ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2017-04-04
    Description: In November 2007 we conducted a water-column and seafloor mapping study of the submarine volcanoes of the Aeolian Arc in the southern Tyrrhenian Sea aboard the R/V Urania. A total of 26 CTD casts were completed, 13 vertical casts and 13 tows. In addition to in situ measurements of temperature, conductivity, pressure and suspended particles, we also collected discrete samples for helium isotopes, methane, and trace metals. The helium isotope ratio, which is known to be an unambiguous indicator of hydrothermal input, showed a clear excess above background at 5 out of the 10 submarine volcanoes surveyed. We found the strongest helium anomaly over Marsili seamount, where the 3He/4He ratio reached maximum values of 3He = 23% at 610 m depth compared with background values of ~ 7%. We also found smaller but distinct 3He anomalies over Enerato, Eolo, Palinuro, and Secca del Capo. We interpret these results as indicating the presence of hydrothermal activity on these 5 seamounts. Hydrothermal venting has been documented at subsea vents offshore of the islands of Panarea, Stromboli, and Vulcano (Dando et al., 1999; Di Roberto et al., 2008), and hydrothermal deposits have been sampled on many of the submarine volcanoes of the Aeolian Arc (Dekov and Savelli, 2004). However, as far as we know this is the first evidence of present day hydrothermal activity on Marsili, Enerato, and Eolo. Samples collected over Filicudi, Glabro, Lamentini, Sisifo, and Alcioni had 3He very close to the regional background values, suggesting either absence of or very weak hydrothermal activity on these seamounts. Helium isotope measurements from the background hydrocasts positioned between the volcanoes revealed the presence of an excess in 3He throughout the SE Tyrrhenian Sea. These background profiles reach a consistent maximum of about 3He = 11% at 2300 m depth. Historical helium profiles collected in the central and northern Tyrrhenian Sea in 1987 and 1997 do not show this deep 3He maximum (W. Roether and B. Klein, private comm.). Furthermore, the maximum is too deep to be attributed to the volcanoes of the Aeolian Arc, which are active at 〈1000 m depth. We are currently conducting additional measurements to determine whether this deep 3He maximum is from a local hydrothermal source or is somehow related to the deep water mass transient which occurred in the eastern Mediterranean in the 1990’s.
    Description: American Geophysical Union
    Description: Published
    Description: San Francisco
    Description: 4.6. Oceanografia operativa per la valutazione dei rischi in aree marine
    Description: open
    Keywords: submarine ; hydrothermalism ; helium isotopes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 5 (2004): Q01003, doi:10.1029/2003GC000607.
    Description: Several hydrographic stations in the vicinity of the Samoa Islands have 3He/4He above the regional background in the depth range of 1500–1800 m, indicating injection of mantle helium from a local hydrothermal source. The highest δ(3He) = 43.4% was detected at 1726-m depth at 15.0°S, 173.1°W in the bathymetric gap between the Samoa Islands and the northern end of the Tonga-Kermadec Arc. The δ(3He) profile at this station decreases to δ(3He) = 26% at 2500-m depth. The relatively shallow depth of the maximum hydrothermal signal suggests a source different from the conventional Pacific basin helium plume centered at 2500 m that is carried westward from the East Pacific Rise. Stations to the west of this locality show a progressive decrease in the maximum δ(3He) values in the depth range of 1480–1790 m out to 169°E. Stations east of the Tonga-Fiji region show lower 3He values (〈26%) at 1700 m and the profiles are dominated by a deeper maximum at 2500 m, presumably the distal traces of hydrothermal input from East Pacific Rise. This pattern in the 3He distribution suggests that the 1700-m deep helium plume is carried in a northwesterly direction some 2000 km from its source near the northern end of the Tonga-Kermadec Arc. At this time very little is known about the source of this hydrothermal plume or the details of its areal extent. Numerous seamounts and rift zones in the region are possible hydrothermal sources for the plume. The summit crater of Vailulu'u, a young seamount at the eastern end of the Samoa chain, was recently discovered to be hydrothermally active at ∼600 m depth [Hart et al., 2000]. However this shallow hydrothermal field on Vailulu'u is an unlikely source for the deeper 1700-m signal. The most likely source would appear to be the extensional zones of the northern Lau Basin system, such as the Mangatolo Triple Junction. Just as the helium plume emanating from Lo'ihi has helped our understanding of the circulation near the Hawaiian Islands [Lupton, 1996], this helium plume in the Tonga-Fiji region has great potential for delineating circulation in this area of the south Pacific.
