ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Springer  (626)
  • National Academy of Sciences  (91)
  • American Institute of Physics (AIP)
  • American Meteorological Society (AMS)
Sammlung
  • 1
    Publikationsdatum: 1992-01-15
    Print ISSN: 0027-8424
    Digitale ISSN: 1091-6490
    Thema: Biologie , Medizin , Allgemeine Naturwissenschaft
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 1988-03-01
    Print ISSN: 0027-8424
    Digitale ISSN: 1091-6490
    Thema: Biologie , Medizin , Allgemeine Naturwissenschaft
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 1985-12-01
    Print ISSN: 0027-8424
    Digitale ISSN: 1091-6490
    Thema: Biologie , Medizin , Allgemeine Naturwissenschaft
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
  • 5
    Digitale Medien
    Digitale Medien
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 112 (2000), S. 4910-4922 
    ISSN: 1089-7690
    Quelle: AIP Digital Archive
    Thema: Physik , Chemie und Pharmazie
    Notizen: An approximate theory of femtosecond spectroscopy of nonadiabatically coupled electronic states is developed. Neglecting the commutators of vibrational Hamiltonians pertaining to different diabatic electronic states, the formulation represents a generalization of the semiclassical Franck–Condon approximation to the case of nonadiabatic dynamics. Explicit expressions for various time- and frequency-resolved spectra are derived which allow for a simple interpretation of femtosecond spectroscopy of vibronically coupled molecular systems. Employing multidimensional model problems describing (i) the nonadiabatic cis–trans isomerization of an electronic two-state system, and (ii) the S2→S1 internal conversion of pyrazine, exact reference data are compared to approximate calculations of transient absorbance and emission as well as time-resolved photoelectron spectra. In all cases considered, the approximation is shown to be appropriate for probe–pulse durations that are shorter than the period of the fastest relevant vibrational mode of the molecular system. Reducing the numerical costs of pump–probe simulations to the costs of a standard time-dependent wave-packet propagation, the approximate theory leads to substantial computational savings. © 2000 American Institute of Physics.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 111 (1999), S. 65-76 
    ISSN: 1089-7690
    Quelle: AIP Digital Archive
    Thema: Physik , Chemie und Pharmazie
    Notizen: Necessary conditions under which a classical description will give the correct quantum relaxation behavior are analyzed. Assuming a nonequilibrium preparation, it is shown that the long-time mean values of observables can be expressed in terms of the spectral density and state-specific level densities of the system. Any approximation that reproduces these quantities therefore yields the correct expectation values at long times. Apart from this rigorous condition, a weaker but more practical criterion is established, that is, to require that the total level density is well approximated in the energy range defined by the spectral density. Since the integral level density is directly proportional to the phase-space volume that is energetically accessible to the system, the latter condition means that an appropriate classical approximation should explore the same phase-space volume as the quantum description. In general, however, this is not the case. A well-known example is the unrestricted flow of zero-point energy in classical mechanics. To correct for this flaw of classical mechanics, quantum corrections are derived which result in a restriction of the classically accessible phase space. At the simplest level of the theory, these corrections are shown to correspond to the inclusion of only a fraction of the full zero-point energy into the classical calculation. Based on these considerations, a general strategy for the classical simulation of quantum relaxation dynamics is suggested. The method is (i) dynamically consistent in that it refers to the behavior of the ensemble rather than to the behavior of individual trajectories, (ii) systematic in that it provides (rigorous as well as minimal) criteria which can be checked in a practical calculation, and (iii) practical in that it retains the conceptional and computational simplicity of a standard quasiclassical calculation. Employing various model problems which allow for an analytical evaluation of the quantities of interest, the virtues and limitations of the approach are discussed. © 1999 American Institute of Physics.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Digitale Medien
    Digitale Medien
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 79 (1996), S. 6803-6810 
    ISSN: 1089-7550
    Quelle: AIP Digital Archive
    Thema: Physik
    Notizen: The wide rocking curves of matrix reflections of the in situ eutectic composite TaSi2–Si make wafers of this material attractive for use as wide-bandpass monochromators for synchrotron radiation, and characterization of wafers of TaSi2–Si for use with energies normally accessible at storage rings (i.e., 5–40 keV) is the focus of the present report. A wafer with [111]Si orientation and a wafer with [110]Si orientation are studied. The high degree of preferred orientation of the TaSi2 rods relative to the Si matrix is examined using synchrotron Laue patterns, and the 100TaSi2, 003TaSi2, 101TaSi2, and 102TaSi2 reflections are used to establish the orientation relationship and to determine that the spread of rod orientations is at least 5° and probably no greater than 6°. Double-axis diffractometry with Cu Kα radiation reveals matrix reflections with rocking curve widths that are about 20 times broader than those from perfect Si and with peak reflectivities approaching 20%. The rocking curves widths are found to be relatively insensitive to irradiated area, thus indicating that most of the observed width is not due to long-range bending. Triple-axis diffractometry with Cu Kα radiation reveals that considerable compressive strain exists in the matrix and that much of the width of the diffraction peak is due to mosaicity. The performance of the [111]Si TaSi2–Si wafer and a perfect [111] Si wafer as monochromators for microradiography are compared, and a gain of an order of magnitude in x-ray intensity delivered to the sample is demonstrated with the composite crystal. © 1996 American Institute of Physics.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 107 (1997), S. 6230-6245 
    ISSN: 1089-7690
    Quelle: AIP Digital Archive
    Thema: Physik , Chemie und Pharmazie
