ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 6 (1986), S. 389-405 
    ISSN: 0886-1544
    Keywords: cell membrane complex ; extracellular matrix ; fibronectin ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Intermediate filaments (IF) were found in close proximity to the plasma membrane in substrate attached baby hamster kidney cells (BHK-21) and chick embryo fibroblasts (CEF) as well as cells removed from their substrate in the absence of trypsin. However, in cells removed with trypsin, it appeared that IF had retracted away from the membrane. In cells with abundant extracellular matrix (ECM), colchicine induced massive cables of IF, which appeared to interact with specialized areas of the inner plasma membrane. In cells lysed to extract most microfilaments and cytoplasmic constituents, the intact IF network which remained was closely associated with the ECM. From these ultrastructural observations it was concluded that IF interact in some way with a “cell membrane complex” defined as comprising the plasma membrane and molecules attached to its inner and outer surfaces.In order to investigate the possibility that components of the membrane complex may co-isolate with IF, native intermediate filaments (NIF) were prepared. In addition to the structural subunits and other associated polypeptides, a ∼220 kd species which reacted specifically with antibodies directed against the ECM protein fibronectin (FN) was observed; 220 kd was still present after NIF were isolated under pH conditions where FN is more soluble, suggesting that its presence was not simply due to the coprecipitation of two insoluble proteins. Immunofluorescence and immunogold localization confirmed that FN is a component of the cell membrane complex with which IF appeared to interact.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 8 (1987), S. 284-291 
    ISSN: 0886-1544
    Keywords: tyrosination ; acetylation ; post-translational modifications ; cytoskeleton ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We have examined the distribution of acetylated α-tubulin using immunofluorescence microscopy in fibroblastic cells of rat brain meaninges. Meningeal fibroblasts showed heterogenous staining patterns with a monoclonal antibody against acetylated α-tubulin ranging from staining of primary cilia or microtubule-organising centers (MTOCs) alone to extensive microtubule networks. Staining with a broad spectrum anti-α-tubulin monoclonal indicated that all cells possessed cytoplasmic microtubule networks. From double-labeling experiments using an antibody against acetylated α-tubulin (6-11B-1) and antibodies against either tyrosinated or detyrosinated α-tubulin, it was found that acetylated α-tubulin and tyrosinated α-tubulin were often segregated to different microtubules. The microtubules containing acetylated but not tyrosinated α-tubulin were cold stable. Therefore, it appeared that in general meningeal cells possessed two subset of microtubules: One subset contained detyrosinated and acetylated α-tubulin and was cold stable, and the other contained tyrosinated α-tubulin and was cold labile. These results are consistent with the idea that acetylation and detyrosination of α-tubulin are involved in the specification of stable microtubules.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 17 (1990), S. 150-166 
    ISSN: 0886-1544
    Keywords: cytoskeletal dynamics ; IF depolymerization ; type III IF regulation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: A morphological analysis of the organizational changes in the type III intermediate filament (IF) system in dividing baby hamster kidney (BHK-21) cells was carried out by immunofluorescence and immunoelectron microscopy. The most dramatic change occurred during prometaphase, when the typical network of long 10-nm-diameter IF characteristic of interphase cells disassembled into aggregates containing short 4-6 nm filaments. During anaphase-telophase, arrays of short IF reappeared throughout the cytoplasm, and, in cytokinesis, the majority of IF were longer and concentrated in a juxtanuclear cap. These results demonstrate that the relatively stable IF cytoskeletal system of interphase cells is partitioned into daughter cells during mitosis by a process of disassembly and reassembly. This latter process occurs in a series of morphologically distinct steps at different stages of the mitotic process.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 3 (1983), S. i 
    ISSN: 0886-1544
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 3 (1983), S. 283-305 
    ISSN: 0886-1544
    Keywords: taxol ; microtubules ; intermediate filaments ; fibroblasts ; epithelial cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Taxol promotes microtubule (MT) assembly in vitro and induces the reorganization of the cytoskeleton into unusual MT arrays in cultured cells. The possibility that taxol also has an indirect effect on intermediate filaments (IF) was investigated. In baby hamster kidney (BHK-21) and human skin (ENSON) fibroblasts treated with 1-10 μM taxol for 1-24 h, the drug induces changes which are similar to those produced by colchicine. These include a loss of major cellular extensions, a redistribution of organelles to a perinuclear location, and an inhibition of locomotion. Saltatory particle movements are not inhibited, however. Ruffling and filopod formation continue, indicating that cells are viable up to 24 h.Polarized light microscopy of living fibroblasts treated with taxol reveals the presence of perinuclear birefringent material which has been examined by immunofluorescence. In control cells, IF and MT radiate from a juxtanuclear region and extend to the cell periphery. In taxol-treated cells, MT and IF are excluded from cell margins, forming large central bundles.In the epithelial cell lines PtK2 and PAM, the keratin system of IF does not become redistributed; in PtK2, however, a second fibroblastlike system of IF does become redistributed to a perinuclear position during taxol treatment.Ultrastructural analyses show that taxol-treated fibroblasts contain parallel arrays of cross-bridged MT-IF as well as bundles of MT exclusive of IF. Epithelial cells contain a predominance of IF-free MT bundles which are organized into hexagonally packed arrays. In these bundles MT frequently exhibit hooks or other incomplete MT profiles and are linked by filamentous material.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    ISSN: 0886-1544