    Description: This work was supported by the NOAA Vents Program and by Grants OCE91-05884, OCE92-96237, OCE92-96169, and OCE98-20132 of the Ocean Sciences Division of the National Science Foundation.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 14193530 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C06012, doi:10.1029/2003JC002028.
    Description: The World Ocean Circulation Experiment Indian Ocean helium isotope data are mapped and features of intermediate and deep circulation are inferred and discussed. The 3He added to the deep Indian Ocean originates from (1) a strong source on the mid-ocean ridge at about 19°S/65°E, (2) a source located in the Gulf of Aden in the northwestern Indian Ocean, (3) sources located in the convergent margins in the northeastern Indian Ocean, and (4) water imported from the Indonesian Seas. The main circulation features inferred from the 3He distribution include (1) deep (2000–3000 m) eastward flow in the central Indian Ocean, which overflows into the West Australian Basin through saddles in the Ninetyeast Ridge, (2) a deep (2000–3000 m) southwestward flow in the western Indian Ocean, and (3) influx of Banda Sea Intermediate Waters associated with the deep core (1000–1500 m) of the through flow from the Pacific Ocean. The large-scale 3He distribution is consonant with the known pathways of deep and bottom water circulation in the Indian Ocean.
    Description: National Science Foundation support is acknowledged for the UM part of the work through grants OCE-9820131 and OCE-998150. Support for the LDEO portion of the work was obtained from the National Science Foundation through awards OCE 94-13162 and OCE 98-20130.
    Keywords: Indian Ocean ; Tracers ; Deep circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 18 (2017): 1810–1823, doi:10.1002/2017GC006848.
    Description: The recent GEOTRACES Eastern Pacific Zonal Transect in 2013 crossed the East Pacific Rise at 15°S following the same track as the 1987 Helios Expedition along the core of the mid-depth helium plume that spreads westward from the East Pacific Rise (EPR) axis. The fact that several stations were co-located with the earlier Helios stations has allowed a detailed comparison of the changes in the helium plume over the intervening 26 years. While the plume in many areas is unchanged, there is a marked decrease in plume intensity at longitude 120°W in the 2013 data which was not present in 1987. Recent radioisotope measurements along the plume track suggest that this decrease is due to the intrusion of a different water mass into the plume, rather than a modulation of hydrothermal input on the EPR axis. Analysis of GEOTRACES hydrographic data shows excess heat present in the plume up to 0.04°C, corresponding to a 3He/heat ratio of ∼2.5 × 10−18 mol J−1, similar to that found in mature hydrothermal vents. RAFOS floats deployed in 1987 indicate an average westward transport of ∼0.3 cm s−1 at 2500 m depth in the off-axis plume, in agreement with recent estimates of ∼0.4 cm s−1 based on “aging” of the plume from 227Ac/3He ratios.
    Description: Earth Ocean Interactions Program; NOAA Pacific Marine Environmental Laboratory
    Description: 2017-11-04
    Keywords: Helium ; East Pacific Rise ; Circulation ; Mid-ocean ridge
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q06T01, doi:10.1029/2008GC002104.
