ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies-imaged in intensity and polarization at few arcminute-scale resolution-will enable precision cosmological constraints and also awide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the AdvancedACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the AdvancedACTPol cryogenic detector arrays.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN32121 , Journal of Low Temperature Physics (ISSN 0022-2291) (e-ISSN 1573-7357); 1-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: NIST produces large-format, dual-polarization-sensitive detector arrays for a broad range of frequencies (30-1400 GHz). Such arrays enable a host of astrophysical measurements. Detectors optimized for cosmic microwave background observations are monolithic, polarization-sensitive arrays based on feedhorn and planar Nb antenna-coupled transition-edge superconducting (TES) bolometers. Recent designs achieve multiband, polarimetric sensing within each spatial pixel. In this proceeding, we describe our multichroic, feedhorn-coupled design; demonstrate performance at 70-380 GHz; and comment on current developments for implementation of these detector arrays in the advanced Atacama Cosmology Telescope receiver
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN32074 , International Symposium on Space Terahertz Technology; Mar 16, 2015 - Mar 18, 2015; Cambridge, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Multichroic polarization sensitive detectors enable increased sensitivity and spectral coverage for observations of the cosmic microwave background. An array optimized for dual frequency detectors can provide 1.7 times gain in sensitivity compared to a single frequency array. We present the design and measurements of horn coupled multichroic polarimeters encompassing the 90 and 150 GHz frequency bandsand discuss our plans to field an array of these detectors as part of the ACTPol project.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN13653 , Journal of Low Temperature Physics (ISSN 0022-2291) (e-ISSN 1573-7357); 176; 6-May; 670-676
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: We performed small-scale demonstrations at GSFC of high-resolution Xray TES microcalorimeters read out using a microwave SQUID multiplexer. This work is part of our effort to develop detector and readout technologies for future space-based X-ray instruments such as the microcalorimeter spectrometer envisaged for Lynx, a large mission concept under development for the Astro 2020 Decadal Survey. In this paper we describe our experiment, including details of a recently designed, microwave-optimized low-temperature setup that is thermally anchored to the 55mKstage of our laboratory ADR. Using aROACH2 FPGA at room temperature, we read out pixels of a GSFC-built detector array via a NIST-built multiplexer chip with Nb coplanar waveguide resonators coupled to rf-SQUIDs. The resonators are spaced 6 MHz apart (at 5.9 GHz) and have quality factors of 15,000. In our initial demonstration, we used flux-ramp modulation frequencies of 125 kHz to read out 5 pixels simultaneously and achieved spectral resolutions of 2.8-3.1 eV FWHM at 5.9 keV. Our subsequent work is ongoing: to-date we have achieved a median spectral resolution of 3.4 eV FWHM at 5.9 keV while reading out 28 pixels simultaneously with flux-ramp frequencies of 160 kHz. We present the measured system-level noise and maximum slew rates and briefly describe our future development work.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN57932 , Journal of Low Temperature Physics (ISSN 0022-2291) (e-ISSN 1573-7357)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive receiver for the 6-meter Atacama Cosmology Telescope (ACT) and measures the small angular scale polarization anisotropies in the cosmic microwave background (CMB). The full focal plane is composed of three detector arrays, containing over 3000 transition edge sensors (TES detectors) in total. The first two detector arrays, observing at 146 gigahertz, were deployed in 2013 and 2014, respectively. The third and final array is composed of multichroic pixels sensitive to both 90 and 146 gigahertz and saw first light in February 2015. Fabricated at NIST, this dichroic array consists of 255 pixels, with a total of 1020 polarization sensitive bolometers and is coupled to the telescope with a monolithic array of broad-band silicon feedhorns. The detectors are read out using time-division SQUID multiplexing and cooled by a dilution refrigerator at 110 meter Kelvins. We present an overview of the assembly and characterization of this multichroic array in the lab, and the initial detector performance in Chile. The detector array has a TES detector electrical yield of 85 percent, a total array sensitivity of less than 10 microns Kelvin root mean square speed, and detector time constants and saturation powers suitable for ACT CMB observations.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN40417 , Journal of Low Temperature Physics (ISSN 0022-2291) (e-ISSN 1573-7357); 184; 4-Mar; 559-567
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: We present a new measurement of the kinematic Sunyaev-Zel'dovich effect using data from the Atacama Cosmology Telescope (ACT) and the Baryon Oscillation Spectroscopic Survey (BOSS). Using 600 square degrees of overlapping sky area, we evaluate the mean pairwise baryon momentum associated with the positions of 50,000 bright galaxies in the BOSS DR11 Large Scale Structure catalog. A non-zero signal arises from the large-scale motions of halos containing the sample galaxies. The data fits an analytical signal model well, with the optical depth to microwave photon scattering as a free parameter determining the overall signal amplitude. We estimate the covariance matrix of the mean pairwise momentum as a function of galaxy separation, using microwave sky simulations, jackknife evaluation, and bootstrap estimates. The most conservative simulation-based errors give signal-to-noise estimates between 3.6 and 4.1 for varying galaxy luminosity cuts. We discuss how the other error determinations can lead to higher signal-to-noise values, and consider the impact of several possible systematic errors. Estimates of the optical depth from the average thermal Sunyaev-Zel'dovich signal at the sample galaxy positions are broadly consistent with those obtained from the mean pairwise momentum signal.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN41417 , Journal of Cosmology and Astroparticle Physics (ISSN 1475-7508) (e-ISSN 1475-7516); 2017; 3; 008
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...