we show the global implications of these parameterisations with a global gridded land model. This model aggregates Rd to whole-plant respiration Rp, driven with meteorological forcings spanning uncertainty across climate change models. For pre-industrial estimates, new baseline Rd increases Rp and especially in the tropics. Compared to new baseline, revised instantaneous response decreases Rp for mid-latitudes, while acclimation lowers this for the tropics with increases elsewhere. Under global warming, new Rd estimates amplify modelled respiration increases, although partially lowered by acclimation. Future measurements will refine how Rd aggregates to whole-plant respiration. Our analysis suggests Rp could be around 30% higher than existing estimates.
    Description: C.H. acknowledges the NERC CEH National Capability fund. The support of the Australian Research Council to O.K.A. and P.M. (DP130101252, CE140100008, FT0991448, FT110100457) is acknowledged, as are awards DE-FG02-07ER64456 from the US Department of Energy, Office of Science, Office of Biological and Environmental Research and DEB-1234162 from the U.S. National Science Foundation (NSF) Long-Term Ecological Research Program (to P.B.R.); and National Science Foundation International Polar Year Grant (to K.L.G.). L.M.M. acknowledges the support of the Natural Environment Research Council (NERC) South American Biomass Burning Analysis (SAMBBA) project grant code NE/J010057/1.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The effects of aluminum (Al) exposure on intact root respiration of an Al-sensitive (Scout-66) and an Al-tolerant (Atlas-66) cultivar of Triticum aestivum were investigated. Exposure to a wide range of Al concentrations (0–900 μmol) for 4 days stimulated respiration along the energy-conserving cytochrome pathway in both cultivars and increased the ratio of maintenance respiration to growth respiration. The maximum rate of Scout-66 root respiration occurred after exposure to 100–200 μmol Al. Atlas-66 root respiration peaked after exposure to 300–400 μmol Al. Similarly, calculations of theoretical adenosine 5′-triphosphate (ATP) production indicated that maximum daily rate of ATP production also increased upon exposure to Al in both cultivars, with peak ATP production occurring during peak respiration. Maximum root respiration rates in both cultivars were related to the Al concentration that inhibited root growth. Temporal exposure to 200 μmol Al quickly stopped root growth and stimulated cytochrome pathway respiration in Scout-66 after 4 days. Atlas-66 root growth and respiration were unaffected by 200 μmol Al. These results suggest that Al exposure imposes a demand for additional metabolic energy. A model describing Al effects on root respiration is presented
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 83 (1991), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The rates of growth, net rate of nitrate uptake and root respiration of 24 wild species were compared under conditions of optimum nutrient supply. The relative growth rate (RGR)of the roots of these species varied between 110 and 370 mg g-1 day-1 and the net rate of nitrate uptake between 1 and 7 mmol (g root dry weight)-1 day-1. The rate of root respiration was positively correlated with the RGR of the roots. Root respiration was also calculated from the measured rate of growth and nitrate uptake, using previously determined values for the costs of maintenance, growth and ion uptake of two slow-growing species. The calculated rate of respiration was slightly lower than the measured one for slow-growing species, but twice as high as measured rates for rapid-growing species. This discrepancy was not due to a relatively smaller electron flow through the alternative pathway and, consequently, a more efficient ATP production in the fast-growing species. Neither could variation in specific costs for root growth or maintenance explain these differences. Therefore, we conclude that fast-growing species have lower specific respiratory costs for ion uptake than slow-growing ones. Due partly to these lower specific costs of nutrient uptake, the fraction of respiration that rapid-growing species spend on anion uptake is lower than that of slow-growing species, in spite of the much higher rate of ion uptake of the fast-growing ones.