ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1432
    Keywords: Krebs cycle ; Evolution ; Metabolism ; Citric acid cycle ; Chemical design
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The evolutionary origin of the Krebs citric acid cycle has been for a long time a model case in the understanding of the origin and evolution of metabolic pathways: How can the emergence of such a complex pathway be explained? A number of speculative studies have been carried out that have reached the conclusion that the Krebs cycle evolved from pathways for amino acid biosynthesis, but many important questions remain open: Why and how did the full pathway emerge from there? Are other alternative routes for the same purpose possible? Are they better or worse? Have they had any opportunity to be developed in cellular metabolism evolution? We have analyzed the Krebs cycle as a problem of chemical design to oxidize acetate yielding reduction equivalents to the respiratory chain to make ATP. Our analysis demonstrates that although there are several different chemical solutions to this problem, the design of this metabolic pathway as it occurs in living cells is the best chemical solution: It has the least possible number of steps and it also has the greatest ATP yielding. Study of the evolutionary possibilities of each one-taking the available material to build new pathways-demonstrates that the emergence of the Krebs cycle has been a typical case of opportunism in molecular evolution. Our analysis proves, therefore, that the role of opportunism in evolution has converted a problem of several possible chemical solutions into asingle-solution problem, with the actual Krebs cycle demonstrated to be the best possible chemical design. Our results also allow us to derive the rules under which metabolic pathways emerged during the origin of life.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1432
    Keywords: Key words: Krebs cycle — Evolution — Metabolism — Citric acid cycle — Chemical design
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. The evolutionary origin of the Krebs citric acid cycle has been for a long time a model case in the understanding of the origin and evolution of metabolic pathways: How can the emergence of such a complex pathway be explained? A number of speculative studies have been carried out that have reached the conclusion that the Krebs cycle evolved from pathways for amino acid biosynthesis, but many important questions remain open: Why and how did the full pathway emerge from there? Are other alternative routes for the same purpose possible? Are they better or worse? Have they had any opportunity to be developed in cellular metabolism evolution? We have analyzed the Krebs cycle as a problem of chemical design to oxidize acetate yielding reduction equivalents to the respiratory chain to make ATP. Our analysis demonstrates that although there are several different chemical solutions to this problem, the design of this metabolic pathway as it occurs in living cells is the best chemical solution: It has the least possible number of steps and it also has the greatest ATP yielding. Study of the evolutionary possibilities of each one—taking the available material to build new pathways—demonstrates that the emergence of the Krebs cycle has been a typical case of opportunism in molecular evolution. Our analysis proves, therefore, that the role of opportunism in evolution has converted a problem of several possible chemical solutions into a single-solution problem, with the actual Krebs cycle demonstrated to be the best possible chemical design. Our results also allow us to derive the rules under which metabolic pathways emerged during the origin of life.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1432
    Keywords: Key words: Glycogen — Evolution of metabolism — Natural selection — Optimization — Molecular structure — Molecular optimization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Optimization of molecular design in cellular metabolism is a necessary condition for guaranteeing a good structure–function relationship. We have studied this feature in the design of glycogen by means of the mathematical model previously presented that describes glycogen structure and its optimization function [Meléndez-Hevia et al. (1993), Biochem J 295: 477–483]. Our results demonstrate that the structure of cellular glycogen is in good agreement with these principles. Because the stored glucose in glycogen must be ready to be used at any phase of its synthesis or degradation, the full optimization of glycogen structure must also imply the optimization of every intermediate stage in its formation. This case can be viewed as a molecular instance of the eye problem, a classical paradigm of natural selection which states that every step in the evolutionary formation of a functional structure must be functional. The glycogen molecule has a highly optimized structure for its metabolic function, but the optimization of the full molecule has meaning and can be understood only by taking into account the optimization of each intermediate stage in its formation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature biotechnology 20 (2002), S. 243-249 
    ISSN: 1546-1696
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: [Auszug] Metabolic control analysis (MCA) provides a quantitative description of substrate flux in response to changes in system parameters of complex enzyme systems. Medical applications of the approach include the following: understanding the threshold effect in the manifestation of metabolic diseases; ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 27 (1995), S. 491-497 
    ISSN: 1573-6881
    Keywords: Metabolic control ; analysis ; and regulation ; control hierarchies ; channelling ; homeostasis ; enzyme organization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract The concept of a single rate-limiting step was proven to be too simplistic for understanding control and regulation of metabolism. Consequently, searches have identified relatively few steps with high control. Here we review a number of such searches and indicate what mechanisms may be responsible for this elusiveness of control. It turns out that this elusiveness of control has itself led to increased understanding of the roles played in metabolic control and regulation of such diverse factors as distributiveness of control, condition dependence, enzyme elasticity, homeostasis, control hierarchies, the input into a pathway, coenzyme sequestration, and redundancy and diversity of control function.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-4943
