ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (12)
  • Lunar and Planetary Science and Exploration  (8)
  • Space Sciences (General)  (4)
  • 2005-2009  (12)
  • 11
    Publication Date: 2019-07-13
    Description: Introduction: A study was requested in December, 2005 by the Space Medicine Division at the NASA-Johnson Space Center (JSC) to identify Apollo mission issues relevant to medical operations that had impact to crew health and/or performance. The objective was to use this new information to develop medical requirements for the future Crew Exploration Vehicle (CEV), Lunar Surface Access Module (LSAM), Lunar Habitat, and Advanced Extravehicular Activity (EVA) suits that are currently being developed within the exploration architecture. Methods: Available resources pertaining to medical operations on the Apollo 7 through 17 missions were reviewed. Ten categories of hardware, systems, or crew factors were identified in the background research, generating 655 data records in a database. A review of the records resulted in 280 questions that were then posed to surviving Apollo crewmembers by mail, face-to-face meetings, or online interaction. Response analysis to these questions formed the basis of recommendations to items in each of the categories. Results: Thirteen of 22 surviving Apollo astronauts (59%) participated in the project. Approximately 236 pages of responses to the questions were captured, resulting in 107 recommendations offered for medical consideration in the design of future vehicles and EVA suits based on the Apollo experience. Discussion: The goals of this project included: 1) Develop or modify medical requirements for new vehicles; 2) create a centralized database for future access; and 3) take this new knowledge and educate the various directorates at NASA-JSC who are participating in the exploration effort. To date, the Apollo Medical Operations recommendations are being incorporated into the exploration mission architecture at various levels and a centralized database has been developed. The Apollo crewmembers input has proved to be an invaluable resource, prompting ongoing collaboration as the requirements for the future exploration missions continue to evolve and be refined.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 16th Annual Humans in Space 2007; May 20, 2007 - May 24, 2007; Beijing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-08-14
    Description: In this new era of space exploration, a host of launch vehicles are being examined for possible use in transporting cargo and crew to low Earth orbit and beyond. Launch vehicles derived from the Space Shuttle Program (SSP), known as Shuttle Derived Vehicles (SDVs), are prime candidates for heavy-lift duty because of their potential to minimize non-recurring costs and because the Shuttle can leverage off proven high-performance flight systems with established ground and flight support. To determine the merits of SDVs, a detailed evaluation was performed. This evaluation included a trade study and risk assessment of options based on performance, safety reliability, cost, operations, and evolution. The purpose of this paper is to explain the approach, processes, and tools used to evaluate launch vehicles for heavy lift cargo transportation. The process included defining the trade space, characterizing the concepts, analyzing the systems, and scoring the options. The process also included a review by subject experts from NASA and industry to compare past and recent study data and assess the risks. A set of technical performance measures (TPMs) was generated based on the study requirements and constraints. Tools such as INTROS and POST were used to calculate performance, FIRST was used for prediction of reliability, and other software packages, both commercial and NASA-owned, were applied to study the trade space. By following a clear process and using the right tools a thorough assessment was performed. An SDV can be classified as either a side-mount vehicle (SMV) or an in-line vehicle OLV). An SMV is a Space Shuttle where the Orbiter is replaced by a cargo carrier. An ILV is comprised of a modified Shuttle External Tank (ET) with engines mounted to the bottom and cargo mounted atop. For both families of vehicles, Solid Rocket Boosters (SRBs) are attached to the ET. The first derivate of Shuttle is defined as the vehicle with minimum changes necessary to transform the Space Shuttle into an SDV. Deltas from the first derivate were also formulated to study more SDV options. Examples of deltas include replacing the SRBs with larger and/or more SRBs, adding an upper stage, increasing the size of the ET, changing the engines, and modifying the elements. Challenges for SDV range from tailoring infrastructure to meeting the exploration schedule. Although SDV is based on the Space Shuttle, it still includes development risk for designing and building a Cargo Carrier. There are also performance challenges in that Shuttle is not optimized for cargo-only missions, but it is a robust system built on reusability. Balancing the strengths and weaknesses of the Shuttle to meet Lunar and Mars mission objectives provides the framework for an informative trade study. SDV was carefully analyzed and the results of the study provide invaluable data for use in the new exploration initiative.
    Keywords: Space Sciences (General)
    Type: AIAA 1st Exploration Conference; Jan 30, 2005 - Feb 01, 2005; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...