    Description: As part of a rapid response cruise in May 2006, we surveyed water column hydrothermal plumes and bottom conditions on the East Pacific Rise between 9°46.0′N and 9°57.6′N, where recent seafloor volcanic activity was suspected. Real-time measurements included temperature, light transmission, and salinity. Samples of the plume waters were analyzed for methane, manganese, helium concentrations, and the δ 13C of methane. These data allow us to examine the effects of the 2005–2006 volcanic eruption(s) on plume chemistry. Methane and manganese are sensitive tracers of hydrothermal plumes, and both were present in high concentrations. Methane reached 347 nM in upper plume samples (250 m above seafloor) and exceeded 1085 nM in a near-bottom sample. Mn reached 54 nM in the upper plume and 98 nM in near-bottom samples. The concentrations of methane and Mn were higher than measurements made after a volcanic eruption in the same area in 1991, but the ratio of CH4/Mn, at 6.7, is slightly lower, though still well above the ratios measured in chronic plumes. High concentrations of methane in near-bottom samples were associated with areas of microbial mats and diffuse venting documented in seafloor imagery. The isotopic composition of the methane carbon shows evidence of active microbial oxidation; however, neither the fractionation factor nor the source of the eruption-associated methane can be determined with any certainty. Considerable scatter in the isotopic data is due to diverse sources for the methane as well as fractionation as methane is consumed. One sample at +21‰ versus Peedee belemnite standard is among the most enriched methane carbon values reported in a hydrothermal plume to date.
    Description: This field work was supported by NSF awards OCE0222069 (J.P.C., M.D.L.); OCE0525863 (D.J.F.); and OCE0327261 (T.M..S.); and the NASA Astrobiology Institute (JPC). The NOAA-VENTS program provided additional support through a grant to the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA17RJ1232.
    Keywords: Hydrothermal ; Plume ; Methane isotopes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-04-02
    Description: Tritium and helium isotope data provide key information on ocean circulation, ventilation, and mixing, as well as the rates of biogeochemical processes and deep-ocean hydrothermal processes. We present here global oceanic datasets of tritium and helium isotope measurements made by numerous researchers and laboratories over a period exceeding 60 years. The dataset’s DOI is https://doi.org/10.25921/c1sn-9631, and the data are available at https://www.nodc.noaa.gov/ocads/data/0176626.xml (last access: 15 March 2019) or alternately http://odv.awi.de/data/ocean/jenkins-tritium-helium-data-compilation/ (last access: 13 March 2019) and includes approximately 60 000 valid tritium measurements, 63 000 valid helium isotope determinations, 57 000 dissolved helium concentrations, and 34 000 dissolved neon concentrations. Some quality control has been applied in that questionable data have been flagged and clearly compromised data excluded entirely. Appropriate metadata have been included, including geographic location, date, and sample depth. When available, we include water temperature, salinity, and dissolved oxygen. Data quality flags and data originator information (including methodology) are also included. This paper provides an introduction to the dataset along with some discussion of its broader qualities and graphics.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in German, C., Baumberger, T., Lilley, M., Lupton, J., Noble, A., Saito, M., Thurber, A., & Blackman, D. Hydrothermal exploration of the southern Chile Rise: sediment‐hosted venting at the Chile Triple Junction. Geochemistry Geophysics Geosystems, 23(3), (2022): e2021GC010317, https://doi.org/10.1029/2021gc010317.
    Description: We report results from a hydrothermal plume survey along the southernmost Chile Rise from the Guamblin Fracture Zone to the Chile Triple Junction (CTJ) encompassing two segments (93 km cumulative length) of intermediate spreading-rate mid-ocean ridge axis. Our approach used in situ water column sensing (CTD, optical clarity, redox disequilibrium) coupled with sampling for shipboard and shore based geochemical analyses (δ3He, CH4, total dissolvable iron (TDFe) and manganese, (TDMn)) to explore for evidence of seafloor hydrothermal venting. Across the entire survey, the only location at which evidence for submarine venting was detected was at the southernmost limit to the survey. There, the source of a dispersing hydrothermal plume was located at 46°16.5’S, 75°47.9’W, coincident with the CTJ itself. The plume exhibits anomalies in both δ3He and dissolved CH4 but no enrichments in TDFe or TDMn beyond what can be attributed to resuspension of sediments covering the seafloor where the ridge intersects the Chile margin. These results are indicative of sediment-hosted venting at the CTJ.
    Description: We acknowledge University of California Ship Funds for their support of that shiptime and the NOAA Ocean Exploration and Research Grant NA08OAR4600757 which supported the research presented here. Finally, we thank two anonymous reviewers whose important contributions helped to improve the final version of this paper. This is PMEL contribution number 5341.