    Keywords: Sulphydryl ; DTNB ; xanthine oxidase ; aldehyde oxidase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The reactivities with an excess of 5-5′-dithiobis (2-nitrobenzoic) acid (DTNB) of sulphydryl residues present in xanthine oxidase and aldehyde oxidase were studied and compared. The results show that two classes of sulphydryl groups with quite different reactivities exist in both enzymes either native or denatured. Some of the available sulphydryl residues thus react instantaneously with the DTNB, whereas the others react very slowly following pseudo-first-order kinetics. The number of sulphydryl residues of each class and the rate constant of slowly reacting groups are, respectively, 1.7 and 0.8 in native xanthine oxidase and 1.6 and 1.7 in native aldehyde oxidase. In denatured enzymes, the number of fast- and slow-reacting sulphydryl residues obtained are, respectively, 13.9 and 7.9 in xanthine oxidase and 5.7 and 5.4 in aldehyde oxidase. Analogously, the rate constant for the slowly reacting groups is similar for the two native enzymes, but in denatured aldehyde oxidase it is double that of denatured xanthine oxidase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 133-134 (1994), S. 313-331 
    ISSN: 1573-4919
    Keywords: metabolic channeling ; control analysis ; muscle energy metabolism ; metabolite/enzyme sequestration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Various factors appear to control muscle energetics, often in conjunction. This calls for a quantitative approach of the type provided by Metabolic Control Analysis for intermediary metabolism and mitochondrial oxidative phosphorylation. To the extent that direct transfer of high energy phosphates and spatial organization plays a role in muscle energetics however, the standard Metabolic Control Theory does not apply, neither do its theorems regarding control. This chapter develops the Control Theory that does apply to the muscle system. It shows that direct transfer of high energy phosphates bestows a system with enhanced control: the sum of the control exerted by the participating enzymes on the flux of free energy form the mitochondrial matrix to the actinomyosin may well exceed the 100% mandatory for ideal metabolic pathways. It is also shown how sequestration of high energy phosphates may allow for negative control on pathway flux. The new control theory gives methods functionally to diagnose the extent to which channelling and metabolite sequestration occur.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 143 (1995), S. 151-168 
    ISSN: 1573-4919
    Keywords: metabolic channeling ; control analysis ; muscle energy metabolism ; metabolite/enzyme sequestration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Various factors appear to control muscle energetics, often in conjunction. This calls for a quantitative approach of the type provided by Metabolic Control Analysis for intermediary metabolism and mitochondrial oxidative phosphorylation. To the extent that direct transfer of high energy phosphates and spatial organization plays a role in muscle energetics however, the standard Metabolic Control Theory does not apply, neither do its theorems regarding control. This paper develops the Control Theory that does apply to the muscle system. It shows that direct transfer of high energy phosphates bestows a system with enhanced control: the sum of the control exerted by the participating enzymes on the flux of free energy from the mitochondrial matrix to the actinomyosin may well exceed the 100% mandatory for ideal metabolic pathways. It is also shown how sequestration of high energy phosphates may allow for negative control on pathway flux. The new control theory gives methods functionally to diagnose the extent to which channelling and metabolite sequestration occur.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 101 (1991), S. 83-91 
    ISSN: 1573-4919
    Keywords: transition times ; control analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Summary The present theoretical basis of Control Analysis is extended with the definition of Transition Time Response Coefficients. Some new relationships between local and global coefficients defined in Control Analysis are presented. These relationships are in the form of matrix products constructed in a priori form. The use of these straightforward relationships is shown in an exemplary application corresponding to an experimental system consisting of the glycolytic degradation from glucose to glyceraldehyde-3-phosphate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 184 (1998), S. 311-320 
    ISSN: 1573-4919
    Keywords: metabolic channelling ; non-ideal metabolism ; control coefficient ; enzyme-enzyme interactions ; macromolecular crowding ; bacterial phosphotransferase system
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Because of its importance to cell function, the free-energy metabolism of the living cell is subtly and homeostatically controlled. Metabolic control analysis enables a quantitative determination of what controls the relevant fluxes. However, the original metabolic control analysis was developed for idealized metabolic systems, which were assumed to lack enzyme-enzyme association and direct metabolite transfer between enzymes (channelling). We here review the recently developed molecular control analysis, which makes it possible to study non-ideal (channelled, organized) systems quantitatively in terms of what controls the fluxes, concentrations, and transit times. We show that in real, non-ideal pathways, the central control laws, such as the summation theorem for flux control, are richer than in ideal systems: the sum of the control of the enzymes participating in a non-ideal pathway may well exceed one (the number expected in the ideal pathways), but may also drop to values below one. Precise expressions indicate how total control is determined by non-ideal phenomena such as ternary complex formation (two enzymes, one metabolite), and enzyme sequestration. The bacterial phosphotransferase system (PTS), which catalyses the uptake and concomitant phosphorylation of glucose (and also regulates catabolite repression) is analyzed as an experimental example of a non-ideal pathway. Here, the phosphoryl group is channelled between enzymes, which could increase the sum of the enzyme control coefficients to two, whereas the formation of ternary complexes could decrease the sum of the enzyme control coefficients to below one. Experimental studies have recently confirmed this identification, as well as theoretically predicted values for the total control. Macromolecular crowding was shown to be a major candidate for the factor that modulates the non-ideal behaviour of the PTS pathway and the sum of the enzyme control coefficients.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...