ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-07-14
    Description: The periaqueductal gray matter of the mesencephalon (PAG) subserves a variety of diverse autonomic functions and also appears to be a site for opiate action in the induction of immunosuppression. Microinjections of morphine into the PAG, but not into other opiate receptor-containing neuroanatomical sites, result in a rapid suppression of natural killer (NK) cell activity. The NK cell suppression can be blocked by prior peripheral administration of the opiate antagonist naltrexone. These findings demonstrate that certain central actions of opiates that produce changes in NK cell function are mediated through opiate receptors in the PAG and identify a brain region involved in opiate regulation of immune function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weber, R J -- Pert, A -- New York, N.Y. -- Science. 1989 Jul 14;245(4914):188-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Medicinal Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2749256" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Immune Tolerance ; Killer Cells, Natural/drug effects/immunology ; Male ; Mesencephalon/drug effects/*immunology ; Microinjections ; Morphine/administration & dosage/antagonists & inhibitors/*pharmacology ; Naltrexone/pharmacology ; Rats ; Rats, Inbred F344
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 1990-09-14
    Description: C-myb, the normal cellular homolog of the retroviral transforming gene v-myb, encodes a nuclear, transcriptional regulatory protein (p75c-myb). C-myb is involved in regulating normal human hematopoiesis, and inhibits dimethyl sulfoxide-induced differentiation of Friend murine erythroleukemia (F-MEL) cells. An alternately spliced c-myb mRNA encodes a truncated version of p75c-myb (mbm2) that includes the DNA binding region and nuclear localization signal present in the c-myb protein, but does not contain the transcriptional regulatory regions. Constitutive expression of mbm2, in contrast to c-myb, here resulted in enhanced differentiation of F-MEL cells. These data suggest that the c-myb protooncogene encodes alternately spliced mRNA species with opposing effects on differentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weber, B L -- Westin, E H -- Clarke, M F -- CA 46657/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1990 Sep 14;249(4974):1291-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor 48109.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2205003" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation/drug effects/genetics ; Cloning, Molecular ; Dimethyl Sulfoxide/pharmacology ; Erythrocytes/*cytology ; Gene Library ; Leukemia, Erythroblastic, Acute ; Leukemia, Lymphoid ; Proto-Oncogene Proteins/genetics/*physiology ; Proto-Oncogene Proteins c-myb ; RNA Splicing ; RNA, Messenger ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2006-05-06
    Description: B cells recognize foreign antigens by virtue of cell surface immunoglobulin receptors and are most effectively activated by membrane-bound ligands. Here, we show that in the early stages of this process, B cells exhibit a two-phase response in which they first spread over the antigen-bearing membrane and then contract, thereby collecting bound antigen into a central aggregate. The extent of this response, which is both signaling- and actin-dependent, determines the quantity of antigen accumulated and hence the degree of B cell activation. Brownian dynamic simulations reproduce essential features of the antigen collection process and suggest a possible basis for affinity discrimination. We propose that dynamic spreading is an important step of the immune response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fleire, S J -- Goldman, J P -- Carrasco, Y R -- Weber, M -- Bray, D -- Batista, F D -- G64713/PHS HHS/ -- New York, N.Y. -- Science. 2006 May 5;312(5774):738-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lymphocyte Interaction Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16675699" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/physiology ; Algorithms ; Animals ; Antibody Affinity ; Antigen Presentation ; Antigens, Surface/*immunology ; B-Lymphocytes/*immunology/*physiology ; Cell Shape ; Computer Simulation ; Flow Cytometry ; Ligands ; Lipid Bilayers ; *Lymphocyte Activation ; Mice ; Mice, Transgenic ; Microscopy, Fluorescence ; Models, Immunological ; Muramidase/immunology ; Receptors, Antigen, B-Cell/*immunology/metabolism ; Recombinant Fusion Proteins/immunology ; Signal Transduction ; Stochastic Processes ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2008-11-15
