ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-21
    Description: The three-dimensional structure of a 70-kilodalton amino terminally truncated form of human topoisomerase I in complex with a 22-base pair duplex oligonucleotide, determined to a resolution of 2.8 angstroms, reveals all of the structural elements of the enzyme that contact DNA. The linker region that connects the central core of the enzyme to the carboxyl-terminal domain assumes a coiled-coil configuration and protrudes away from the remainder of the enzyme. The positively charged DNA-proximal surface of the linker makes only a few contacts with the DNA downstream of the cleavage site. In combination with the crystal structures of the reconstituted human topoisomerase I before and after DNA cleavage, this information suggests which amino acid residues are involved in catalyzing phosphodiester bond breakage and religation. The structures also lead to the proposal that the topoisomerization step occurs by a mechanism termed "controlled rotation."〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stewart, L -- Redinbo, M R -- Qiu, X -- Hol, W G -- Champoux, J J -- CA65656/CA/NCI NIH HHS/ -- GM16713/GM/NIGMS NIH HHS/ -- GM49156/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Mar 6;279(5356):1534-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biomolecular Structure Center and Department of Biological Structure, School of Medicine, University of Washington, Seattle, WA 98195-7742, USA. emerald_biostructures@rocketmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9488652" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arginine/chemistry/metabolism ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; DNA Topoisomerases, Type I/*chemistry/*metabolism ; Humans ; Hydrogen Bonding ; *Models, Chemical ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides/chemistry/metabolism ; *Protein Conformation ; Protein Structure, Secondary ; Tyrosine/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-04-16
    Description: Mutation of the VHL tumor suppressor is associated with the inherited von Hippel-Lindau (VHL) cancer syndrome and the majority of kidney cancers. VHL binds the ElonginC-ElonginB complex and regulates levels of hypoxia-inducible proteins. The structure of the ternary complex at 2.7 angstrom resolution shows two interfaces, one between VHL and ElonginC and another between ElonginC and ElonginB. Tumorigenic mutations frequently occur in a 35-residue domain of VHL responsible for ElonginC binding. A mutational patch on a separate domain of VHL indicates a second macromolecular binding site. The structure extends the similarities to the SCF (Skp1-Cul1-F-box protein) complex that targets proteins for degradation, supporting the hypothesis that VHL may function in an analogous pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stebbins, C E -- Kaelin, W G Jr -- Pavletich, N P -- New York, N.Y. -- Science. 1999 Apr 16;284(5413):455-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Structural Biology, Joan and Sanford I. Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10205047" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Cell Cycle Proteins/chemistry/metabolism ; Cloning, Molecular ; Crystallography, X-Ray ; *Genes, Tumor Suppressor ; Humans ; Hydrogen Bonding ; *Ligases ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Mutation, Missense ; Neoplasms/genetics ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Proteins/*chemistry/genetics/metabolism ; S-Phase Kinase-Associated Proteins ; Surface Properties ; Transcription Factors/*chemistry/metabolism ; *Tumor Suppressor Proteins ; *Ubiquitin-Protein Ligases ; Von Hippel-Lindau Tumor Suppressor Protein ; von Hippel-Lindau Disease/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1998-01-24
    Description: Terbium(III) [Tb(III)] was shown to inhibit the hammerhead ribozyme by competing with a single magnesium(II) ion. X-ray crystallography revealed that the Tb(III) ion binds to a site adjacent to an essential guanosine in the catalytic core of the ribozyme, approximately 10 angstroms from the cleavage site. Synthetic modifications near this binding site yielded an RNA substrate that was resistant to Tb(III) binding and capable of being cleaved, even in the presence of up to 20 micromolar Tb(III). It is suggested that the magnesium(II) ion thought to bind at this site may act as a switch, affecting the conformational changes required to achieve the transition state.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feig, A L -- Scott, W G -- Uhlenbeck, O C -- GM-36944/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jan 2;279(5347):81-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9417029" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Binding, Competitive ; Catalysis ; Crystallography, X-Ray ; Magnesium/metabolism ; Models, Molecular ; Nucleic Acid Conformation ; RNA, Catalytic/*antagonists & inhibitors/chemistry/*metabolism ; Terbium/*metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1998-03-21
    Description: Topoisomerases I promote the relaxation of DNA superhelical tension by introducing a transient single-stranded break in duplex DNA and are vital for the processes of replication, transcription, and recombination. The crystal structures at 2.1 and 2.5 angstrom resolution of reconstituted human topoisomerase I comprising the core and carboxyl-terminal domains in covalent and noncovalent complexes with 22-base pair DNA duplexes reveal an enzyme that "clamps" around essentially B-form DNA. The core domain and the first eight residues of the carboxyl-terminal domain of the enzyme, including the active-site nucleophile tyrosine-723, share significant structural similarity with the bacteriophage family of DNA integrases. A binding mode for the anticancer drug camptothecin is proposed on the basis of chemical and biochemical information combined with these three-dimensional structures of topoisomerase I-DNA complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Redinbo, M R -- Stewart, L -- Kuhn, P -- Champoux, J J -- Hol, W G -- CA65656/CA/NCI NIH HHS/ -- GM49156/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Mar 6;279(5356):1504-13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biomolecular Structure Center and Department of Biological Structure, Box 357742, School of Medicine, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9488644" target="_blank"〉PubMed〈/a〉
