ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (9)
  • 1985-1989  (4)
  • 11
    Electronic Resource
    Electronic Resource
    Oxford [u.a.] : International Union of Crystallography (IUCr)
    Acta crystallographica 54 (1998), S. 1378-1383 
    ISSN: 1600-5759
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 25 (1998), S. 301-307 
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract  The equation of state and crystal structure of pyrope were determined by single crystal X-ray diffraction under hydrostatic conditions to 33 GPa, a pressure that corresponds to a depth of about 900 km in the lower mantle. The bulk modulus K T0 and its pressure derivative K ' T0 were determined simultaneously from an unweighted fit of the volume data at different pressures to a third order Birch-Murnaghan equation of state. They are 171(2) GPa and 4.4(2), respectively. Over the whole pressure range, MgO8 polyhedra showed the largest compression of 18.10(8)%, followed by AlO6 and SiO4 polyhedra, with compression of 11.7(1)% and 4.6(1)%, respectively. The polyhedral bulk moduli for MgO8, AlO6 and SiO4 are 107(1), 211(11) and 580(24) GPa, respectively, with K ' T0 fixed to 4. Significant compression of up to 1.8(1)% in the very rigid Si−O bonding in pyrope could be detected to 33 GPa. Changes in the degree of polyhedral distortion for all three types of polyhedra could also be observed. These changes could be found for the first time for AlO6 and SiO4 in pyrope. It seems that the compression of pyrope crystal structure is governed by the kinking of the Al−O−Si angle between the octahedra and tetrahedra. No phase transition could be detected to 33 GPa.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    ISSN: 1432-2021
    Keywords: Key words High pressure ; Single-crystal diffraction ; Garnet ; Bulk modulus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract The compression of synthetic pyrope Mg3Al2 (SiO4)3, almandine Fe3Al2(SiO4)3, spessartine Mn3Al2 (SiO4)3 grossular Ca3Al2(SiO4)3 and andradite Ca3Fe2 (SiO4)3 was studied by loading the crystals together in a diamond anvil cell. The unit-cell parameters were determined as a function of pressure by X-ray diffraction up to 15 GPa using neon as a pressure transmitting medium. The unit-cell parameters of pyrope and almandine were measured up to 33 and 21 GPa, respectively, using helium as a pressure medium. The bulk moduli, K T 0, and their first pressure derivatives, K T 0 ′, were simultaneously determined for all five garnets by fitting the volume data to a third order Birch-Murnaghan equation of state. Both parameters can be further constrained through a comparison of volume compressions between pairs of garnets, giving for K T 0 and K T 0 ′ 171(2) GPa and 4.4(2) for pyrope, 185(3) GPa and 4.2(3) for almandine, 189(1) GPa and 4.2 for spessartine, 175(1) GPa and 4.4 for grossular and 157(1) GPa and 5.1 for andradite, where the K T 0 ′ are fixed in the case of spessartine, grossular and andradite. Direct comparisons of the unit-cell volumes determined at high pressures between pairs of garnets reveal anomalous compression behavior for Mg2+ in the 8-fold coordinated triangular dodecahedron in pyrope. This agrees with previous studies concerning the compression behaviors of Mg2+ in 6-fold coordinated polyhedra at high pressures. The results show that simple bulk modulus–volume systematics are not obeyed by garnets.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...