ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2003-09-01
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2008-04-15
    Description: The weather patterns during periods of anomalous surface fluxes in the Kuroshio recirculation gyre of the western North Pacific are documented. Separate analyses are carried out for the cold season (October– March) when the net surface heat flux is controlled by the combination of the turbulent sensible and latent heat fluxes (Qturb), and for the warm season (May–August) when the net heating is dominated by the net radiative fluxes (Qrad). For analysis of high-frequency (daily to weekly) variations in the fluxes, direct measurements from the Kuroshio Extension Observatory (KEO) for the period June 2004–November 2005 are used to specify flux events. For analysis of interannual variations, these events are selected using NCEP–NCAR reanalysis estimates for Qturb in the cold season, and International Comprehensive Ocean–Atmosphere Data Set (ICOADS) data for cloud fraction, as a proxy for Qrad, in the warm season. During the cold season, episodic high-frequency flux events are associated with significant anomalies in the east–west sea level pressure gradients, and hence meridional winds and lower-tropospheric air temperature, reflecting the dominance of the atmospheric forcing of the flux variability. On the other hand, interannual variations in Qturb are associated with relatively weak atmospheric circulation anomalies, implying a relatively important role for the ocean. During the warm season, high-frequency fluctuations in the net surface fluxes occur due to a mix of anomalies in Qturb and Qrad. Enhanced cloudiness in the vicinity of KEO, and hence reduced Qrad, tends to occur in association with weak cyclonic disturbances of extratropical origin. A regional atmospheric circulation favoring these types of events also was found for warm seasons that were cloudier on the whole. Results suggest that the ocean’s influence on air–sea fluxes at KEO is manifested mostly on interannual time scales during the cold season.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2010-11-01
    Description: In the Northern Hemisphere midlatitude western boundary current (WBC) systems there is a complex interaction between dynamics and thermodynamics and between atmosphere and ocean. Their potential contribution to the climate system motivated major parallel field programs in both the North Pacific [Kuroshio Extension System Study (KESS)] and the North Atlantic [Climate Variability and Predictability (CLIVAR) Mode Water Dynamics Experiment (CLIMODE)], and preliminary observations and analyses from these programs highlight that complexity. The Gulf Stream (GS) in the North Atlantic and the Kuroshio Extension (KE) in the North Pacific have broad similarities, as subtropical gyre WBCs, but they also have significant differences, which affect the regional air–sea exchange processes and their larger-scale interactions. The 15-yr satellite altimeter data record, which provides a rich source of information, is combined here with the longer historical record from in situ data to describe and compare the current systems. While many important similarities have been noted on the dynamic and thermodynamic aspects of the time-varying GS and KE, some not-so-subtle differences exist in current variability, mode water properties, and recirculation gyre structure. This paper provides a comprehensive comparison of these two current systems from both dynamical and thermodynamical perspectives with the goal of developing and evaluating hypotheses about the physics underlying the observed differences, and exploring the WBC’s potential to influence midlatitude sea–air interaction. Differences between the GS and KE systems offer opportunities to compare the dominant processes and thereby to advance understanding of their role in the climate system.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-04-10
    Description: Mooring measurements from the Kuroshio Extension System Study (June 2004–June 2006) and from the ongoing Kuroshio Extension Observatory (June 2004–present) are combined with float measurements of the Argo network to study the variability of the North Pacific Subtropical Mode Water (STMW) across the entire gyre, on time scales from days, to seasons, to a decade. The top of the STMW follows a seasonal cycle, although observations reveal that it primarily varies in discrete steps associated with episodic wind events. The variations of the STMW bottom depth are tightly related to the sea surface height (SSH), reflecting mesoscale eddies and large-scale variations of the Kuroshio Extension and recirculation gyre systems. Using the observed relationship between SSH and STMW, gridded SSH products and in situ estimates from floats are used to construct weekly maps of STMW thickness, providing nonbiased estimates of STMW total volume, annual formation and erosion volumes, and seasonal and interannual variability for the past decade. Year-to-year variations are detected, particularly a significant decrease of STMW volume in 2007–10 primarily attributable to a smaller volume formed. Variability of the heat content in the mode water region is dominated by the seasonal cycle and mesoscale eddies; there is only a weak link to STMW on interannual time scales, and no long-term trends in heat content and STMW thickness between 2002 and 2011 are detected. Weak lagged correlations among air–sea fluxes, oceanic heat content, and STMW thickness are found when averaged over the northwestern Pacific recirculation gyre region.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2006-02-01
