ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Annales geophysicae 17 (1999), S. 415-429 
    ISSN: 0992-7689
    Keywords: Atmospheric composition and structure (middle atmosphere - composition and chemistry) ; Meteorology and atmospheric dynamics (middle atmosphere dynamics)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract With a detailed chemistry scheme for the middle atmosphere up to 70 km which has been added to the 3-D Karlsruhe simulation model of the middle atmosphere (KASIMA), the effects of coupling chemistry and dynamics through ozone are studied for the middle atmosphere. An uncoupled version using an ozone climatology for determining heating rates and a coupled version using on-line ozone are compared in a 10-month integration with meteorological analyses for the winter 1992/93 as the lower boundary condition. Both versions simulate the meteorological situation satisfactorily, but exhibit a too cold lower stratosphere. The on-line ozone differs from the climatological data between 20 and 40 km by exhibiting too high ozone values, whereas in the lower mesosphere the ozone values are too low. The coupled model version is stable and differs only above 40 km significantly from the uncoupled version. Direct heating effects are identified to cause most of the differences. The well-known negative correlation between temperature and ozone is reproduced in the model. As a result, the coupled version slightly approaches the climatological ozone field. Further feedback effects are studied by using the on-line ozone field as a basis for an artificial climatology. For non-disturbed ozone conditions realistic monthly and zonally averaged ozone data are sufficient to determine the heating rates for modelling the middle atmosphere.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2014-11-01
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-03-06
    Description: Satellite observations show that the enormous solar proton events (SPEs) in October–November 2003 had significant effects on the composition of the stratosphere and mesosphere in the polar regions. After the October–November 2003 SPEs and in early 2004 significant enhancements of NOx(=NO+NO2) in the upper stratosphere and lower mesosphere in the Northern Hemisphere were observed by several satellite instruments. Here we present global full chemistry calculations performed with the CLaMS model to study the impact of mesospheric NOx intrusions on Arctic polar ozone loss processes in the stratosphere. Several model simulations are preformed with different upper boundary conditions for NOx at 2000 K potential temperature (≈50 km altitude). In our study we focus on the impact of the non-local production of NOx which means the downward transport of enhanced NOx from the mesosphere in the stratosphere. The local production of NOx in the stratosphere is neglected. Our findings show that intrusions of mesospheric air into the stratosphere, transporting high burdens of NOx, affect the composition of the Arctic polar region down to about 400 K (≈17–18 km). We compare our simulated NOx and O3 mixing ratios with satellite observations by ACE-FTS and MIPAS processed at IMK/IAA and derive an upper limit for the ozone loss caused by enhanced mesospheric NOx. Our findings show that in the Arctic polar vortex (Equivalent Lat.〉70° N) the accumulated column ozone loss between 350–2000 K potential temperature (≈14–50 km altitude) caused by the SPEs in October–November 2003 in the stratosphere is up to 3.3 DU with an upper limit of 5.5 DU until end of November. Further we found that about 10 DU but lower than 18 DU accumulated ozone loss additionally occurs until end of March 2004 caused by the transport of mesospheric NOx-rich air in early 2004. In the lower stratosphere (350–700 K≈14–27 km altitude) the SPEs of October–November 2003 have negligible small impact on ozone loss processes until end of November and the mesospheric NOx intrusions in early 2004 yield ozone loss about 3.5 DU, but clearly lower than 6.5 DU until end of March. Overall, the non-local production of NOx is an additional variability to the existing variations of the ozone loss observed in the Arctic.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-08-27