    Keywords: Hydrothermal ; Geochemistry ; Chile Rise ; Chile Triple Junction ; Sediment hosted
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 15 (2014): 4093–4115, doi:10.1002/2014GC005387.
    Description: We present multiple lines of evidence for years to decade-long changes in the location and character of volcanic activity at West Mata seamount in the NE Lau basin over a 16 year period, and a hiatus in summit eruptions from early 2011 to at least September 2012. Boninite lava and pyroclasts were observed erupting from its summit in 2009, and hydroacoustic data from a succession of hydrophones moored nearby show near-continuous eruptive activity from January 2009 to early 2011. Successive differencing of seven multibeam bathymetric surveys of the volcano made in the 1996–2012 period reveals a pattern of extended constructional volcanism on the summit and northwest flank punctuated by eruptions along the volcano's WSW rift zone (WSWRZ). Away from the summit, the volumetrically largest eruption during the observational period occurred between May 2010 and November 2011 at ∼2920 m depth near the base of the WSWRZ. The (nearly) equally long ENE rift zone did not experience any volcanic activity during the 1996–2012 period. The cessation of summit volcanism recorded on the moored hydrophone was accompanied or followed by the formation of a small summit crater and a landslide on the eastern flank. Water column sensors, analysis of gas samples in the overlying hydrothermal plume and dives with a remotely operated vehicle in September 2012 confirmed that the summit eruption had ceased. Based on the historical eruption rates calculated using the bathymetric differencing technique, the volcano could be as young as several thousand years.
    Description: Support for R.W.E. during this study was by internal NOAA funding to the NOAA Vents Program (now Earth-Ocean Interactions Program). The NSF Ridge 2000 and MARGINS programs played a major role in the planning and justification for the 2009 rapid response proposal that funded the May 2009 expedition. MBARI provided support and outstanding postprocessing of the multibeam bathymetry from the D. Allan B. AUV multibeam sonar used in this study. NSF also provided major funding for the 2009 expedition (OCE930025 and OCE-0934660 to JAR) and for the 210Po-210Pb radiometric dating (OCE-0929881 and for the 210Po-210Pb radiometric dating (OCE-0929881 to KHR)). The NOAA Office of Exploration and Research provided major funding for the 2009 and 2012 field programs.
    Description: 2015-04-30
    Keywords: Seamount ; Lau ; Volcano ; Eruption ; Submarine ; Multibeam
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jenkins, W. J., Doney, S. C., Fendrock, M., Fine, R., Gamo, T., Jean-Baptiste, P., Key, R., Klein, B., Lupton, J. E., Newton, R., Rhein, M., Roether, W., Sano, Y., Schlitzer, R., Schlosser, P., & Swift, J. A comprehensive global oceanic dataset of helium isotope and tritium measurements. Earth System Science Data, 11(2), (2019):441-454, doi:10.5194/essd-11-441-2019.
    Description: Tritium and helium isotope data provide key information on ocean circulation, ventilation, and mixing, as well as the rates of biogeochemical processes and deep-ocean hydrothermal processes. We present here global oceanic datasets of tritium and helium isotope measurements made by numerous researchers and laboratories over a period exceeding 60 years. The dataset's DOI is https://doi.org/10.25921/c1sn-9631, and the data are available at https://www.nodc.noaa.gov/ocads/data/0176626.xml (last access: 15 March 2019) or alternately http://odv.awi.de/data/ocean/jenkins-tritium-helium-data-compilation/ (last access: 13 March 2019) and includes approximately 60 000 valid tritium measurements, 63 000 valid helium isotope determinations, 57 000 dissolved helium concentrations, and 34 000 dissolved neon concentrations. Some quality control has been applied in that questionable data have been flagged and clearly compromised data excluded entirely. Appropriate metadata have been included, including geographic location, date, and sample depth. When available, we include water temperature, salinity, and dissolved oxygen. Data quality flags and data originator information (including methodology) are also included. This paper provides an introduction to the dataset along with some discussion of its broader qualities and graphics.
