ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2019-06-28
    Description: Results are reported for an investigation of a new direct-simulation Monte Carlo method by which energy transfer and chemical reactions are calculated. The new method, which reduces to the variable cross-section hard sphere model as a special case, allows different viscosity-temperature exponents for each species in a gas mixture when combined with a modified Larsen-Borgnakke phenomenological model. This removes the most serious limitation of the usefulness of the model for engineering simulations. The necessary kinetic theory for the application of the new method to mixtures of monatomic or polyatomic gases is presented, including gas mixtures involving chemical reactions. Calculations are made for the relaxation of a diatomic gas mixture, a plane shock wave in a gas mixture, and a chemically reacting gas flow along the stagnation streamline in front of a hypersonic vehicle. Calculated results show that the introduction of different molecular interactions for each species in a gas mixture produces significant differences in comparison with a common molecular interaction for all species in the mixture. This effect should not be neglected for accurate DSMC simulations in an engineering context.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA PAPER 91-1343
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-17
    Description: A pair of electronic models has been developed of a Ferroelectric Field Effect transistor. These models can be used in standard electrical circuit simulation programs to simulate the main characteristics of the FFET. The models use the Schmitt trigger circuit as a basis for their design. One model uses bipolar junction transistors and one uses MOSFET's. Each model has the main characteristics of the FFET, which are the current hysterisis with different gate voltages and decay of the drain current when the gate voltage is off. The drain current from each model has similar values to an actual FFET that was measured experimentally. T'he input and o Output resistance in the models are also similar to that of the FFET. The models are valid for all frequencies below RF levels. No attempt was made to model the high frequency characteristics of the FFET. Each model can be used to design circuits using FFET's with standard electrical simulation packages. These circuits can be used in designing non-volatile memory circuits and logic circuits and is compatible with all SPICE based circuit analysis programs. The models consist of only standard electrical components, such as BJT's, MOSFET's, diodes, resistors, and capacitors. Each model is compared to the experimental data measured from an actual FFET.
    Keywords: Electronics and Electrical Engineering
    Type: Integrated Ferroelectrics; Mar 11, 2001; Colorado Springs, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-13
    Description: The ferroelectric channel in a Metal-Ferroelectric-Semiconductor Field Effect Transistor (MFSFET) can partially change its polarization when the gate voltage near the polarization threshold voltage. This causes the MFSFET Drain current to change with repeated pulses of the same gate voltage near the polarization threshold voltage. A previously developed model [11, based on the Fermi-Dirac function, assumed that for a given gate voltage and channel polarization, a sin-le Drain current value would be generated. A study has been done to characterize the effects of partial polarization on the Drain current of a MFSFET. These effects have been described mathematically and these equations have been incorporated into a more comprehensive mathematical model of the MFSFET. The model takes into account the hysteresis nature of the MFSFET and the time dependent decay as well as the effects of partial polarization. This model defines the Drain current based on calculating the degree of polarization from previous gate pulses, the present Gate voltage, and the amount of time since the last Gate volta-e pulse.
    Keywords: Electronics and Electrical Engineering
    Type: Integrated Ferroelectrics; Mar 07, 1999; Colorado Springs, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-13
    Description: The characteristics for a MFSFET (metal-ferroelectric-semiconductor field effect transistor) is very different than a conventional MOSFET and must be modeled differently. The drain current has a hysteresis shape with respect to the gate voltage. The position along the hysteresis curve is dependent on the last positive or negative polling of the ferroelectric material. The drain current also has a logarithmic decay after the last polling. A model has been developed to describe the MFSFET drain current for both gate voltage on and gate voltage off conditions. This model takes into account the hysteresis nature of the MFSFET and the time dependent decay. The model is based on the shape of the Fermi-Dirac function which has been modified to describe the MFSFET's drain current. This is different from the model proposed by Chen et. al. and that by Wu.
