ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2023-01-15
    Beschreibung: The dynamics of the Alps and surrounding regions is still not completely understood, partly because of a non‐unique interpretation of its upper‐mantle architecture. In particular, it is unclear if interpreted slabs are consistent with the observed surface deformation and topography. We derive three end‐member scenarios of lithospheric thickness and slab geometries by clustering available shear‐wave tomography models into a statistical ensemble. We use these scenarios as input for geodynamic simulations and compare modeled topography, surface velocities and mantle flow to observations. We found that a slab detached beneath the Alps, but attached beneath the Northern Apennines captures first‐order patterns in topography and vertical surface velocities and can provide a causative explanation for the observed seismicity.
    Beschreibung: Plain Language Summary: Present‐day surface deformation, including earthquakes, plate motion, and mass (re)distribution, results from processes operating at the surface and in the interior of the Earth. Understanding these processes and their coupling is of utmost importance in light of the hazard they pose to society. The Alps provide an excellent natural laboratory to understand such coupling. Here, we use seismic tomography models to constrain its upper‐mantle architecture. We further use these models to quantify forces originating from the resolved architecture and their effects on the present‐day surface deformation. The models can reproduce first‐order patterns in the observed topography and vertical surface motions. We found a causative correlation between the presence of a shallow slab attached to the overlying lithosphere in the Northern Apennines and the seismicity in the region. Our results allow us to better understand the transfer of internal forces to the surface, thereby helping to quantify the present‐day mechanical setup of the area.
    Beschreibung: Key Points: Statistical ensemble of S‐wave tomography models is used to infer the Lithosphere‐Asthenosphere Boundary configuration and slab geometries in the Alps. The 3‐D upper‐mantle architecture from the statistics reproduce first‐order patterns in observed topography and Global Navigation Satellite Systems vertical velocities. A shallow/attached slab in the Northern Apennines is consistent with the mantle depth seismicity observed in this region.
    Beschreibung: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Beschreibung: https://doi.org/10.5880/GFZ.4.5.2019.004
    Beschreibung: https://gfzpublic.gfz-potsdam.de/pubman/item/item_238001
    Beschreibung: http://ds.iris.edu/ds/products/emc-earthmodels/
    Beschreibung: https://doi.org/10.5281/zenodo.7071571
    Beschreibung: https://doi.org/10.5281/zenodo.6538257
    Schlagwort(e): ddc:551.1 ; Alps ; Apennines ; lithospheric architecture ; slabs ; seismicity
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2024-04-25
    Beschreibung: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉In this contribution we report the first systematic study of zircon U‐Pb geochronology and δ〈sup〉18〈/sup〉O‐〈italic〉ε〈/italic〉Hf〈sub〉(〈italic〉t〈/italic〉)〈/sub〉 isotope geochemistry from 10 islands of the hot‐spot related Galapagos Archipelago. The data extracted from the zircons allow them to be grouped into three types: (a) young zircons (0–∼4 Ma) with 〈italic〉ε〈/italic〉Hf〈sub〉(〈italic〉t〈/italic〉)〈/sub〉 (∼5–13) and δ〈sup〉18〈/sup〉O (∼4–7) isotopic mantle signature with crystallization ages dating the islands, (b) zircons with 〈italic〉ε〈/italic〉Hf〈sub〉(〈italic〉t〈/italic〉)〈/sub〉 (∼5–13) and δ〈sup〉18〈/sup〉O (∼5–7) isotopic mantle signature (∼4–164 Ma) which are interpreted to date the time of plume activity below the islands (∼164 Ma is the minimum time of impingement of the plume below the lithosphere), and (c) very old zircons (∼213–3,000 Ma) with mostly continental (but also juvenile) 〈italic〉ε〈/italic〉Hf〈sub〉(〈italic〉t〈/italic〉)〈/sub〉 (∼−28–8) and δ〈sup〉18〈/sup〉O (∼5–11) isotopic values documenting potential contamination from a number of sources. The first two types with similar isotopic mantle signature define what we call the Galápagos Plume Array (GPA). Given lithospheric plate motion, this result implies that GPA zircon predating the Galápagos lithosphere (i.e., >14–164 Ma) formed and were stored at sublithospheric depths for extended periods of time. In order to explain these observations, we performed 2D and 3D thermo‐mechanical numerical experiments of plume‐lithosphere interaction which show that dynamic plume activity gives rise to complex asthenospheric flow patterns and results in distinct long‐lasting mantle domains beneath a moving lithosphere. This demonstrates that it is physically plausible that old plume‐derived zircons survive at asthenospheric depths below ocean islands.〈/p〉
    Beschreibung: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Our data define the Galápagos Plume Array defined by mantle 〈italic〉ε〈/italic〉Hf〈sub〉(〈italic〉t〈/italic〉)〈/sub〉 and δ18O values in the range ∼0–164 Ma〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉This finding allows dating back plume activity to, at least, early Middle Jurassic (∼164 Ma)〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Numerical experiments confirm it is plausible that old Plume‐derived zircons survive in the asthenosphere for extended periods of time〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Beschreibung: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Beschreibung: Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España http://dx.doi.org/10.13039/501100010198
    Beschreibung: Ministerio de Ciencia e Innovación http://dx.doi.org/10.13039/501100004837
    Beschreibung: European Research Council http://dx.doi.org/10.13039/501100000781
    Beschreibung: https://doi.org/10.5281/zenodo.7047729
    Beschreibung: https://doi.org/10.5281/zenodo.6967187
    Schlagwort(e): ddc:551.9 ; mantle plume ; galapagos zircon ages ; asthenospheric zircon ; oceanic islands ; thermo‐mechanical numerical experiments
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    [s.l.] : Macmillian Magazines Ltd.