    Keywords: BHK-21 cells ; cytoskeleton ; microfilaments ; microtubules ; stress fibers ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: A monoclonal antibody was produced, using as antigen a BHK-21 cytoskeletal preparation enriched in intermediate filaments (IF) and their associated proteins. This antibody reacted exclusively with a reproducible set of 70-280kD polypeptides present in minor quantities in this preparation, as detected by immunoblot analysis. Based upon several criteria, this immunologically related group of polypeptides was designated as IFAP-70/280kD (IF-Associated Protein): (1) it coisolated with IF in vitro, (2) it co-localized (by both immunofluorescence and immunoelectron microscopy) with IF in situ in all stages of cell spreading, and (3) it segregated in vitro with the 54/55kD (desmin/vimentin) structural IF subunit proteins of BHK cells through two cycles of in vitro disassembly/assembly. Immunogold labeling further localized IFAP-70/280kD to regions of parallel or loosely bundled IF in situ, suggesting a role in regulating the supramolecular organization of IF. When this monoclonal antibody was used for double-label immunofluorescence observations of colchicine-treated BHK cells, it demonstrated the presence of colchicine-sensitive and colchicine-insensitive IF. Anti-IFAP-70/280kD localized entirely to the drug-induced juxtanuclear IF cap, while a polyclonal antibody directed against the desmin/vimentin structural IF subunits and the previously characterized monoclonal anti-IFAP-300kD [Yang et al., 1985; J. Cell Biol. 100:620] localized to both the juxtanuclear IF cap and a colchicine-insensitive IF network peripheral to the cap in the same cells. The colchicine-insensitive IF pattern often exhibited similarities to that observed for the actin-based stress fiber system, suggesting that stress fiber association may be an additional factor in IF organization. © 1992 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 1 (1980), S. 159-162 
    ISSN: 0886-1544
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    ISSN: 0886-1544
    Keywords: intermediate filament ; desmosomes ; epidermal keratinocytes ; nuclear envelope ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We have shown, by indirect immunofluorescence microscopy using an antiserum against the mouse keratin subunit K2 and by electron microscopy, that transformed (PAM) and primary (PME) mouse epidermal cells possess extensive net works of IF bundles. Following trypsinization and replating of PAM cells, IF bundles are seen to move as a continuous net work from a perinuclear zone into the peripheral cytoplasmic regions. In PAM cells lysed in high-ionic-strength solutions containing Triton ×-100 and DNAase-1, IF bundles appear to be closely associated with nuclear envelope remnants and, in some cases, appear to be attached to nuclear pore complexes. PME cells cultivated in low Ca2+-containing medium possess perinuclear birefringent arrays of IF bundles. Within 2 hours of switching the cells to normal Ca2+ levels, the PME IF bundle network moves towards and establishes contact with the cell surface as desmosomes form. Live cells observed by phase contrast and fixed cells observed by immunofluorescence microscopy demonstrate that desmosomes can be distinguished as dark bands separating neighboring cells. There is little difference between the major proteins seen in SDS-polyacrylamide gel profiles of isolated IF bundle net works from PME cells before and after the Ca2+ switch. Therefore, a reorganization of relatively insoluble membrane-associated protein following the Ca2+ switch may be involved in desmosome formation. The isolated IF networks from PAM cells differ in protein composition compared to the PME IF networks. This may be related to the greatly reduced number of desmosomes in PAM cells. The IF bundle system in epidermal cells appears to be involved in shape formation, shape maintenance, the establishment of desmosomes, nuclear centration, and cell-cell contact.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 2 (1982), S. 211-215 
    ISSN: 0886-1544
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    ISSN: 0886-1544
    Keywords: fast axonal transport ; mitochondria ; membrane receptors ; cytoskeleton ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: In living tissue, membrane-bound organelles, including mitochondria, move along parallel cytoplasmic pathways. Motion is directed and tends to be confined to a single path. Deviations from this single path motion are rare. When present, however, they tend to occur at points of intersection of cytoskeletal linear elements (LE). Such intersections are relatively uncommon in intact axons and extruded axoplasm. However, we have found that such intersections can be produced in extruded preparations by shear forces directed tangential to the axoplasmic surface.We have studied the detailed behavior of mitochondria in extruded squid axoplasm. Special attention was directed to the relationship between mitochondrial shape changes and orientation of cytoskeletal LE. The most striking of these changes in shape is branching. In this process, the mitochondrion transiently assumes a triradial (three-ended) shape. This appearance may be maintained for seconds to minutes before the normal cylindrical shape is resumed by absorption of either the newly formed end or, more commonly, one of the original ends. The frequency of branching appears to be dependent on the degree of cytoskeletal organization. It becomes more common as the number of apparent intersections between cytoskeletal LE increases. Further, the formation of new ends seems to occur along paths defined by cytoskeletal elements.These observations suggest that the mitochondrial membrane is multivalent. That is, it contains multiple sites capable of interacting with the axonal force generation apparatus. Furthermore, LE in the cytoskeleton may indicate the paths along which these interactions are permissible.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...