ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 3 (1983), S. 1-19 
    ISSN: 0886-1544
    Keywords: cytoplasmic transport ; Saltation ; microtubules ; keratocytes ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We report the first direct demonstration that the cytoplasmic transport of organelles and vesicles (collectively called particles) takes place along microtubules. Living keratocytes from the corneal stroma of the frog, Rana pipiens, were observed with Allen video-enhanced constrast, differential interference constrast (AVEC-DIC) microscopy [Allen et al, 1981]. In sufficiently thin regions of these cells a network of linear elements was visible. When particles were observed in motion, they always moved along these linear elements. The linear elements remained intact and in focus on the microscope when lysed in a cell lysis solution that stabilized microtubules. Preparations were then fixed in formaldehyde, washed with phosphate-buffered saline (PBS), incubated with rabbit antitubulin, washed with PBS, stained with rhodamine-conjugated goat antirabbit, and washed with PBS. The extracted cells continued to remain in place and in focus on the microscope throughout these procedures. The same cells were then observed using epifluorescence optics and a silicon-intensified target (SIT) video camera. A network of fluorescent linear elements was seen to correspond in number, form, and position to the linear elements seen in the live AVEC-DIC image. Taken together, the AVEC-DIC and fluorescence microscopy observations prove that the linear elements along which particles move are microtubules (MTLEs). The observed particle speeds, pause times, and distances moved varied widely, even for the same particle on the same microtubule. Particles were also observed to switch from one microtubule to another as they were transported. The polarity of the microtubules did not seem to affect the particle direction, since particles were observed to move in both directions on the same MTLE. When not in motion these particles behaved as if anchored to the microtubules since they showed negligible Brownian motion. Finally, it was observed that an elongate particle could move onto two intersecting linear elements such that it was deformed into an inverted “Y” shape. This indicates that there may be more than a single site of attachment between the force generator and the particle.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 2 (1982), S. i 
    ISSN: 0886-1544
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 6 (1986), S. 1-1 
    ISSN: 0886-1544
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 3 (1983), S. 283-305 
    ISSN: 0886-1544
    Keywords: taxol ; microtubules ; intermediate filaments ; fibroblasts ; epithelial cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Taxol promotes microtubule (MT) assembly in vitro and induces the reorganization of the cytoskeleton into unusual MT arrays in cultured cells. The possibility that taxol also has an indirect effect on intermediate filaments (IF) was investigated. In baby hamster kidney (BHK-21) and human skin (ENSON) fibroblasts treated with 1-10 μM taxol for 1-24 h, the drug induces changes which are similar to those produced by colchicine. These include a loss of major cellular extensions, a redistribution of organelles to a perinuclear location, and an inhibition of locomotion. Saltatory particle movements are not inhibited, however. Ruffling and filopod formation continue, indicating that cells are viable up to 24 h.Polarized light microscopy of living fibroblasts treated with taxol reveals the presence of perinuclear birefringent material which has been examined by immunofluorescence. In control cells, IF and MT radiate from a juxtanuclear region and extend to the cell periphery. In taxol-treated cells, MT and IF are excluded from cell margins, forming large central bundles.In the epithelial cell lines PtK2 and PAM, the keratin system of IF does not become redistributed; in PtK2, however, a second fibroblastlike system of IF does become redistributed to a perinuclear position during taxol treatment.Ultrastructural analyses show that taxol-treated fibroblasts contain parallel arrays of cross-bridged MT-IF as well as bundles of MT exclusive of IF. Epithelial cells contain a predominance of IF-free MT bundles which are organized into hexagonally packed arrays. In these bundles MT frequently exhibit hooks or other incomplete MT profiles and are linked by filamentous material.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0886-1544
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We present a high-resolution electron microscopic study of the sidearms on microtubules and vesicles that are suggested to form the crossbridges which produce the microtubule-based vesicle transport in squid axoplasm. The sidearms were found attached to the surfaces of the anterogradely transported vesicles in the presence of ATP. These sidearms were made of one to three filaments of uniform diameter. Each filament measured 5-6 nm in width and 30-35 nm in length. The filaments in some of the sidearms had splayed apart by pivoting at their base, thereby assuming a “V” shape. The spread configuration illustrated the independence of the individual filaments. The filaments in other sidearms were closely spaced and oriented parallel to each other, a pattern called the compact configuration. In axoplasmic buffer containing AMP-PNP, structures indistinguishable from the filaments of the sidearms on the vesicles were observed attached to microtubules. Pairs of filaments, thought to represent the basic functional unit, were observed attached to adjacent protofilaments of the microtubules by their distal tips. These data support a model of vesicle movement in which a pair of filaments within a sidearm forms two crossbridges and moves a vesicle by “walking” along the protofilaments of the microtubule.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 8 (1987), S. 284-291 
    ISSN: 0886-1544