    Notizen: A mixed quantum-classical description of nonadiabatic photoreactions such as internal conversion and electron transfer is outlined. In particular the validity and limitations of Tully's surface-hopping (SH) model [J. Chem. Phys. 93, 1061 (1990)] is investigated in the case of photoinduced relaxation processes which are triggered by a multidimensional conical intersection (or avoided crossing) of two potential-energy surfaces. Detailed numerical studies are presented, adopting (i) a three-mode model of the S2→S1 internal-conversion process in pyrazine, (ii) a multimode model of ultrafast intramolecular electron-transfer, (iii) a model exhibiting nonadiabatic photoisomerization dynamics, and (iv) various spin-boson-type models with an Ohmic bath for the description of electron-transfer in solution. The SH simulations are compared to exact quantum-mechanical calculations as well as to results obtained by an alternative mixed quantum-classical description, that is, the self-consistent classical-path method. In all cases, the SH data are shown to reproduce the quantum results at least qualitatively; in some cases the SH results are in quantitative agreement with the complex electronic and vibrational relaxation dynamics exhibited by the quantum calculations. Depending on the physical situation under consideration, either the SH or the self-consistent classical-path method was found to be superior. The characteristic features of a mixed quantum-classical description of photoinduced bound-state dynamics (e.g., the start of the trajectories on a diabatic electronic potential-energy surface, high chance of a trajectory undergoing multiple electronic transitions) as well as the specific problems of the SH approach are discussed in some detail. In particular, the focus is on the ability of a method to account for the branching of trajectories, to correctly describe the electronic phase coherence and the vibrational motion on coupled potential-energy surfaces, and to obey the principle of microreversibility. Furthermore, an alternative way to handle classically forbidden electronic transitions is proposed, which is shown to lead to significantly better results than the usual procedure. © 1997 American Institute of Physics.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Digitale Medien
    Digitale Medien
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 111 (1999), S. 77-88 
    ISSN: 1089-7690
    Quelle: AIP Digital Archive
    Thema: Physik , Chemie und Pharmazie
    Notizen: The unphysical flow of zero-point energy (ZPE) in classical trajectory calculations is a consequence of the fact that the classical phase-space distribution may enter regions of phase space that correspond to a violation of the uncertainty principle. To restrict the classically accessible phase space, we employ a reduced ZPE γεZP, whereby the quantum correction γ accounts for the fraction of ZPE included. This ansatz is based on the theoretical framework given in Paper I [G. Stock and U. Müller, J. Chem. Phys. 111, 65 (1999), preceding paper], which provides a general connection between the level density of a system and its relaxation behavior. In particular, the theory establishes various criteria which allows us to explicitly calculate the quantum correction γ. By construction, this strategy assures that the classical calculation attains the correct long-time values and, as a special case thereof, that the ZPE is treated properly. As a stringent test of this concept, a recently introduced classical description of nonadiabatic quantum dynamics is adopted [G. Stock and M. Thoss, Phys. Rev. Lett. 78, 578 (1997)], which facilitates a classical treatment of discrete quantum degrees of freedom through a mapping of discrete onto continuous variables. Resulting in negative population probabilities, the quasiclassical implementation of this theory significantly suffers from spurious flow of ZPE. Employing various molecular model systems including multimode models with conically intersecting potential-energy surfaces as well as several spin-boson-type models with an Ohmic bath, detailed numerical studies are presented. In particular, it is shown, that the ZPE problem indeed vanishes, if the quantum correction γ is chosen according to the criteria established in Paper I. Moreover, the complete time evolution of the classical simulations is found to be in good agreement with exact quantum-mechanical calculations. Based on these studies, the general applicability of the method, the performance of the classical description of nonadiabatic quantum dynamics, as well as various issues concerning classical and quantum ergodicity are discussed. © 1999 American Institute of Physics.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Digitale Medien
    Digitale Medien
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 108 (1998), S. 7516-7526 
    ISSN: 1089-7690
    Quelle: AIP Digital Archive
    Thema: Physik , Chemie und Pharmazie
    Notizen: A mixed quantum-classical formulation of nonadiabatic molecular processes is outlined. Based on a recently introduced mapping formalism [Stock and Thoss, Phys. Rev. Lett. 78, 578 (1997)], the formulation employs a quantum-mechanically exact mapping of discrete electronic states onto continuous variables, thus describing the dynamics of both electronic and nuclear degrees of freedom by continuous variables. It is shown that the classical evaluation of the mapping formalism results in a self-consistent description of electronic and nuclear degrees of freedom, which treats both types of dynamical variables in a completely equivalent way. The applicability of the approach is thus solely determined by the validity of the classical approximation and does not rest on additional assumptions such as the ad hoc combination of classical and quantum-mechanical theories. The observation of unrestricted flow of zero-point energy in the electronic degrees of freedom indicates the limits of the classical approximation. However, it is shown that this problem can virtually be removed by restricting the classically accessible phase-space. Adopting a multidimensional model of the internal-conversion process in the benzene cation, it is demonstrated that the classical mapping approach is able to account for the branching of classical trajectories in the presence of multiple surface crossings. The classical simulations are found to match the exact quantum-mechanical reference calculations quite accurately. The virtues and limitations of various mixed quantum-classical descriptions are discussed by comparing the mapping approach to the classical-path, the classical electron-analog, and the surface-hopping formulation, respectively. © 1998 American Institute of Physics.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...