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The objective of this study was to investigate the direct effect of elevated atmospheric CO2 concentrations on leaf respiration in darkness (R) over a broad range of measurement temperatures. Our aim was to further elucidate the underlying mechanism(s) of the often-reported inhibition of leaf R by a doubling of the atmospheric CO2 concentration. Experiments were conducted using two species of Plantago that differed in maximum relative growth rate (fast-growing Plantago lanceolata L. and the slow-growing P. euryphylla Briggs, Carolin & Pulley). Rates of leaf respiration (R) were measured at atmospheric CO2 concentrations ranging from 75 to 2000 µmol mol−1 at temperatures from 12 to 42°C. R was measured as CO2 release with a portable gas exchange system with infrared gas analysers. Our hypothesis was that the changes in temperature alter the flux coefficient (i.e. the extent to which changes in potential enzyme activity has an effect on the rate of a reaction) of enzymes potentially affected by CO2. Initial analysis of our results suggested that R was inhibited by elevated CO2 in both species, with the apparent degree of inhibition being greatest at low temperature. Moreover, the apparent degree of inhibition following a doubling of atmospheric CO2 concentration from 350 to 700 µmol mol−1 was similar to that reported by several previous studies (approximately 14% and 26% for P. lanceolata and P. euryphylla, respectively) at a temperature equal to the mean of the previous studies. However, subsequent correction for diffusion leaks of CO2 across the gas exchange's cuvette gaskets revealed that no significant inhibition had occurred in either species, at any temperature. The inhibitory effect of elevated CO2 on leaf respiratory CO2 release reported by previous studies may therefore have been overestimated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1939
    Keywords: Key words Alpine ; Nitrogen ; Lowland ; Photosynthesis ; Photosynthetic nitrogen use efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract This study investigates factors determining variation in photosynthetic nitrogen use efficiency (φN) in seven slow- and fast-growing Poa species from altitudinally contrasting sites. The species and their environmental origin were (in order of increasing relative growth rate): two alpine (Poa fawcettiae and P. costiniana), one sub-alpine (P. alpina) and three temperate lowland perennials (P. pratensis, P. compressa and P. trivialis), as well as one temperate lowland annual (P. annua). Plants were grown hydroponically under identical conditions with free access to nutrients in a growth room. Photosynthesis per unit leaf area measured at growth irradiance (500 μmol m−2 s−1) was slightly higher in the slow-growing alpine species. At saturating light intensities, photosynthesis was considerably higher in the alpine species than in the lowland species. Carboxylation capacity and Rubisco content per unit leaf area were also greater in the alpine species. Despite variation between the species, the in vivo specific activity of Rubisco showed little relationship to relative growth rate or photosynthetic rate. Both at light saturation and at the growth irradiance, φN was lowest in the slow-growing alpine species P. fawcettiae, P. costiniana and P. alpina, and highest in the fast-growing P. compressa and P. annua. The proportion of leaf nitrogen that was allocated to photosynthetic capacity and the in vivo catalytic constant of Rubisco accounted for most of the variation in φN at light saturation. Minor variations in intercellular CO2 partial pressure also contributed to some extent to the variations in φN at light saturation. The low φN values at growth irradiance exhibited by the alpine species were additionally due to a lower percentage utilisation of their high photosynthetic capacity compared to the lowland species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1939
    Keywords: Key wordsAcacia ; Elevated CO2 ; Growth analysis ; Relative growth rate ; Nitrogen productivity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In this study we assessed the impact of elevated CO2 with unlimited water and complete nutrient on the growth and nitrogen economy of ten woody Acacia species that differ in relative growth rate (RGR). Specifically, we asked whether fast- and slow-growing species systematically differ in their response to elevated CO2. Four slow-growing species from semi-arid environments (Acacia aneura, A. colei, A. coriacea and A. tetragonophylla) and six fast-growing species from mesic environments (Acacia dealbata, A. implexa, A. mearnsii, A. melanoxylon, A. irrorata and A. saligna) were grown in glasshouses with either ambient (˜350 ppm) or elevated (˜700 ppm) atmospheric CO2. All species reached greater final plant mass with the exception of A. aneura, and RGR, averaged across all species, increased by 10% over a 12-week period when plants were exposed to elevated CO2. The stimulation of RGR was evident throughout the 12-week growth period. Elevated CO2 resulted in less foliage area per unit foliage dry mass, which was mainly the result of an increase in foliage thickness with a smaller contribution from greater dry matter content per unit fresh mass. The net assimilation rate (NAR, increase in plant mass per unit foliage area and time) of the plants grown at elevated CO2 was higher in all species (on average 30% higher than plants in ambient CO2) and was responsible for the increase in RGR. The higher NAR was associated with a substantial increase in foliar nitrogen productivity in all ten Acacia species. Plant nitrogen concentration was unaltered by growth at elevated CO2 for the slow-growing Acacia species, but declined by 10% for faster-growing species. The rate of nitrogen uptake per unit root mass was higher in seven of the species when grown under elevated CO2, and leaf area per unit root mass was reduced by elevated CO2 in seven of the species. The absolute increase in RGR due to growth under elevated CO2 was greater for fast- than for slow-growing Acacia species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1939
