ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5028
    Keywords: cucumber ; light-regulated gene expression ; NADH-dependent hydroxypyruvate reductase ; organ-specific gene expression ; peroxisome ; photorespiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The 5′- and 3′-flanking regions of HPRA, a cucumber gene that encodes hydroxypyruvate reductase, were evaluated for regulatory activity with respect to light responsiveness and organ specificity. To define the functional regions of the 5′-flanking region of HPRA, a series of deletions was generated and the remaining portions fused to the β-glucuronidase (GUS) reporter gene (uidA) containing a minimal 35S promoter truncated at −90. The region from −66 to +39 was found to be necessary for light-regulated expression of the uidA reporter gene, while the region from −382 to −67 was found to be necessary for its leaf-specific expression. Further deletion of the HPRA 5′ flanking region to −590 resulted in high levels of root expression, suggesting the presence of a negative regulatory element responsible for silencing root expression of the HPRA gene between −590 and −383. The 3′-flanking region of the HPRA gene downstream of the polyadenylation site contains several sequence motifs resembling regulatory elements present in the promoters of several light-responsive genes. An 823 bp portion of the HPRA 3′-flanking region containing these putative regulatory elements enhanced GUS expression in leaves when placed downstream of the uidA reporter gene in the forward orientation, but not in the reverse orientation. When placed 5′ of the −90 35S promoter, the 823 bp fragment enhanced slightly, independently of orientation, the root tip-specific expression pattern intrinsic to the −90 35S promoter, indicating that in some cases this region can act as a transcriptional enhancer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5028
    Keywords: cucumber ; gene expression ; hydroxypyruvate reductase ; light regulation ; peroxisomal enzymes ; serine:glyoxylate aminotransferase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The development of peroxisomal enzymes in cotyledons of cucumber seedlings is strongly dependent on light. In light-grown seedlings, activities of two peroxisomal enzymes, hydroxypyruvate reductase (HPR) and serine: glyoxylate aminotransferase (SGAT), were barely detectable until three days postimbibition, after which time both activities increased rapidly and linearly for at least three days. In the dark, the activities of these enzymes increased slightly over the same time period, but only to about 5% to 10% of 7-day light-induced levels. When 51/2-day dark-grown seedlings were transferred into white light, activities of HPR and SGAT began to increase after approximately 8 h. HPR protein was shown by an immunoprecipitation assay to increase concurrently with enzymatic activity in both light- and dark-grown cotyledons. Immunoblotting results suggested that the amounts of SGAT-A and SGAT-B, the two subunits of SGAT, also developed along with SGAT activity. The relative levels of translatable mRNAs encoding HPR, SGAT-A, and SGAT-B were also light-dependent, and increased with a developmental pattern similar to enzyme activity and protein levels in light- and dark-grown cotyledons. In 51/2-day dark-grown cotyledons that were transferred to the light, translatable mRNAs for SGAT-A and SGAT-B began to increase within 1 h of illumination and continued of increase rapidly and linearly for the next 24 h in the light to a new steady-state level that was 45 times that of dark controls. Translatable HPR mRNA exhibited a biphasic pattern of accumulation, with a three-fold increase during the first 6 h of illumination, followed by an additional six-fold increase between 8 and 24 h. The accumulation of translationally active mRNA for both enzymes preceded the accumulation of the corresponding protein and enzyme activity by about 8 h. Our data suggest that the rise in enzyme activity depends on an increase in translatable mRNA for these enzymes and is regulated at a pretranslational level, most likely involving transcription of new mRNA.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5028
    Keywords: cucumber ; cytokinin-responsive ; DNA-binding proteins ; hydroxypyruvate reductase ; transcription
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Transcription of the cucumber hpr-A gene is responsive to cytokinin and light. To investigate the molecular basis for transcriptional regulation by cytokinin, we have identified DNA sequences and proteins that may be involved in the regulation of hpr-A gene expression. Transient expression assays in etiolated cucumber cotyledons indicate that the 315 bp fragment (−382 to −67) contains sequences necessary for cytokinin responsiveness of the luciferase reporter gene. Band shift assays detected cytokinin-enhanced and -reduced protein binding sites in a 97 bp fragment (−382 to −285) upstream of the hpr-A gene. DNase I footprinting identified two protein-protected sites, a 15 bp sequence, 5′-AAATGACGAAAATGC-3′, that contains an as-1 TGACG motif found in other plant promoters, and a 13 bp sequence, 5′-AAGATTGATTGAG-3′, of unknown function. Two-dimensional band shift analysis of the cytokinin-responsive DNA protein complex revealed the presence of six DNA protein interactions. Band shift assays showed that cytokinin and light have different effects on the interaction of nuclear proteins to the 97 bp fragment of the hpr-A gene. These data suggest that cytokinin and light do not share identical signal transduction pathways in regulating hpr-A gene expression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...