    Keywords: Antineoplastic Agents, Phytogenic/metabolism/pharmacology ; Binding Sites ; Camptothecin/analogs & derivatives/metabolism/pharmacology ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; DNA Topoisomerases, Type I/*chemistry/genetics/metabolism ; *DNA-Binding Proteins ; Homeodomain Proteins/chemistry ; Host Cell Factor C1 ; Humans ; Hydrogen Bonding ; Integrases/chemistry ; Models, Molecular ; Mutation ; Nucleic Acid Conformation ; Octamer Transcription Factor-1 ; Oligodeoxyribonucleotides/chemistry/metabolism ; *Protein Conformation ; Protein Structure, Secondary ; Recombinant Proteins/chemistry ; Transcription Factors/chemistry ; Tyrosine/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-08-16
    Description: The Vibrio cholerae bacterium causes devastating diarrhea when it infects the human intestine. The key event is adenosine diphosphate (ADP)-ribosylation of the human signaling protein GSalpha, catalyzed by the cholera toxin A1 subunit (CTA1). This reaction is allosterically activated by human ADP-ribosylation factors (ARFs), a family of essential and ubiquitous G proteins. Crystal structures of a CTA1:ARF6-GTP (guanosine triphosphate) complex reveal that binding of the human activator elicits dramatic changes in CTA1 loop regions that allow nicotinamide adenine dinucleotide (NAD+) to bind to the active site. The extensive toxin:ARF-GTP interface surface mimics ARF-GTP recognition of normal cellular protein partners, which suggests that the toxin has evolved to exploit promiscuous binding properties of ARFs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Neal, Claire J -- Jobling, Michael G -- Holmes, Randall K -- Hol, Wim G J -- AI-31940/AI/NIAID NIH HHS/ -- AI-34501/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2005 Aug 12;309(5737):1093-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16099990" target="_blank"〉PubMed〈/a〉
    Keywords: ADP-Ribosylation Factors/*chemistry/genetics/*metabolism ; Amino Acid Sequence ; Binding Sites ; Cholera Toxin/*chemistry/genetics/*metabolism ; Crystallography, X-Ray ; Dimerization ; Evolution, Molecular ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/*chemistry/*metabolism ; Humans ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; NAD/metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2002-05-11
    Description: The ubiquitination of the hypoxia-inducible factor (HIF) by the von Hippel-Lindau tumor suppressor (pVHL) plays a central role in the cellular response to changes in oxygen availability. pVHL binds to HIF only when a conserved proline in HIF is hydroxylated, a modification that is oxygen-dependent. The 1.85 angstrom structure of a 20-residue HIF-1alpha peptide-pVHL-ElonginB-ElonginC complex shows that HIF-1alpha binds to pVHL in an extended beta strand-like conformation. The hydroxyproline inserts into a gap in the pVHL hydrophobic core, at a site that is a hotspot for tumorigenic mutations, with its 4-hydroxyl group recognized by buried serine and histidine residues. Although the beta sheet-like interactions contribute to the stability of the complex, the hydroxyproline contacts are central to the strict specificity characteristic of signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Min, Jung-Hyun -- Yang, Haifeng -- Ivan, Mircea -- Gertler, Frank -- Kaelin, William G Jr -- Pavletich, Nikola P -- New York, N.Y. -- Science. 2002 Jun 7;296(5574):1886-9. Epub 2002 May 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cellular Biochemistry and Biophysics Program and Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12004076" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Hydroxylation ; Hydroxyproline/*metabolism ; Hypoxia-Inducible Factor 1, alpha Subunit ; Ligases/*chemistry/genetics/metabolism ; Macromolecular Substances ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Signal Transduction ; Transcription Factors/*chemistry/metabolism ; *Tumor Suppressor Proteins ; *Ubiquitin-Protein Ligases ; Von Hippel-Lindau Tumor Suppressor Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-16
    Description: Nitrous oxide (N(2)O) is generated by natural and anthropogenic processes and has a critical role in environmental chemistry. It has an ozone-depleting potential similar to that of hydrochlorofluorocarbons as well as a global warming potential exceeding that of CO(2) 300-fold. In bacterial denitrification, N(2)O is reduced to N(2) by the copper-dependent nitrous oxide reductase (N(2)OR). This enzyme carries the mixed-valent Cu(A) centre and the unique, tetranuclear Cu(Z) site. Previous structural data were obtained with enzyme isolated in the presence of air that is catalytically inactive without prior reduction. Its Cu(Z) site was described as a [4Cu:S] centre, and the substrate-binding mode and reduction mechanism remained elusive. Here we report the structure of purple N(2)OR from Pseudomonas stutzeri, handled under the exclusion of dioxygen, and locate the substrate in N(2)O-pressurized crystals. The active Cu(Z) cluster contains two sulphur atoms, yielding a [4Cu:2S] stoichiometry; and N(2)O bound side-on at Cu(Z), in close proximity to Cu(A). With the substrate located between the two clusters, electrons are transferred directly from Cu(A) to N(2)O, which is activated by side-on binding in a specific binding pocket on the face of the [4Cu:2S] centre. These results reconcile a multitude of available biochemical data on N(2)OR that could not be explained by earlier structures, and outline a mechanistic pathway in which both metal centres and the intervening protein act in concert to achieve catalysis. This structure represents the first direct observation, to our knowledge, of N(2)O bound to its reductase, and sheds light on the functionality of metalloenzymes that activate inert small-molecule substrates. The principle of using distinct clusters for substrate activation and for reduction may be relevant for similar systems, in particular nitrogen-fixing nitrogenase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pomowski, Anja -- Zumft, Walter G -- Kroneck, Peter M H -- Einsle, Oliver -- England -- Nature. 