    Description: Leukocyte recruitment to sites of infection or inflammation requires multiple adhesive events. Although numerous players promoting leukocyte-endothelial interactions have been characterized, functionally important endogenous inhibitors of leukocyte adhesion have not been identified. Here we describe the endothelially derived secreted molecule Del-1 (developmental endothelial locus-1) as an anti-adhesive factor that interferes with the integrin LFA-1-dependent leukocyte-endothelial adhesion. Endothelial Del-1 deficiency increased LFA-1-dependent leukocyte adhesion in vitro and in vivo. Del-1-/- mice displayed significantly higher neutrophil accumulation in lipopolysaccharide-induced lung inflammation in vivo, which was reversed in Del-1/LFA-1 double-deficient mice. Thus, Del-1 is an endogenous inhibitor of inflammatory cell recruitment and could provide a basis for targeting leukocyte-endothelial interactions in disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2753175/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2753175/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choi, Eun Young -- Chavakis, Emmanouil -- Czabanka, Marcus A -- Langer, Harald F -- Fraemohs, Line -- Economopoulou, Matina -- Kundu, Ramendra K -- Orlandi, Alessia -- Zheng, Ying Yi -- Prieto, Darue A -- Ballantyne, Christie M -- Constant, Stephanie L -- Aird, William C -- Papayannopoulou, Thalia -- Gahmberg, Carl G -- Udey, Mark C -- Vajkoczy, Peter -- Quertermous, Thomas -- Dimmeler, Stefanie -- Weber, Christian -- Chavakis, Triantafyllos -- AI067254/AI/NIAID NIH HHS/ -- R01 HL082927/HL/NHLBI NIH HHS/ -- Z01 BC010790-01/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2008 Nov 14;322(5904):1101-4. doi: 10.1126/science.1165218.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19008446" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bronchoalveolar Lavage Fluid/cytology/immunology ; Carrier Proteins/*physiology ; *Cell Adhesion ; Endothelial Cells/*physiology ; Intercellular Adhesion Molecule-1/metabolism ; Leukocyte Rolling ; Ligands ; Lipopolysaccharides/immunology ; Lung/blood supply/immunology ; Lymphocyte Function-Associated Antigen-1/metabolism ; Mice ; Monocytes/*physiology ; *Neutrophil Infiltration ; Neutrophils/*physiology ; Peritonitis/immunology ; Pneumonia/*immunology ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2009-05-30
    Description: Chronic viral infection is often associated with the dysfunction of virus-specific T cells. Our studies using Il21r-deficient (Il21r-/-) mice now suggest that interleukin-21 (IL-21) is critical for the long-term maintenance and functionality of CD8+ T cells and the control of chronic lymphocytic choriomeningitis virus infection in mice. Cell-autonomous IL-21 receptor (IL-21R)-dependent signaling by CD8+ T cells was required for sustained cell proliferation and cytokine production during chronic infection. Il21r-/- mice showed normal CD8+ T cell expansion, effector function, memory homeostasis, and recall responses during acute and after resolved infection with several other nonpersistent viruses. These data suggest that IL-21R signaling is required for the maintenance of polyfunctional T cells during chronic viral infections and have implications for understanding the immune response to other persisting antigens, such as tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frohlich, Anja -- Kisielow, Jan -- Schmitz, Iwana -- Freigang, Stefan -- Shamshiev, Abdijapar T -- Weber, Jacqueline -- Marsland, Benjamin J -- Oxenius, Annette -- Kopf, Manfred -- New York, N.Y. -- Science. 2009 Jun 19;324(5934):1576-80. doi: 10.1126/science.1172815. Epub 2009 May 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biomedicine, Institute of Integrative Biology, ETH Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19478140" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CD8-Positive T-Lymphocytes/*immunology ; Chronic Disease ; Humans ; Immunologic Memory ; Interferon-gamma/biosynthesis ; Lymphocytic Choriomeningitis/*immunology ; Mice ; Mice, Inbred C57BL ; Peptide Fragments/biosynthesis ; Receptors, Interleukin-21/*immunology ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-06-15