    Description: The tropical transport processes of 14 different models or model versions were compared, within the framework of the SCOUT-O3 (Stratospheric-Climate Links with Emphasis on the Upper Troposphere and Lower Stratosphere) project. The tested models range from the regional to the global scale, and include numerical weather prediction (NWP), chemistry transport, and climate chemistry models. Idealised tracers were used in order to prevent the model's chemistry schemes from influencing the results substantially, so that the effects of modelled transport could be isolated. We find large differences in the vertical transport of very short lived tracers (with a lifetime of 6 hours) within the tropical troposphere. Peak convective outflow altitudes range from around 300 hPa to almost 100 hPa among the different models, and the upper tropospheric tracer mixing ratios differ by up to an order of magnitude. The timing of convective events is found to differ between the models, even among those which source their forcing data from the same NWP model (ECMWF). The differences are less pronounced for longer lived tracers, however they could have implications for the modelling of the halogen burden of the lowermost stratosphere through species such as bromoform, or for the transport of short lived hydrocarbons into the lowermost stratosphere. The modelled tracer profiles are found to be strongly influenced by the convective transport parameterisations, and boundary layer mixing parameterisations of the models. The location of rapid transport into the upper troposphere is similar among the models, and is mostly concentrated over the western Pacific, the Maritime Continent and the Indian Ocean. In contrast, none of the models indicates significant enhancement in upward transport over western Africa. The mean mixing ratios of an idealised CO like tracer in the upper tropical troposphere are found to be sensitive to the surface CO mixing ratios in the regions with the most active convection, revealing the importance of correctly modelling both the location of convective transport and the geographical pollutant emission patterns.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-02-01
    Description: During several balloon flights inside the Arctic polar vortex in early 2003, unusual trace gas distributions were observed, which indicate a strong influence of mesospheric air in the stratosphere. The tuneable diode laser (TDL) instrument SPIRALE (Spectroscopie Infra-Rouge par Absorption de Lasers Embarqués) measured unusually high CO values (up to 600 ppb) on 27 January at about 30 km altitude. The cryosampler BONBON sampled air masses with very high molecular Hydrogen, extremely low SF6 and enhanced CO values on 6 March at about 25 km altitude. Finally, the MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) Fourier Transform Infra-Red (FTIR) spectrometer showed NOy values which are significantly higher than NOy* (the NOy derived from a correlation between N2O and NOy under undisturbed conditions), on 21 and 22 March in a layer centred at 22 km altitude. Thus, the mesospheric air seems to have been present in a layer descending from about 30 km in late January to 25 km altitude in early March and about 22 km altitude on 20 March. We present corroborating evidence from a model study using the KASIMA (KArlsruhe SImulation model of the Middle Atmosphere) model that also shows a layer of mesospheric air, which descended into the stratosphere in November and early December 2002, before the minor warming which occurred in late December 2002 lead to a descent of upper stratospheric air, cutting off a layer in which mesospheric air is present. This layer then descended inside the vortex over the course of the winter. The same feature is found in trajectory calculations, based on a large number of trajectories started in the vicinity of the observations on 6 March. Based on the difference between the mean age derived from SF6 (which has an irreversible mesospheric loss) and from CO2 (whose mesospheric loss is much smaller and reversible) we estimate that the fraction of mesospheric air in the layer observed on 6 March, must have been somewhere between 35% and 100%.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2005-01-20
    Description: During the CRISTA-1 mission three pronounced fingerlike structures reaching from the lower latitudes to the mid-latitudes, so-called streamers, were observed in the measurements of several trace gases in early November 1994. A simulation of these streamers in previous studies employing the KASIMA (Karlsruhe Simulation Model of the Middle Atmosphere) and ROSE (Research on Ozone in the Stratosphere and its Evolution) model, both being Eulerian models, show that their formation is due to adiabatic transport processes. Here, the impact of mixing on the development of these streamers is investigated. These streamers were simulated with the CLaMS model (Chemical Lagrangian Model of the Stratosphere), a Lagrangian model, using N2O as long-lived tracer. Using several different initialisations the results were compared to the KASIMA simulations and CRISTA (Cryogenic Infrared Spectrometer and Telescope for the Atmosphere) observations. Further, since the KASIMA model was employed to derive a 9-year climatology, the quality of the reproduction of streamers from such a study was tested by the comparison of the KASIMA results with CLaMS and CRISTA. The streamers are reproduced well for the Northern Hemisphere in the simulations of CLaMS and KASIMA for the 6 November 1994. However, in the CLaMS simulation a stronger filamentation is found while larger discrepancies between KASIMA and CRISTA were found especially for the Southern