    Description: Data from the Eastern Pacific Investigation of Climate Studies (EPIC) mooring array are used to evaluate the annual cycle of surface cloud forcing in the far eastern Pacific stratus cloud deck/cold tongue/intertropical convergence zone complex. Data include downwelling surface solar and longwave radiation from 10 EPIC-enhanced Tropical Atmosphere Ocean (TAO) moorings from 8°S, 95°W to 12°N, 95°W, and the Woods Hole Improved Meteorology (IMET) mooring in the stratus cloud deck region at 20°S, 85°W. Surface cloud forcing is defined as the observed downwelling radiation at the surface minus the clear-sky value. Solar cloud forcing and longwave cloud forcing are anticorrelated at all latitudes from 12°N to 20°S: clouds tended to reduce the downward solar radiation and to a lesser extent increase the downward longwave radiation at the surface. The relative amount of solar radiation reduction and longwave increase depends upon cloud type and varies with latitude. A statistical relationship between solar and longwave surface cloud forcing is developed for rainy and dry periods and for the full record length in six latitudinal regions: northeast tropical warm pool, ITCZ, frontal zone, cold tongue, southern, and stratus deck regions. The buoy cloud forcing observations and empirical relations are compared with the International Satellite Cloud Climatology Project (ISCCP) radiative flux data (FD) dataset and are used as benchmarks to evaluate surface cloud forcing in the NCEP Reanalysis 2 (NCEP2) and 40-yr ECMWF Re-Analysis (ERA-40). ERA-40 and NCEP2 cloud forcing (both solar and longwave) showed large discrepancies with observations, being too large in the ITCZ and equatorial regions and too weak under the stratus deck at 20°S and north to the equator during the cool season from July to December. In particular the NCEP2 cloud forcing at the equator was nearly identical to the ITCZ region and thus had significantly larger solar cloud forcing and smaller longwave cloud forcing than observed. The net result of the solar and longwave cloud forcing deviations is that there is too little radiative warming in the ITCZ and southward to 8°S during the warm season and too much radiative warming under the stratus deck at 20°S and northward to the equator during the cold season.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2008-07-01
    Description: The eastern tropical Pacific Ocean is important climatically because of its influence on the El Niño–Southern Oscillation (ENSO) cycle and the American monsoon. Accurate prediction of these phenomena requires a better understanding of the background climatological conditions on which seasonal-to-interannual time-scale anomalies develop in the region. This study addresses the processes responsible for the seasonal cycle of sea surface temperature (SST) in the eastern tropical Pacific using 3 yr (April 2000–March 2003) of moored buoy and satellite data between 8°S and 12°N along 95°W. Results indicate that at all latitudes, surface heat fluxes are important in the mixed layer temperature balance. At 8°S, in a region of relatively deep mean thermocline and mixed layer, local storage of heat crossing the air–sea interface accounts for much of the seasonal cycle in SST. In the equatorial cold tongue and the intertropical convergence zone, where mean upwelling leads to relatively thin mixed layers, vertical turbulent mixing with the upper thermocline is a major contributor to SST change. Lateral temperature advection by seasonally varying large-scale currents is most significant near the equator but is generally of secondary importance. There is a hemispheric asymmetry in seasonal SST variations, with larger amplitudes in the Southern Hemisphere than in the Northern Hemisphere. This asymmetry is mainly due to forcing from the southerly component of the trade winds, which shifts the axis of equatorial upwelling south of the equator while creating an oceanic convergence zone to the north that limits the northward spread of cold upwelled water. In general, results support the Mitchell and Wallace hypothesis about the importance of southerly winds and ocean–atmosphere feedbacks in establishing seasonally varying climatological conditions in the eastern tropical Pacific.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2009-06-15