    Description: This synthesis work was funded under the auspices of a U.S. National Science Foundation grant number OCE-1434000. Financial support for the actual measurements came from a wide variety of different research grants from many agencies in many countries, far too numerous to list here. William J. Jenkins is grateful to a number of US funding sources, most notably the National Science Foundation, NOAA, DOE, and ONR.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Spain, E. A., Johnson, S. C., Hutton, B., Whittaker, J. M., Lucieer, V., Watson, S. J., Fox, J. M., Lupton, J., Arculus, R., Bradney, A., & Coffin, M. F. Shallow seafloor gas emissions near Heard and McDonald Islands on the Kerguelen Plateau, Southern Indian Ocean. Earth and Space Science, 7(3), (2020): e2019EA000695, doi:10.1029/2019EA000695.
    Description: Bubble emission mechanisms from submerged large igneous provinces remains enigmatic. The Kerguelen Plateau, a large igneous province in the southern Indian Ocean, has a long sustained history of active volcanism and glacial/interglacial cycles of sedimentation, both of which may cause seafloor bubble production. We present the results of hydroacoustic flare observations around the underexplored volcanically active Heard Island and McDonald Islands on the Central Kerguelen Plateau. Flares were observed with a split‐beam echosounder and characterized using multifrequency decibel differencing. Deep‐tow camera footage, water properties, water column δ3He, subbottom profile, and sediment δ13C and δ34S data were analyzed to consider flare mechanisms. Excess δ3He near McDonald Islands seeps, indicating mantle‐derived input, suggests proximal hydrothermal activity; McDonald Islands flares may thus indicate CO2, methane, and other minor gas bubbles associated with shallow diffuse hydrothermal venting. The Heard Island seep environment, with subbottom acoustic blanking in thick sediment, muted 3He signal, and δ13C and δ34S fractionation factors, suggest that Heard Island seeps may either be methane gas (possibly both shallow biogenic methane and deeper‐sourced thermogenic methane related to geothermal heat from onshore volcanism) or a combination of methane and CO2, such as seen in sediment‐hosted geothermal systems. These data provide the first evidence of submarine gas escape on the Central Kerguelen Plateau and expand our understanding of seafloor processes and carbon cycling in the data‐poor southern Indian Ocean. Extensive sedimentation of the Kerguelen Plateau and additional zones of submarine volcanic activity mean additional seeps or vents may lie outside the small survey area proximal to the islands.
    Description: We thank the Australian Marine National Facility (MNF) for its support in the form of sea time on RV Investigator , support personnel, scientific equipment, and data management. We also thank the captain, crew, and fellow scientists of RV Investigator voyage IN2016_V01. We also thank specifically the following: T. Martin, F. Cooke, S. L. Sow, N. Bax, J. Ford, and F. Althaus, CSIRO (Commonwealth Scientific and Industrial Research Organisation); Echoview Software Pty. Ltd. (Hobart, Australia); C. Dietz and C. Cook, Central Science Laboratory, University of Tasmania; C. Wilkinson and T. Baumberger, National Oceanic and Atmospheric Administration; R. Carey, University of Tasmania; T. Holmes, Institute for Marine and Antarctic Studies, University of Tasmania; N. Polmear; and A. Post, Geoscience Australia. The overall science of the project is supported by Australian Antarctic Science Program (AASP) grant 4338. E.S.' PhD research is supported by the Australian Research Council's Special Research Initiative Antarctic Gateway Partnership (Project ID SR140300001) and by an Australian Government Research Training Program Scholarship. S.C.J. is supported by iCRAG under SFI, European Regional Development Fund, and industry partners, as well as ANZIC‐IODP. J.M.W. is supported by ARC grant DE140100376 and DP180102280. This is PMEL publication number 4910. All IN2016_V01 data and samples acquired on IN2016_V01 are made publicly available in accordance with MNF policy.
    Keywords: Large Igneous Province ; Hydroacoustic flares ; Cold methane seep ; Shallow hydrothermal ; Geothermal ; Gas bubbles
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...