    Description: Epistatic interactions between mutant sites in the same protein can exert a strong influence on pathways of molecular evolution. We performed protein engineering experiments that revealed pervasive epistasis among segregating amino acid variants that contribute to adaptive functional variation in deer mouse hemoglobin (Hb). Amino acid mutations increased or decreased Hb-O2 affinity depending on the allelic state of other sites. Structural analysis revealed that epistasis for Hb-O2 affinity and allosteric regulatory control is attributable to indirect interactions between structurally remote sites. The prevalence of sign epistasis for fitness-related biochemical phenotypes has important implications for the evolutionary dynamics of protein polymorphism in natural populations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409680/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409680/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Natarajan, Chandrasekhar -- Inoguchi, Noriko -- Weber, Roy E -- Fago, Angela -- Moriyama, Hideaki -- Storz, Jay F -- HL087216-S1/HL/NHLBI NIH HHS/ -- R01 HL087216/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2013 Jun 14;340(6138):1324-7. doi: 10.1126/science.1236862.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23766324" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Biological/*genetics ; Alleles ; Animals ; *Epistasis, Genetic ; *Evolution, Molecular ; Exons ; Genetic Variation ; Hemoglobins/*chemistry/*genetics ; Hydrogen Bonding ; Mutation ; Oxygen/chemistry ; Peromyscus/genetics/*physiology ; Polymorphism, Genetic ; Protein Structure, Secondary ; alpha-Globins/chemistry/genetics ; beta-Globins/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-01-19
    Description: Directional guidance of cells via gradients of chemokines is considered crucial for embryonic development, cancer dissemination, and immune responses. Nevertheless, the concept still lacks direct experimental confirmation in vivo. Here, we identify endogenous gradients of the chemokine CCL21 within mouse skin and show that they guide dendritic cells toward lymphatic vessels. Quantitative imaging reveals depots of CCL21 within lymphatic endothelial cells and steeply decaying gradients within the perilymphatic interstitium. These gradients match the migratory patterns of the dendritic cells, which directionally approach vessels from a distance of up to 90-micrometers. Interstitial CCL21 is immobilized to heparan sulfates, and its experimental delocalization or swamping the endogenous gradients abolishes directed migration. These findings functionally establish the concept of haptotaxis, directed migration along immobilized gradients, in tissues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weber, Michele -- Hauschild, Robert -- Schwarz, Jan -- Moussion, Christine -- de Vries, Ingrid -- Legler, Daniel F -- Luther, Sanjiv A -- Bollenbach, Tobias -- Sixt, Michael -- New York, N.Y. -- Science. 2013 Jan 18;339(6117):328-32. doi: 10.1126/science.1228456.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23329049" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chemokine CCL19/metabolism ; Chemokine CCL21/chemistry/*immunology ; Chemotaxis/*immunology ; Dendritic Cells/*immunology ; Heparitin Sulfate/chemistry ; Immobilized Proteins/chemistry/immunology ; Lymphatic Vessels/*immunology ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Receptors, CCR7/genetics ; Skin/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2004-03-27