    Description: The roles of intraseasonal Kelvin waves and tropical instability waves (TIWs) in the intraseasonal and low-frequency mixed-layer temperature budget were examined in an isopycnal ocean model forced by QuikSCAT winds from 2000 to 2004. Correlations between temperature tendency and other terms of the intraseasonal budget compare well with previous results using Tropical Atmosphere Ocean (TAO) observations: the net heat flux has the largest correlation in the western Pacific and zonal advection has the largest correlation in the central Pacific. In the central Pacific, the intraseasonal variations in zonal advection were due to both the zonal background velocity acting on the Kelvin wave temperature anomaly and the Kelvin wave’s anomalous velocity acting on the background temperature. In the eastern Pacific, three of the four temperature budget terms have comparable correlations. In particular, the vertical processes acting on the shallow thermocline cause large SST anomalies in phase with the intraseasonal thermocline anomalies. On intraseasonal time scales, the influence of individual composite upwelling and downwelling Kelvin waves cancel each other. However, because the intraseasonal SST anomalies increase to the east, a zonal gradient of SST is generated that is in phase with intraseasonal zonal velocity. Consequently, heat advection by the Kelvin waves rectifies into lower frequencies in the eastern Pacific. Rectification resulting from TIWs was also seen. The prevalence of intraseasonal Kelvin waves and the zonal structure of intraseasonal SST from 2002 to early 2004 suggested that they might be important in setting the eastern Pacific SST on interannual time scales.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2014-07-12
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2016-03-29
    Description: One of the major challenges to assessing the impact of ocean acidification on marine life is the need to better understand the magnitude of long-term change in the context of natural variability. This study addresses this need through a global synthesis of monthly pH and aragonite saturation state (Ωarag) climatologies for 12 open ocean, coastal, and coral reef locations using 3-hourly moored observations of surface seawater partial pressure of CO2 and pH collected together since as early as 2010. Mooring observations suggest open ocean subtropical and subarctic sites experience present-day surface pH and Ωarag conditions outside the bounds of pre-industrial variability throughout most, if not all, of the year. In general, coastal mooring sites experience more natural variability and thus, more overlap with pre-industrial conditions; however, present day Ωarag conditions surpass biologically relevant thresholds associated with ocean acidification impacts on Mytilus californianus (Ωarag 〈 1.8) and Crassostrea gigas (Ωarag 〈 2.0) larvae in the California Current Ecosystem (CCE) and Mya arenaria larvae in the Gulf of Maine (Ωarag 〈 1.6). At the most variable mooring locations in coastal systems of the CCE, subseasonal conditions approached Ωarag = 1. Global and regional models and data syntheses of ship-based observations tended to underestimate seasonal variability compared to mooring observations. Efforts such as this to characterize all modes of pH and Ωarag variability and change at key locations are fundamental to assessing present-day biological impacts of ocean acidification, further improving experimental design to interrogate organism response under real-world conditions, and improving predictive models and vulnerability assessments seeking to quantify the broader impacts of ocean acidification.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2005-02-01
    Description: The atmospheric boundary layer (ABL) along 95°W in the eastern equatorial Pacific during boreal autumn is described using data from the East Pacific Investigation of Climate (EPIC) 2001, with an emphasis on the evolution of the thermodynamic ABL properties from the cold tongue to the cold-advection region north of the sea surface temperature (SST) front. Surface sensible and latent heat fluxes and wind stresses between 1°S and 12°N are calculated from data from eight NCAR C-130 research aircraft flights and from Tropical Atmosphere Ocean (TAO) buoys. Reduced surface wind speed and a 10 m s−1 jet at a height of 500 m are found over the equatorial cold tongue, demonstrating the dependence of the surface wind speed on surface stability. The ABL exhibits a maximum in cloud cover on the north (downwind) side of the warm SST front, at 1°–3°N. Turbulent mixing driven by both surface buoyancy flux and radiative cooling at the cloud tops plays a significant role in maintaining the depth and structure of the ABL. The ABL heat budget between the equator and 3°N is balanced by comparable contributions from advective cooling, radiative cooling, surface warming, and entrainment warming. Entrainment drying is a weak contributor to the moisture budget, relative to dry advection and surface evaporation. Both the heat and moisture budgets are consistent with a rapid entrainment rate, 12 ± 2 mm s−1, deduced from the observed rise of the inversion with latitude between 0° and 4°N.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...