ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Weitere Quellen  (5)
  • 1
    Publikationsdatum: 2024-02-28
    Beschreibung: In the southern Indian Ocean, the position of the subtropical front – the boundary between colder, fresher waters to the south and warmer, saltier waters to the north – has a strong influence on the upper ocean hydrodynamics and biogeochemistry. Here we analyse a sedimentary record from the Agulhas Plateau, located close to the modern position of the subtropical front and use alkenones and coccolith assemblages to reconstruct oceanographic conditions over the past 300,000 years. We identify a strong glacial-interglacial variability in sea surface temperature and productivity associated with subtropical front migration over the Agulhas Plateau, as well as shorter-term high frequency variability aligned with variations in high latitude insolation. Alkenone and coccolith abundances, in combination with diatom and organic carbon records indicate high glacial export productivity. We conclude that the biological pump was more efficient and strengthened during glacial periods, which could partly account for the reported reduction in atmospheric carbon dioxide concentrations.
    Beschreibung: Migration of the Subtropical Front during glacial and interglacial periods resulted in variability in the strength of the biological pump in the Southern Ocean sector of the Indian Ocean, according to sedimentary records from the Agulhas Plateau.
    Beschreibung: https://doi.pangaea.de/10.1594/PANGAEA.912467
    Schlagwort(e): ddc:551.46 ; palaeoceanography ; southern Indian Ocean ; Agulhas Plateau ; upper ocean hydrodynamics ; biogeochemistry
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-07-13
    Beschreibung: Modeling is an important tool for understanding AMOC on all timescales. Mechanistic studies of modern AMOC variability have been hampered by a lack of consistency between free-running models and the sensitivity of AMOC to resolution and parameterization. Recent work within the framework of the phase two Coordinated Ocean- Reference Experiments (CORE-II) addresses this issue head on, looking at model differences of AMOC mean state and interannual variability. One consistent feature across the models is that AMOC mean transport is related to mixed layer depths and Labrador Sea salt content, whereas interannual variability is primarily associated with Labrador Sea temperature anomalies. This is consistent with the hypothesized importance of salt balance for AMOC variability on geological timescales. The simulated relationships between AMOC and subsurface temperature anomalies in fully coupled climate models reveal subsurface AMOC fingerprints that could be used to reconstruct historical AMOC variations at low frequency.With the lack of long-term AMOC observations, models of ocean state that assimilate observational data have been explored as a way to reconstruct AMOC, but comparisons between models indicate they are quite variable in their AMOC representations. Karspeck et al. (2015) found that historical reconstructions of AMOC in such models are sensitive to the details of the data assimilation procedure. The ocean data assimilation community continues to address these issues through improved models and methods for estimating and representing error information.Two objectives of paleoclimate modeling are 1) to provide mechanistic information for interpretation of paleoclimate observations, and 2) to test the ability of predictive models to simulate Earth's climate under different background forcing states. In a good example of the first objective, Schmittner and Lund (2015) and Menviel et al. (2014) provided key information about the proxy signals expected under freshwater disturbance of AMOC, which were used to support the paleoclimate observations made by Henry et al. (2016). In an example of the second objective, Muglia and Schmittner (2015) analyzed Third Paleoclimate Modeling Intercomparison Project (PMIP3) models of the Last Glacial Maximum (LGM) and found consistently more intense and deeper AMOC transports relative to preindustrial simulations, counter to the paleoclimate consensus of LGM conditions, indicating that some processes are not well represented in the PMIP3 models. One challenge is to find adequate paleo observations against which to test these models. PMIP is now in phase 4 (part of CMIP6), which includes experiments covering five periods in Earth's history: the last millennium, last glacial maximum, last interglacial, and the mid-Pliocene. Newly compiled paleoclimate datasets from the PAGES2k project, more transient simulations, and participation of isotope enabled models planned for CMIP6PMIP4 will enable richer paleo data-model comparisons in the near future.
    Schlagwort(e): Oceanography
    Materialart: Report 2017-3 , GSFC-E-DAA-TN45417 , US Climate Variability and Predictability (CLIVAR) Workshop; May 23, 2016 - May 25, 2016; Boulder, CO; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2020-06-18
    Beschreibung: Paleo-climate records and geodynamic modelling indicate the existence of complex interactions between glacial sea level changes, volcanic degassing and atmospheric CO2, which may have modulated the climate system's descent into the last ice age. Between ∼85 and 70 kyr ago, during an interval of decreasing axial tilt, the orbital component in global temperature records gradually declined, while atmospheric CO2, instead of continuing its long-term correlation with Antarctic temperature, remained relatively stable. Here, based on novel global geodynamic models and the joint interpretation of paleo-proxy data as well as biogeochemical simulations, we show that a sea level fall in this interval caused enhanced pressure-release melting in the uppermost mantle, which may have induced a surge in magma and CO2 fluxes from mid-ocean ridges and oceanic hotspot volcanoes. Our results reveal a hitherto unrecognized negative feedback between glaciation and atmospheric CO2 predominantly controlled by marine volcanism on multi-millennial timescales of ∼5,000-15,000 years.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    In:  Eos, Transactions American Geophysical Union, 91 (12). p. 109.
    Publikationsdatum: 2017-02-10
    Beschreibung: The Agulhas Current is the major western boundary current of the Southern Hemisphere [Lutjeharms, 2006] and a key component of the global ocean “conveyor” circulation controlling the return flow to the Atlantic Ocean [Gordon, 1986]. As such, it is increasingly recognized as a key player in ocean thermohaline circulation, with importance for the meridional overturning circulation (MOC) of the Atlantic Ocean. Unusual dynamics pervade the motion of this warm-water current—as it moves west around the southern tip of Africa, it is retroflected back east by the Antarctic Circumpolar Current. Not all waters are captured by this sudden diversion of course—parts of the Agulhas Current leak away into the South Atlantic Ocean (Figure 1).
    Materialart: Article , NonPeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2023-08-01
    Beschreibung: Major shifts in ocean circulation are thought to be responsible for abrupt changes in temperature and atmospheric CO2 during the last deglaciation, linked to variability in meridional heat transport and deep ocean carbon storage. There is also widespread evidence for shifts in biological production during these times of deglacial CO2 rise, including enhanced diatom production in regions such as the tropical Atlantic. However, it remains unclear as to whether this diatom production was driven by enhanced wind-driven upwelling or density-driven vertical mixing, or by elevated thermocline concentrations of silicic acid supplied to the surface at a constant rate. Here, we demonstrate that silicic acid supply at depth in the NE Atlantic was enhanced during the abrupt climate events of the deglaciation. We use marine sediment archives to show that an increase in diatom production during abrupt climate shifts could only occur in regions of the NE Atlantic where the deep supply of silicic acid could reach the surface. The associated changes are indicative of enhanced regional wind-driven upwelling and/or weakened stratification due to circulation changes during phases of weakened Atlantic meridional overturning. Globally near-synchronous pulses of diatom production and enhanced thermocline concentrations of silicic acid suggest that widespread deglacial surface-driven breakdown of stratification, linked to changes in atmospheric circulation, had major consequences for biological productivity and carbon cycling.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...