    Description: We investigated the effect of synaptotagmin I on membrane fusion mediated by neuronal SNARE proteins, SNAP-25, syntaxin, and synaptobrevin, which were reconstituted into vesicles. In the presence of Ca2+, the cytoplasmic domain of synaptotagmin I (syt) strongly stimulated membrane fusion when synaptobrevin densities were similar to those found in native synaptic vesicles. The Ca2+ dependence of syt-stimulated fusion was modulated by changes in lipid composition of the vesicles and by a truncation that mimics cleavage of SNAP-25 by botulinum neurotoxin A. Stimulation of fusion was abolished by disrupting the Ca2+-binding activity, or by severing the tandem C2 domains, of syt. Thus, syt and SNAREs are likely to represent the minimal protein complement for Ca2+-triggered exocytosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tucker, Ward C -- Weber, Thomas -- Chapman, Edwin R -- GM 56827/GM/NIGMS NIH HHS/ -- GM 66313/GM/NIGMS NIH HHS/ -- MH 61876/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2004 Apr 16;304(5669):435-8. Epub 2004 Mar 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Wisconsin, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15044754" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Calcium/*metabolism ; *Calcium-Binding Proteins ; Exocytosis ; Fluorescence Resonance Energy Transfer ; Lipid Bilayers ; Lipids/analysis ; Liposomes/chemistry/metabolism ; *Membrane Fusion ; Membrane Glycoproteins/chemistry/*metabolism ; Membrane Proteins/chemistry/*metabolism ; Mice ; Mutation ; Nerve Tissue Proteins/chemistry/*metabolism ; Protein Structure, Tertiary ; Qa-SNARE Proteins ; R-SNARE Proteins ; Rats ; Synaptic Vesicles/chemistry/metabolism ; Synaptosomal-Associated Protein 25 ; Synaptotagmin I ; Synaptotagmins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2005-10-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weber, Jochen -- Czarnetzki, Alfred -- Pusch, Carsten M -- New York, N.Y. -- Science. 2005 Oct 14;310(5746):236; author reply 236.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16224005" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*anatomy & histology ; Hominidae/*anatomy & histology/classification ; Humans
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2011-08-05
    Description: The vertebrate thymus provides an inductive environment for T-cell development. Within the mouse thymus, Notch signals are indispensable for imposing the T-cell fate on multipotential haematopoietic progenitors, but the downstream effectors that impart T-lineage specification and commitment are not well understood. Here we show that a transcription factor, T-cell factor 1 (TCF-1; also known as transcription factor 7, T-cell specific, TCF7), is a critical regulator in T-cell specification. TCF-1 is highly expressed in the earliest thymic progenitors, and its expression is upregulated by Notch signals. Most importantly, when TCF-1 is forcibly expressed in bone marrow (BM) progenitors, it drives the development of T-lineage cells in the absence of T-inductive Notch1 signals. Further characterization of these TCF-1-induced cells revealed expression of many T-lineage genes, including T-cell-specific transcription factors Gata3 and Bcl11b, and components of the T-cell receptor. Our data suggest a model where Notch signals induce TCF-1, and TCF-1 in turn imprints the T-cell fate by upregulating expression of T-cell essential genes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3156435/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3156435/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weber, Brittany Nicole -- Chi, Anthony Wei-Shine -- Chavez, Alejandro -- Yashiro-Ohtani, Yumi -- Yang, Qi -- Shestova, Olga -- Bhandoola, Avinash -- AI059621/AI/NIAID NIH HHS/ -- R01 AI059621/AI/NIAID NIH HHS/ -- R01 AI059621-09/AI/NIAID NIH HHS/ -- RC1 HL099758/HL/NHLBI NIH HHS/ -- RC1 HL099758-01/HL/NHLBI NIH HHS/ -- T32 AI055428/AI/NIAID NIH HHS/ -- T32 CA009140/CA/NCI NIH HHS/ -- T32AI055428/AI/NIAID NIH HHS/ -- T32CA09140/CA/NCI NIH HHS/ -- England -- Nature. 2011 Aug 3;476(7358):63-8. doi: 10.1038/nature10279.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21814277" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Differentiation ; *Cell Lineage ; Female ; Genes, Essential ; HEK293 Cells ; Hepatocyte Nuclear Factor 1-alpha ; Humans ; Lymphoid Enhancer-Binding Factor 1/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Receptor, Notch1/metabolism ; Signal Transduction ; T Cell Transcription Factor 1/deficiency/genetics/*metabolism ; T-Lymphocytes/*cytology/*metabolism ; Up-Regulation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...