2011 Aug 14;477(7363):234-7. doi: 10.1038/nature10332.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lehrstuhl fur Biochemie, Institut fur organische Chemie und Biochemie, Albert-Ludwigs-Universitat Freiburg, Albertstr. 21, 79104 Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21841804" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Copper/chemistry/*metabolism ; Crystallography, X-Ray ; Electrons ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Nitrous Oxide/chemistry/*metabolism ; Oxidoreductases/*chemistry/*metabolism ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Pseudomonas stutzeri/*enzymology ; Sulfur/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1996-12-20
    Description: The crystal structure of an unmodified hammerhead RNA in the absence of divalent metal ions has been solved, and it was shown that this ribozyme can cleave itself in the crystal when divalent metal ions are added. This biologically active RNA fold is the same as that found previously for two modified hammerhead ribozymes. Addition of divalent cations at low pH makes it possible to capture the uncleaved RNA in metal-bound form. A conformational intermediate, having an additional Mg(II) bound to the cleavage-site phosphate, was captured by freeze-trapping the RNA at an active pH prior to cleavage. The most significant conformational changes were limited to the active site of the ribozyme, and the changed conformation requires only small additional movements to reach a proposed transition-state.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scott, W G -- Murray, J B -- Arnold, J R -- Stoddard, B L -- Klug, A -- GM-49857/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Dec 20;274(5295):2065-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8953035" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Crystallization ; Crystallography, X-Ray ; Freezing ; Hydrogen-Ion Concentration ; Magnesium/metabolism ; Manganese/metabolism ; Models, Molecular ; *Nucleic Acid Conformation ; RNA, Catalytic/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1996-01-12
    Description: Members of the chaperonin-10 (cpn10) protein family, also called heat shock protein 10 and in Escherichia coli GroES, play an important role in ensuring the proper folding of many proteins. The crystal structure of the Mycobacterium leprae cpn10 (Ml-cpn10) oligomer has been elucidated at a resolution of 3.5 angstroms. The architecture of the Ml-cpn10 heptamer resembles a dome with an oculus in its roof. The inner surface of the dome is hydrophilic and highly charged. A flexible region, known to interact with cpn60, extends from the lower rim of the dome. With the structure of a cpn10 heptamer now revealed and the structure of the E. coli GroEL previously known, models of cpn10:cpn60 and GroEL:GroES complexes are proposed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mande, S C -- Mehra, V -- Bloom, B R -- Hol, W G -- AI07118/AI/NIAID NIH HHS/ -- AI23545/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1996 Jan 12;271(5246):203-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Structure, University of Washington, Seattle 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8539620" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Chaperonin 10/*chemistry/metabolism ; Chaperonin 60/chemistry/metabolism ; Crystallography, X-Ray ; Models, Molecular ; Molecular Sequence Data ; Mycobacterium leprae/*chemistry ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-03-17
    Description: Life originated, according to the RNA World hypothesis, from self-replicating ribozymes that catalyzed ligation of RNA fragments. We have solved the 2.6 angstrom crystal structure of a ligase ribozyme that catalyzes regiospecific formation of a 5' to 3' phosphodiester bond between the 5'-triphosphate and the 3'-hydroxyl termini of two RNA fragments. Invariant residues form tertiary contacts that stabilize a flexible stem of the ribozyme at the ligation site, where an essential magnesium ion coordinates three phosphates. The structure of the active site permits us to suggest how transition-state stabilization and a general base may catalyze the ligation reaction required for prebiotic RNA assembly.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Robertson, Michael P -- Scott, William G -- New York, N.Y. -- Science. 2007 Mar 16;315(5818):1549-53.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for the Molecular Biology of RNA and Department of Chemistry and Biochemistry, Robert L. Sinsheimer Laboratories, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17363667" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Binding Sites ; Catalysis ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; Directed Molecular Evolution ; Hydrogen Bonding ; Models, Molecular ; Molecular Conformation ; Nucleic Acid Conformation ; Oligoribonucleotides/chemistry/metabolism ; RNA, Catalytic/*chemistry/metabolism ; Ribonucleotides/chemistry/metabolism ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...