ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • macromolecular crowding  (1)
Sammlung
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Molecular and cellular biochemistry 184 (1998), S. 311-320 
    ISSN: 1573-4919
    Schlagwort(e): metabolic channelling ; non-ideal metabolism ; control coefficient ; enzyme-enzyme interactions ; macromolecular crowding ; bacterial phosphotransferase system
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: Abstract Because of its importance to cell function, the free-energy metabolism of the living cell is subtly and homeostatically controlled. Metabolic control analysis enables a quantitative determination of what controls the relevant fluxes. However, the original metabolic control analysis was developed for idealized metabolic systems, which were assumed to lack enzyme-enzyme association and direct metabolite transfer between enzymes (channelling). We here review the recently developed molecular control analysis, which makes it possible to study non-ideal (channelled, organized) systems quantitatively in terms of what controls the fluxes, concentrations, and transit times. We show that in real, non-ideal pathways, the central control laws, such as the summation theorem for flux control, are richer than in ideal systems: the sum of the control of the enzymes participating in a non-ideal pathway may well exceed one (the number expected in the ideal pathways), but may also drop to values below one. Precise expressions indicate how total control is determined by non-ideal phenomena such as ternary complex formation (two enzymes, one metabolite), and enzyme sequestration. The bacterial phosphotransferase system (PTS), which catalyses the uptake and concomitant phosphorylation of glucose (and also regulates catabolite repression) is analyzed as an experimental example of a non-ideal pathway. Here, the phosphoryl group is channelled between enzymes, which could increase the sum of the enzyme control coefficients to two, whereas the formation of ternary complexes could decrease the sum of the enzyme control coefficients to below one. Experimental studies have recently confirmed this identification, as well as theoretically predicted values for the total control. Macromolecular crowding was shown to be a major candidate for the factor that modulates the non-ideal behaviour of the PTS pathway and the sum of the enzyme control coefficients.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...