Hemisphere. Further, compared to the CRISTA observations the mixing ratios of N2O are in general underestimated in the KASIMA simulations. An improvement of the simulations with KASIMA was obtained for a simulation time according to the length of the CLaMS simulation. To quantify the differences between the simulations with CLaMS and KASIMA, and the CRISTA observations, the probability density function technique (PDF) is used to interpret the tracer distributions. While in the PDF of the KASIMA simulation the small scale structures observed by CRISTA are smoothed out due to the numerical diffusion in the model, the PDFs derived from CRISTA observations can be reproduced by CLaMS by optimising the mixing parameterisation. Further, this procedure gives information on small-scale variabilities not resolved by the CRISTA observations.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-08-25
    Description: For the determination of photolysis rates at large zenith angles it has been demonstrated that refraction by the earth's atmosphere must be taken into account. In fact, due to the modified optical path the optical transmittance is thereby increased in most instances. Here we show that in addition the divergence of sun-rays, which is also caused by refraction but which reduces the direct solar irradiance, should not be neglected. Our calculations are based on a spherically symmetric atmosphere and include extinction by Rayleigh scattering, ozone, and background aerosol. For rays with 10km tangent altitude the divergence yields a reduction of about 10% to 40% at solar zenith angles of 91° to 96°. Moreover, we find that the divergence effect can completely cancel the relative enhancement caused by the increase of transmittance.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2003-02-20
    Description: The penetration of solar H Lyman-a radiation into the terrestrial middle atmosphere is studied in detail. The Lyman-a actinic flux is calculated with a Monte Carlo approach including multiple resonance scattering of Lyman-a photons within the terrestrial atmosphere and a temperature dependent absorption cross section of molecular oxygen. The dependence of the actinic flux on the temperature profile is significant for O2 column densities greater than about 1024 m-2. For column densities greater than about 5 · 1024 m-2 resonance scattering becomes important at solar zenith angles 〉 60°. The O(1D) quantum yield of the O2 dissociation by Lyman-a photons is found to decrease from 0.58 in the lower thermosphere to 0.48 in the lower mesosphere. Parameterisations for Lyman-a actinic flux, mean O2 absorption cross section and O(1D) quantum yield including temperature dependence and resonance scattering are given valid up to a O2 column density of about 1025 m-2.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-03-12
    Description: In the 2002 Antarctic polar vortex enhanced HOCl mixing ratios were detected by the Michelson Interferometer for Passive Atmospheric Sounding both at altitudes of around 35 km (1000 K potential temperature), where HOCl abundances are ruled by gas phase chemistry and at around 18–24 km (475–625 K), which belongs to the altitude domain where heterogeneous chlorine chemistry is relevant. At altitudes of 33 to 40 km polar vortex HOCl mixing ratios were found to be around 0.14 ppbv as long as the polar vortex was intact, centered at the pole, and thus received relatively little sunlight. This is the altitude region where in midlatitudinal and tropic atmospheres peak HOCl mixing ratios significantly above 0.2 ppbv (in terms of daily mean values) are observed. After deformation and displacement of the polar vortex in the course of a major warming, ClO-rich vortex air was more exposed to sunlight, where enhanced HOx abundances led to largely increased HOCl mixing ratios (up to 0.3 ppbv), exceeding typical midlatitudinal and tropical amounts significantly. The HOCl increase was preceded by an increase of ClO. Model runs could reproduce these measurements only when the Stimpfle et al. (1979) rate constant for the reaction ClO+HO2→HOCl+O2 was used but not with the current JPL recommendation. At an altitude of 24 km, HOCl mixing ratios of up to 0.15 ppbv were detected. This HOCl enhancement, which is already visible in 18 September data, is attributed to heterogeneous chemistry, which is in agreement with observations of polar stratospheric clouds. The measurements were compared to a model run where no polar stratospheric clouds appeared during the observation period. The fact that HOCl still was produced in the model run suggests that a significant part of HOCl was generated from ClO rather than directly via heterogeneous reaction. Excess ClO, lower ClONO2 and earlier loss of HOCl in the measurements are attributed to ongoing heterogeneous chemistry which is not reproduced by the model. On 11 October, polar vortex mean daytime mixing ratios were only 0.03 ppbv.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...