ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
  • 2015-2019  (3)
Collection
Keywords
Publisher
Years
Year
  • 1
    Publication Date: 2019-07-13
    Description: Modeling is an important tool for understanding AMOC on all timescales. Mechanistic studies of modern AMOC variability have been hampered by a lack of consistency between free-running models and the sensitivity of AMOC to resolution and parameterization. Recent work within the framework of the phase two Coordinated Ocean- Reference Experiments (CORE-II) addresses this issue head on, looking at model differences of AMOC mean state and interannual variability. One consistent feature across the models is that AMOC mean transport is related to mixed layer depths and Labrador Sea salt content, whereas interannual variability is primarily associated with Labrador Sea temperature anomalies. This is consistent with the hypothesized importance of salt balance for AMOC variability on geological timescales. The simulated relationships between AMOC and subsurface temperature anomalies in fully coupled climate models reveal subsurface AMOC fingerprints that could be used to reconstruct historical AMOC variations at low frequency.With the lack of long-term AMOC observations, models of ocean state that assimilate observational data have been explored as a way to reconstruct AMOC, but comparisons between models indicate they are quite variable in their AMOC representations. Karspeck et al. (2015) found that historical reconstructions of AMOC in such models are sensitive to the details of the data assimilation procedure. The ocean data assimilation community continues to address these issues through improved models and methods for estimating and representing error information.Two objectives of paleoclimate modeling are 1) to provide mechanistic information for interpretation of paleoclimate observations, and 2) to test the ability of predictive models to simulate Earth's climate under different background forcing states. In a good example of the first objective, Schmittner and Lund (2015) and Menviel et al. (2014) provided key information about the proxy signals expected under freshwater disturbance of AMOC, which were used to support the paleoclimate observations made by Henry et al. (2016). In an example of the second objective, Muglia and Schmittner (2015) analyzed Third Paleoclimate Modeling Intercomparison Project (PMIP3) models of the Last Glacial Maximum (LGM) and found consistently more intense and deeper AMOC transports relative to preindustrial simulations, counter to the paleoclimate consensus of LGM conditions, indicating that some processes are not well represented in the PMIP3 models. One challenge is to find adequate paleo observations against which to test these models. PMIP is now in phase 4 (part of CMIP6), which includes experiments covering five periods in Earth's history: the last millennium, last glacial maximum, last interglacial, and the mid-Pliocene. Newly compiled paleoclimate datasets from the PAGES2k project, more transient simulations, and participation of isotope enabled models planned for CMIP6PMIP4 will enable richer paleo data-model comparisons in the near future.
    Keywords: Oceanography
    Type: Report 2017-3 , GSFC-E-DAA-TN45417 , US Climate Variability and Predictability (CLIVAR) Workshop; May 23, 2016 - May 25, 2016; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-06-18
    Description: Paleo-climate records and geodynamic modelling indicate the existence of complex interactions between glacial sea level changes, volcanic degassing and atmospheric CO2, which may have modulated the climate system's descent into the last ice age. Between ∼85 and 70 kyr ago, during an interval of decreasing axial tilt, the orbital component in global temperature records gradually declined, while atmospheric CO2, instead of continuing its long-term correlation with Antarctic temperature, remained relatively stable. Here, based on novel global geodynamic models and the joint interpretation of paleo-proxy data as well as biogeochemical simulations, we show that a sea level fall in this interval caused enhanced pressure-release melting in the uppermost mantle, which may have induced a surge in magma and CO2 fluxes from mid-ocean ridges and oceanic hotspot volcanoes. Our results reveal a hitherto unrecognized negative feedback between glaciation and atmospheric CO2 predominantly controlled by marine volcanism on multi-millennial timescales of ∼5,000-15,000 years.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-08-01
    Description: Major shifts in ocean circulation are thought to be responsible for abrupt changes in temperature and atmospheric CO2 during the last deglaciation, linked to variability in meridional heat transport and deep ocean carbon storage. There is also widespread evidence for shifts in biological production during these times of deglacial CO2 rise, including enhanced diatom production in regions such as the tropical Atlantic. However, it remains unclear as to whether this diatom production was driven by enhanced wind-driven upwelling or density-driven vertical mixing, or by elevated thermocline concentrations of silicic acid supplied to the surface at a constant rate. Here, we demonstrate that silicic acid supply at depth in the NE Atlantic was enhanced during the abrupt climate events of the deglaciation. We use marine sediment archives to show that an increase in diatom production during abrupt climate shifts could only occur in regions of the NE Atlantic where the deep supply of silicic acid could reach the surface. The associated changes are indicative of enhanced regional wind-driven upwelling and/or weakened stratification due to circulation changes during phases of weakened Atlantic meridional overturning. Globally near-synchronous pulses of diatom production and enhanced thermocline concentrations of silicic acid suggest that widespread deglacial surface-driven breakdown of stratification, linked to changes in atmospheric circulation, had major consequences for biological productivity and carbon cycling.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...