ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Acoustics
    Type: NF1676L-21246 , 2015 Acoustics Technical Working Group Meeting; Apr 21, 2015 - Apr 22, 2015; Hampton, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-19
    Description: The response of auditory filters is central to frequency selectivity of sound by the human auditory system. This is true especially for realistic complex sounds that are often encountered in many applications such as modeling the audibility of sound, voice recognition, noise cancelation, and the development of advanced hearing aid devices. The purpose of this study was to establish the response of low frequency (below 100Hz) auditory filters. Two experiments were designed and executed; the first was to measure subject's hearing threshold for pure tones (at 25, 31.5, 40, 50, 63 and 80 Hz), and the second was to measure the Psychophysical Tuning Curves (PTCs) at two signal frequencies (Fs= 40 and 63Hz). Experiment 1 involved 36 subjects while experiment 2 used 20 subjects selected from experiment 1. Both experiments were based on a 3-down 1-up 3AFC adaptive staircase test procedure using either a variable level narrow-band noise masker or a tone. A summary of the results includes masked threshold data in form of PTCs, the response of auditory filters, their distribution, and comparison with similar recently published data.
    Keywords: Acoustics
    Type: NF1676L-27590 , Meeting of the Acoustical Society of America; Dec 04, 2017 - Dec 08, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-13
    Description: A new computational technique, Wave Confinement (WC), is extended here to account for sound diffraction around arbitrary terrain. While diffraction around elementary scattering objects, such as a knife edge, single slit, disc, sphere, etc. has been studied for several decades, realistic environments still pose significant problems. This new technique is first validated against Sommerfeld's classical problem of diffraction due to a knife edge. This is followed by comparisons with diffraction over three-dimensional smooth obstacles, such as a disc and Gaussian hill. Finally, comparisons with flight test acoustics data measured behind a hill are also shown. Comparison between experiment and Wave Confinement prediction demonstrates that a Poisson spot occurred behind the isolated hill, resulting in significantly increased sound intensity near the center of the shadowed region.
    Keywords: Acoustics
    Type: NF1676L-25339 , AHS International Annual Forum and Technology Display; May 09, 2017 - May 11, 2017; Fort Worth, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-10-01
    Description: The main purpose of this study is to examine the audibility of multiple, low-frequency tones that are placed in distinct auditory channels. Three experiments are described, the goals of which are to determine if the presence of sound in multiple channels results in enhanced audibility and to assess the applicability of the Statistical Summation Model (SSM) to this frequency range. This model predicts that for the case of multiple signals that are in separate auditory channels, implying statistical independence, each with sensitivity value d prime of i, the resulting total sensitivity is given by the square root of the sum of the squares of the individual d prime of i values. In common with previous studies conducted at higher frequencies, the signals are pure tones and the maskers are broadband noise. The requirement that low frequency tones be placed in separate auditory filters limited the number of tones to a maximum of three. The first of the three experiments measured the change in masked thresholds for two- and three-tone signals relative to the level of the equally-detectable single tones. The multiple tone signals were composed of combinations of 55, 120 and 200 Hz tones. The measured changes in thresholds exceeded those predicted by the SSM, although they did not differ statistically from the model predictions. The second experiment employed the same overall approach but acquired more data and concentrated on the three-tone signal. Once again, the measured changes in masked threshold exceeded the model predictions, this time to a statistically-significant degree. Two issues were postulated with the potential to yield inflated changes in masked threshold: interaction between tones resulting in perceptible intermodulation/difference tones, and the assumption that the tones were in distinct auditory filters and statistically independent of one another. The third experiment used two sets of three-tone signals to address these latter concerns. The first set of three tones was composed of harmonically related tone frequencies of 55, 110 and 165 Hz, which was an attempt to reduce effects of intermodulation difference tones. The second set of three tones was chosen to be 110, 220 and 330 Hz, again reducing effects of difference tones, but also providing greater separation between tones. Results for the first set of three tones compared to those of the earlier experiments indicated that intermodulation was not an important effect. The second set of three tones (110, 220, 330 Hz) yielded changes in masked thresholds that, on average, were in good agreement with the SSM, although intersubject variability was large and prohibited a definitive conclusion regarding the concern that tone spacing was inadequate. The results of the three experiments showed that the masked threshold of sounds with multiple (two or three) equally-detectable low frequency tones was lower than those of the single tones. In other words, it is clear that audibility is enhanced by the presence of signals in multiple auditory filters. This finding is consistent with most previous research conducted at higher frequencies. In contrast with previous research, test subjects were, on average, able to detect multitone sounds at lower levels than those predicted using the SSM. Analyses that included Monte Carlo simulations showed that normally distributed errors in the single tone thresholds result in biased estimates of the thresholds of multitone sounds. This phenomenon is likely responsible for at least a substantial fraction of the unexpected deviation of measurements from SSM predictions.
    Keywords: Acoustics
    Type: NASA/TM-2019-220398 , NF1676L-34199
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...