ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Inorganica Chimica Acta 53 (1981), S. L97-L98 
    ISSN: 0020-1693
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Progress In Crystal Growth And Characterization 14 (1987), S. 263-302 
    ISSN: 0146-3535
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physica B: Physics of Condensed Matter 156-157 (1989), S. 684-687 
    ISSN: 0921-4526
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0301-0104
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Copenhagen : International Union of Crystallography (IUCr)
    Acta crystallographica 54 (1998), S. 578-584 
    ISSN: 1600-5740
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: High-pressure X-ray investigations on crystal powders of the TiF3, titanium trifluoride, and FeF3, iron trifluoride, phases with VF3-type structures were performed up to 7.67 (7) and 9.00 (7) GPa, respectively. Both compounds are highly compressible and show strong anisotropic behavior. While the hexagonal a lattice parameters are shortened under pressure, the c parameters are elongated. These changes are associated with distortions of the TiF6 and FeF6 coordination octahedra, whereby the octahedron strain is stronger in TiF3 than in FeF3. The high-pressure behavior is characterized by cooperative tiltings of the octahedra, while simultaneously repulsive interactions between the cations probably cause the octahedral distortions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Copenhagen : International Union of Crystallography (IUCr)
    Acta crystallographica 54 (1998), S. 798-808 
    ISSN: 1600-5740
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: This contribution continues comparative studies on the anisotropy of structural distortion of some CoIII ammine complexes induced by various actions [Boldyreva, Kivikoski & Howard (1997a). Acta Cryst. B53, 394–404; Boldyreva, Kivikoski & Howard (1997b). Acta Cryst. B53, 405–414]. Changes in the cell parameters of (OC-6-22)-pentaamminenitro-N-cobalt(III) dichloride were measured by single-crystal X-ray diffraction at pressures up to 3.5 GPa in a diamond anvil cell (DAC). At several pressures (ambient, 0.24, 0.52, 1.25, 1.91 and 3.38 GPa) a full data collection was carried out, and the atomic coordinates and anisotropic atomic displacement parameters were refined. The anisotropy of structural distortion under pressure was shown to be qualitatively different compared with that on cooling (Boldyreva, Kivikoski & Howard, 1997b). The role of the non-covalent interactions, in particular hydrogen bonds, in the anisotropy of structural distortion is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Copenhagen : International Union of Crystallography (IUCr)
    Acta crystallographica 56 (2000), S. 299-309 
    ISSN: 1600-5740
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: The anisotropy of structural distortion of the monoclinic polymorph of acetaminophen induced by hydrostatic pressure up to 4.0 GPa was studied by single-crystal X-ray diffraction in a Merrill–Bassett diamond anvil cell (DAC). The space group (P21/n) and the general structural pattern remained unchanged with pressure. Despite the overall decrease in the molar volume with pressure, the structure expanded in particular crystallographic directions. One of the linear cell parameters (c) passed through a minimum as the pressure increased. The intramolecular bond lengths changed only slightly with pressure, but the changes in the dihedral and torsion angles were very large. The compressibility of the intermolecular hydrogen bonds NH...O and OH...O was measured. NH...O bonds were shown to be slightly more compressible than OH...O bonds. The anisotropy of structural distortion was analysed in detail in relation to the pressure-induced changes in the molecular conformations, to the compression of the hydrogen-bond network, and to the changes in the orientation of molecules with respect to each other in the pleated sheets in the structure. Dirichlet domains were calculated in order to analyse the relative shifts of the centroids of the hydrogen-bonded cycles and of the centroids of the benzene rings with pressure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford [u.a.] : International Union of Crystallography (IUCr)
    Acta crystallographica 54 (1998), S. 1378-1383 
    ISSN: 1600-5759
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 25 (1998), S. 301-307 
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract  The equation of state and crystal structure of pyrope were determined by single crystal X-ray diffraction under hydrostatic conditions to 33 GPa, a pressure that corresponds to a depth of about 900 km in the lower mantle. The bulk modulus K T0 and its pressure derivative K ' T0 were determined simultaneously from an unweighted fit of the volume data at different pressures to a third order Birch-Murnaghan equation of state. They are 171(2) GPa and 4.4(2), respectively. Over the whole pressure range, MgO8 polyhedra showed the largest compression of 18.10(8)%, followed by AlO6 and SiO4 polyhedra, with compression of 11.7(1)% and 4.6(1)%, respectively. The polyhedral bulk moduli for MgO8, AlO6 and SiO4 are 107(1), 211(11) and 580(24) GPa, respectively, with K ' T0 fixed to 4. Significant compression of up to 1.8(1)% in the very rigid Si−O bonding in pyrope could be detected to 33 GPa. Changes in the degree of polyhedral distortion for all three types of polyhedra could also be observed. These changes could be found for the first time for AlO6 and SiO4 in pyrope. It seems that the compression of pyrope crystal structure is governed by the kinking of the Al−O−Si angle between the octahedra and tetrahedra. No phase transition could be detected to 33 GPa.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-2021
    Keywords: Key words High pressure ; Single-crystal diffraction ; Garnet ; Bulk modulus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract The compression of synthetic pyrope Mg3Al2 (SiO4)3, almandine Fe3Al2(SiO4)3, spessartine Mn3Al2 (SiO4)3 grossular Ca3Al2(SiO4)3 and andradite Ca3Fe2 (SiO4)3 was studied by loading the crystals together in a diamond anvil cell. The unit-cell parameters were determined as a function of pressure by X-ray diffraction up to 15 GPa using neon as a pressure transmitting medium. The unit-cell parameters of pyrope and almandine were measured up to 33 and 21 GPa, respectively, using helium as a pressure medium. The bulk moduli, K T 0, and their first pressure derivatives, K T 0 ′, were simultaneously determined for all five garnets by fitting the volume data to a third order Birch-Murnaghan equation of state. Both parameters can be further constrained through a comparison of volume compressions between pairs of garnets, giving for K T 0 and K T 0 ′ 171(2) GPa and 4.4(2) for pyrope, 185(3) GPa and 4.2(3) for almandine, 189(1) GPa and 4.2 for spessartine, 175(1) GPa and 4.4 for grossular and 157(1) GPa and 5.1 for andradite, where the K T 0 ′ are fixed in the case of spessartine, grossular and andradite. Direct comparisons of the unit-cell volumes determined at high pressures between pairs of garnets reveal anomalous compression behavior for Mg2+ in the 8-fold coordinated triangular dodecahedron in pyrope. This agrees with previous studies concerning the compression behaviors of Mg2+ in 6-fold coordinated polyhedra at high pressures. The results show that simple bulk modulus–volume systematics are not obeyed by garnets.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...