ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 117 (2002), S. 1982-1993 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We present a new reduced scaling multireference singles and doubles configuration interaction (MRSDCI) algorithm based upon the combination of local correlation and pseudospectral methods. Taking advantage of the locality of the Coulomb potential, the weak-pairs approximation of Saebø and Pulay is employed to eliminate configurations having simultaneous excitations out of pairs of distant, weakly interacting orbitals. In conjunction with this, the pseudospectral approximation is used to break down the most time-consuming two-electron integrals into a product of intermediate quantities depending on no more than two orbital indices. The resulting intermediate quantities are then used directly in the CI equations to substantially reduce the number of floating point operations required for diagonalization of the Hamiltonian. Additionally, our CI algorithm is based upon the symmetric group graphical approach CI (SGGA-CI) of Duch and Karwowski. For the purpose of developing reduced scaling CI algorithms, this approach has some important advantages. The most important of these advantages are the on-the-fly calculation of integral coupling coefficients and the separation of the spin and spatial parts of the wave function, which simplifies implementation of local correlation approximations. We apply the method to determine a series of binding energies in hydrocarbons and show that the approximate method predicts binding energies that are within a few kcal/mol of those predicted by the analytic nonlocal method. For large molecules, the local pseudospectral method was shown to be over 7 times as fast as the analytic nonlocal method. We also carry out a systematic study on the performance of different basis sets in the weak-pairs method. It was determined that triple-ζ basis sets were capable of recovering only 99.0% of the correlation energy, whereas double-ζ basis sets recovered 99.9% of the correlation energy. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 99 (1993), S. 4238-4238 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 98 (1993), S. 6377-6386 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A new method is proposed for locating saddle points on potential energy surfaces. The method involves walking on the ridge separating reactants' and products' valleys toward its minimum, which is a saddle point in coordinate space. Of particular advantage for ab initio calculations, the ridge method does not require evaluation of second derivatives of the potential energy. Another important feature of the method is that no assumptions about the transition state geometry are needed, and it is easy to impose linear constraints on the molecular structure. The ridge method is supplemented by a heuristic detour algorithm, which enables one to deal with unfortunate choices of reactants' and products' coordinates. Both algorithms are illustrated by several examples where the complexity of the potential energy surface ranges from a simple analytical formula to a numerical many-body ab initio potential.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 98 (1993), S. 7081-7085 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We present a pseudospectral formulation of the single reference, closed shell double excitation configuration interaction method using a generator state self-consistent electron pair approach. The method scales as O(n2N3), compared to the conventional scaling of O(n2N4+n3N3). In no case tested does the pseudospectral energy differ by more than 0.35 mhartree from the conventional result.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 97 (1992), S. 1876-1880 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A pseudospectral formulation of the full configuration interaction method is presented in this paper. This represents the first application of the pseudospectral approximation to configuration interaction expansions. It is shown that a formal scaling advantage of n, the number of molecular orbital basis functions, is achieved. The spectral and pseudospectral total energies obtained for a series of first-row atoms and ions are compared. The relative operation counts of the spectral and pseudospectral methods are also discussed in this paper. Finally, two hybrid spectral/pseudospectral approximations that vastly improve the accuracy of the pseudospectral total energies are presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 96 (1992), S. 3240-3250 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The structures of the (100) surfaces of silicon and germanium generally have been interpreted in a static manner in the past. We present molecular dynamics (MD) simulations that show these surfaces to consist of a mixture of rapidly interconverting buckled and unbuckled dimers. Over a time average, the surface is found to have long p(2×1) rows of symmetric, unbuckled dimers, as seen in recent scanning tunneling microscopy images of silicon. However, higher order unit cells are observed in He scattering and low energy electron diffraction experiments at low temperatures. We present a dynamical interpretation of the structure to explain both sets of observations. The simulations have been performed on different size slabs at both constant energy and constant temperature utilizing a new method for effective removal of heat from an exothermic system while retaining the correct dynamics. Several different interaction potentials were analyzed in an attempt to find the most realistic one for simulations of these surfaces. The effect of surface defects and annealing were also investigated. The surface phonon densities of states were calculated and for Si(100) are in good agreement with experiments and other theoretical treatments. Such simulations and structural analyses are reported for the first time for Ge(100).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 5961-5979 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The results of a molecular dynamics (MD) computer simulation are presented for the solvation dynamics of an ion pair instanteously produced from a neutral pair, in a model polar aprotic solvent. These time-dependent fluorescence dynamics are analyzed theoretically to examine the validity of several linear response theory approaches, as well as of various theoretical descriptions (e.g., Langevin equation) for the solvent dynamics per se. It is found that these dynamics are dominated for short times by a simple inertial Gaussian behavior, a feature which is absent in many current theoretical treatments, and which is related to the approximate validity of linear response theory. Nonlinear aspects, such as an overall spectral narrowing, but a transient initial spectral broadening, are also discussed. A model photochemical charge transfer process is also briefly considered to elucidate aspects of the connection between solvation dynamics and chemical kinetic population evolution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 88 (1988), S. 3132-3140 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We have developed a general method employing relatively small but well-defined CI expansions for calculating accurate bond energies [e.g., errors of 1.4 kcal/mol (1.3%) for the C–H bond energy in CH4 and 4.9 kcal/mol (2.7%) for the C=C bond energy in ethylene]. The approach includes in a systematic way all correlations involving orbitals that change significantly during bond breakage. The CI expansion truncates rapidly, enabling the application of this technique to polyatomic molecules for which normal correlation approaches would be prohibitively expensive. Thus the bond energy for BH is calculated to within 0.3 kcal/mol of the full CI value but incorporating less than 0.1% of the spin eigenfunctions. Smooth dissociaton to the correct adiabatic limit by the CCCI method is demonstrated for the C=C bond of ethylene. The advantage of CCCI is illustrated for C2F4, where a full CI would involve ∼7×1022 spatial configurations, but only 1719 are used in CCCI. Here we predict a C=C bond energy for C2F4 of De (F2C=CF2)=68.3±2.5 (D298=64.6±2.5) kcal/mol. Experimental values range from 53 to 76 kcal/mol.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 112 (1990), S. 5893-5895 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 113 (1991), S. 9061-9062 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...