    Keywords: tyrosination ; acetylation ; post-translational modifications ; cytoskeleton ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We have examined the distribution of acetylated α-tubulin using immunofluorescence microscopy in fibroblastic cells of rat brain meaninges. Meningeal fibroblasts showed heterogenous staining patterns with a monoclonal antibody against acetylated α-tubulin ranging from staining of primary cilia or microtubule-organising centers (MTOCs) alone to extensive microtubule networks. Staining with a broad spectrum anti-α-tubulin monoclonal indicated that all cells possessed cytoplasmic microtubule networks. From double-labeling experiments using an antibody against acetylated α-tubulin (6-11B-1) and antibodies against either tyrosinated or detyrosinated α-tubulin, it was found that acetylated α-tubulin and tyrosinated α-tubulin were often segregated to different microtubules. The microtubules containing acetylated but not tyrosinated α-tubulin were cold stable. Therefore, it appeared that in general meningeal cells possessed two subset of microtubules: One subset contained detyrosinated and acetylated α-tubulin and was cold stable, and the other contained tyrosinated α-tubulin and was cold labile. These results are consistent with the idea that acetylation and detyrosination of α-tubulin are involved in the specification of stable microtubules.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 12 (1989), S. 273-282 
    ISSN: 0886-1544
    Keywords: cytoskeleton ; microtubules ; axons ; sensory neurons ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The comparative distribution of tyrosinated, detyrosinated, and acetylated α-tubulins was examined in neurites of rat dorsal root ganglion neurones in culture using immunofluorescence microscopy. Phase contrast observations of single neurones revealed that the neurites were actively motile, and rhodamine phalloidin staining of actin filaments showed the extent of lamellopodia and microspike projections from the growth cones. From double-labelling experiments using antibodies against tyrosinated, detryrosinated, or acetylated α-tubulin, it was found that the three different isoforms were differentially localised in neurites and growth cones. Detyrosinated and acetylated forms of α-tubulin were in the main restricted to the neurites extending no further than the base of the growth cones. Tyrosinated α-tubulin was, however, distributed throughout the body of the growth cone and into the base of some microspikes. Following treatment with taxol to promote microtubule assembly, detyrosinated and acetylated α-tubulins were found to be colocalised with tyrosinated α-tubulins throughout the growth cones of all cells examined. These results would be consistent with axonal transport of tyrosinated α-tubulin followed by assembly in the growth cone and subsequent detyrosination and acetylation. In addition the presence of unmodified α-tubulin in the growth cone may be necessary for the provision of labile microtubules for growth cone motility and extension.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0886-1544
    Keywords: intermediate filament ; desmosomes ; epidermal keratinocytes ; nuclear envelope ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We have shown, by indirect immunofluorescence microscopy using an antiserum against the mouse keratin subunit K2 and by electron microscopy, that transformed (PAM) and primary (PME) mouse epidermal cells possess extensive net works of IF bundles. Following trypsinization and replating of PAM cells, IF bundles are seen to move as a continuous net work from a perinuclear zone into the peripheral cytoplasmic regions. In PAM cells lysed in high-ionic-strength solutions containing Triton ×-100 and DNAase-1, IF bundles appear to be closely associated with nuclear envelope remnants and, in some cases, appear to be attached to nuclear pore complexes. PME cells cultivated in low Ca2+-containing medium possess perinuclear birefringent arrays of IF bundles. Within 2 hours of switching the cells to normal Ca2+ levels, the PME IF bundle network moves towards and establishes contact with the cell surface as desmosomes form. Live cells observed by phase contrast and fixed cells observed by immunofluorescence microscopy demonstrate that desmosomes can be distinguished as dark bands separating neighboring cells. There is little difference between the major proteins seen in SDS-polyacrylamide gel profiles of isolated IF bundle net works from PME cells before and after the Ca2+ switch. Therefore, a reorganization of relatively insoluble membrane-associated protein following the Ca2+ switch may be involved in desmosome formation. The isolated IF networks from PAM cells differ in protein composition compared to the PME IF networks. This may be related to the greatly reduced number of desmosomes in PAM cells. The IF bundle system in epidermal cells appears to be involved in shape formation, shape maintenance, the establishment of desmosomes, nuclear centration, and cell-cell contact.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 2 (1982), S. 211-215 
    ISSN: 0886-1544
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 6 (1986), S. 389-405 
    ISSN: 0886-1544
    Keywords: cell membrane complex ; extracellular matrix ; fibronectin ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Intermediate filaments (IF) were found in close proximity to the plasma membrane in substrate attached baby hamster kidney cells (BHK-21) and chick embryo fibroblasts (CEF) as well as cells removed from their substrate in the absence of trypsin. However, in cells removed with trypsin, it appeared that IF had retracted away from the membrane. In cells with abundant extracellular matrix (ECM), colchicine induced massive cables of IF, which appeared to interact with specialized areas of the inner plasma membrane. In cells lysed to extract most microfilaments and cytoplasmic constituents, the intact IF network which remained was closely associated with the ECM. From these ultrastructural observations it was concluded that IF interact in some way with a “cell membrane complex” defined as comprising the plasma membrane and molecules attached to its inner and outer surfaces.In order to investigate the possibility that components of the membrane complex may co-isolate with IF, native intermediate filaments (NIF) were prepared. In addition to the structural subunits and other associated polypeptides, a ∼220 kd species which reacted specifically with antibodies directed against the ECM protein fibronectin (FN) was observed; 220 kd was still present after NIF were isolated under pH conditions where FN is more soluble, suggesting that its presence was not simply due to the coprecipitation of two insoluble proteins. Immunofluorescence and immunogold localization confirmed that FN is a component of the cell membrane complex with which IF appeared to interact.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...