    Keywords: Electronics and Electrical Engineering
    Type: International Symposium on integrated Ferroelectrics; Mar 01, 1998; Monterey, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-13
    Description: A two dimensional numerical model of the inversion layer metal insulator semiconductor (IL/MIS) solar cell is proposed by using the finite element method. The two-dimensional current flow in the device is taken into account in this model. The electrostatic potential distribution, the electron concentration distribution, and the hole concentration distribution for different terminal voltages are simulated. The results of simple calculation are presented. The existing problems for this model are addressed. Future work is proposed. The MIS structures are studied and some of the results are reported.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA-CR-187875 , NAS 1.26:187875
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: Turbulent and unsteady separated flows occur on most practical flight vehicles, but are not yet sufficiently understood for designs to provide safe margins of performance without recourse to extensive experiment and computation. In date, reliable experimental data for even basic flows is severely limited and does not yet provide a satisfactory data base with which to assess current design and calculation methods. Although the laser velocimeter (LV) has become a proven, nonintrusive instrument for the measurement of local mean velocities and turbulence properties, measurements have been of a mean, statistical nature derived from averages accumulated independently at different positions in the flow. Thus, the measurements do not give an instantaneous dynamic, picture of the flow-field structures. Accordingly, a new technique for rapid LV scans of turbulent flow fields was proposed. The potential of this new instrument for fundamental fluid mechanical measurements of turbulent flows has been demonstrated. The results clearly show that significant unsteady flow features are hidden by conventional measurements and that the scanning laser velocimeter should prove an invauable tool in future studies of the structure of turbulent flows.
    Keywords: AERODYNAMICS
    Type: NASA-CR-172493 , NAS 1.26:172493
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-18
    Description: A programmable logic gate array has been designed utilizing ferroelectric field effect transistors. The design has only a small number of gates, but this could be scaled up to a more useful size. Using FFET's in a logic array gives several advantages. First, it allows real-time programmability to the array to give high speed reconfiguration. It also allows the array to be configured nearly an unlimited number of times, unlike a FLASH FPGA. Finally, the Ferroelectric Programmable Logic Gate Array (FPLGA) can be implemented using a smaller number of transistors because of the inherent logic characteristics of an FFET. The device was only designed and modeled using Spice models of the circuit, including the FFET. The actual device was not produced. The design consists of a small array of NAND and NOR logic gates. Other gates could easily be produced. They are linked by FFET's that control the logic flow. Timing and logic tables have been produced showing the array can produce a variety of logic combinations at a real time usable speed. This device could be a prototype for a device that could be put into imbedded systems that need the high speed of hardware implementation of logic and the complexity to need to change the logic algorithm. Because of the non-volatile nature of the FFET, it would also be useful in situations that needed to program a logic array once and use it repeatedly after the power has been shut off.
    Keywords: Electronics and Electrical Engineering
    Type: 14th International Symposium on Integrated Ferroelectrics; Mar 12, 2003; Colordao Springs, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-18
    Description: An electronic simulation model has been developed of a ferroelectric field effect transistor (FFET). This model can be used in standard electrical circuit simulation programs to simulate the main characteristics of the FFET. The model uses a previously developed algorithm that incorporates partial polarization as a basis for the design. The model has the main characteristics of the FFET, which are the current hysterisis with different gate voltages and decay of the drain current when the gate voltage is off. The drain current has values matching actual FFET's, which were measured experimentally. The input and output resistance in the model is similar to that of the FFET. The model is valid for all frequencies below RF levels. A variety of different ferroelectric material characteristics can be modeled. The model can be used to design circuits using FFET'S with standard electrical simulation packages. The circuit can be used in designing non-volatile memory circuits and logic circuits and is compatible with all SPICE based circuit analysis programs. The model is a drop in library that integrates seamlessly into a SPICE simulation. A comparison is made between the model and experimental data measured from an actual FFET.
    Keywords: Electronics and Electrical Engineering
    Type: International Joint Conference on the Applications of Ferroelectrics 2002; May 28, 2002; Nara; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-18
    Description: Considerable research has been performed by several organizations in the use of the Metal- Ferroelectric-Semiconductor Field-Effect Transistors (MFSFET) in memory circuits. However, research has been limited in expanding the use of the MFSFET to other electronic circuits. This research project investigates the modeling of a NAND gate constructed from MFSFETs. The NAND gate is one of the fundamental building blocks of digital electronic circuits. The first step in forming a NAND gate is to develop an inverter circuit. The inverter circuit was modeled similar to a standard CMOS inverter. A n-channel MFSFET with positive polarization was used for the n-channel transistor, and a n-channel MFSFET with negative polarization was used for the p-channel transistor. The MFSFETs were simulated by using a previously developed current model which utilized a partitioned ferroelectric layer. The inverter voltage transfer curve was obtained over a standard input of zero to five volts. Then a 2-input NAND gate was modeled similar to the inverter circuit. Voltage transfer curves were obtained for the NAND gate for various configurations of input voltages. The resultant data shows that it is feasible to construct a NAND gate with MFSFET transistors.
    Keywords: Electronics and Electrical Engineering
    Type: 11th International Meeting on Ferroelectricity; Sep 05, 2005 - Sep 09, 2005; Foz do Iguacu; Brazil
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-12
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Thermophysics and Heat Transfer (ISSN 0887-8722); 6; 27-34
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...