    Keywords: Arctic plants ; Ammonium ; Nitrate ; Nitrate reductase ; 15N
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The ability to utilize NO inf3 sup− in seven high arctic plant species from Truelove Lowland, Devon Island, Canada was investigated, using an in vivo assay of maximum potential nitrate reductase (NR) activity and applications of 15N. Plant species were selected on the basis of being characteristic of nutrient-poor and nutrient-rich habitats. In all species leaves were the dominant site of NR activity. Root NR activity was negligible in all species except Saxifraga cernua. NO inf3 sup− availability per se did not appear to limit NR activity of the species typically found on nutrient-poor sites (Dryas integrifolia, Saxifraga oppositifolia, and Salix arctica), or in Cerastium alpinum, as leaf NR activities remained low, even after NO inf3 sup− addition. 15NO inf3 sup− uptake was limited in D. integrifolia and Salix arctica. However, the lack of field induction of NR activity in C. alpinum and Saxifraga oppositifolia was not due to restricted nitrate uptake, as 15NO inf3 sup− labelled NO inf3 sup− entered the roots and shoots of both species. Leaf NR activity rates were low in three of the species typical of nutrient-rich habitats (O. digyna, P. radicatum and Saxifraga cernua), sampled from a site containing low soil NO inf3 sup− . Additions of NO inf3 sup− significantly increased leaf NR activity in these latter species, suggesting that potential NR activity was limited by the availability of NO inf3 sup− . 15N labelled NO inf3 sup− was taken up by O. digyna. P. radicatum and Saxifraga cernua. Although two species (D. integrifolia and Salix arctica) showed little utilization of NO inf3 sup− , we concluded that five of the seven selected high arctic plant species (C. alpinum, O. digyna, P. radicatum, Saxifraga cernua and Saxifraga oppositifolia) do have the potential to utilize NO inf3 sup− as a nitrogen source under field conditions, with the highest potential to utilize NO inf3 sup− occurring in three of the species typically found on fertile habitats.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-5036
    Keywords: ammonium ; arctic plants ; nitrate reductase ; nitrogen uptake ; 15N ; root temperature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We investigated whether six arctic plant species have the potential to induce nitrate reductase (NR) activity when exposed to NO3 --nitrogen under controlled environment conditions, using an in vivo assay that uses the rate of NO2 --accumulation to estimate potential NR activity. We also assessed the effect of low root temperatures on NR activity, growth and nitrogen uptake (using 15N applications) in two of the selected species. Five of the six species (Cerastium alpinum, Dryas intergrifolia, Oxyria digyna, Saxifraga cernua and Salix arctica) were capable of inducing NR activity when exposed to solutions containing 0.5 mM NO3 - at 20°C for 10 days. Although in vivo NR activity was not induced in Saxifraga oppositifolia under controlled conditions, we conclude that it was capable of growing successfully on NO3 -, due to the presence of moderate rates of NR activity observed in both NH4 +-grown and NO3 --treated plants. Exposure of O. digyna and D. integrifolia to 3°C root temperatures for two weeks, with the shoots kept at 20°C, resulted in root and leaf NR activity rates of NO3 --treated plants being reduced to rates exhibited by NH4 +-grown plants. Although these decreases in NR in both species appeared to be due to limitations in NO3 --uptake and growth rate (rather than direct low-temperature inhibition of NR synthesis per se), direct low-temperature inhibition of root NR synthesis could not be ruled out. In contrast to the temperature insensitivity of NH4 + uptake in D. integrifolia, NO3 --uptake in D. integrifolia was inhibited by low root temperatures. We conclude that the selected arctic species have the genetic potential to utilize NO3 --nitrogen, and that low root temperatures, in conjunction with other environmental limitations, may be responsible for the lack of induction of NR in D. integrifolia and Salix arctica under field conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...