    Nature 427 (2004), S. 724-727 
    ISSN: 1476-4687
    Quelle: Nature Archives 1869 - 2009
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Notizen: [Auszug] In northern Italy in 1997, two earthquakes of magnitudes 5.7 and 6 (separated by nine hours) marked the beginning of a sequence that lasted more than 30 days, with thousands of aftershocks including four additional events with magnitudes between 5 and 6. This normal-faulting sequence is not ...
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2007-10-08
    Beschreibung: We report results of a study comparing numerical models of sandbox-type experiments. Two experimental designs were examined: (1) A brittle shortening experiment in which a thrust wedge is built in material of alternating frictional strength; and (2) an extension experiment in which a weak, basal viscous layer affects normal fault localization and propagation in overlying brittle materials. Eight different numerical codes, both commercial and academic, were tested against each other. Our results show that: (1) The overall evolution of all numerical codes is broadly similar. (2) Shortening is accommodated by in-sequence forward propagation of thrusts. The surface slope of the thrust wedge is within the stable field predicted by critical taper theory. (3) Details of thrust spacing, dip angle and number of thrusts vary between different codes for the shortening experiment. (4) Shear zones initiate at the velocity discontinuity in the extension experiment. The asymmetric evolution of the models is similar for all numerical codes. (5) Resolution affects strain localization and the number of shear zones that develop in strain-softening brittle material. (6) The variability between numerical codes is greater for the shortening than the extension experiment. Comparison to equivalent analogue experiments shows that the overall dynamic evolution of the numerical and analogue models is similar, in spite of the difficulty of achieving an exact representation of the analogue conditions with a numerical model. We find that the degree of variability between individual numerical results is about the same as between individual analogue models. Differences among and between numerical and analogue results are found in predictions of location, spacing and dip angle of shear zones. Our results show that numerical models using different solution techniques can to first order successfully reproduce structures observed in analogue sandbox experiments. The comparisons serve to highlight robust features in tectonic modelling of thrust wedges and brittle-viscous extension.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2020-09-01
    Beschreibung: SUMMARY Self-consistent modelling of magmatic systems is challenging as the melt continuously changes its chemical composition upon crystallization, which may affect the mechanical behaviour of the system. Melt extraction and subsequent crystallization create new rocks while depleting the source region. As the chemistry of the source rocks changes locally due to melt extraction, new calculations of the stable phase assemblages are required to track the rock evolution and the accompanied change in density. As a consequence, a large number of isochemical sections of stable phase assemblages are required to study the evolution of magmatic systems in detail. As the state-of-the-art melting diagrams may depend on nine oxides as well as pressure and temperature, this is a 10-D computational problem. Since computing a single isochemical section (as a function of pressure and temperature) may take several hours, computing new sections of stable phase assemblages during an ongoing geodynamic simulation is currently computationally intractable. One strategy to avoid this problem is to pre-compute these stable phase assemblages and to create a comprehensive database as a hyperdimensional phase diagram, which contains all bulk compositions that may emerge during petro-thermomechanical simulations. Establishing such a database would require repeating geodynamic simulations many times while collecting all requested compositions that may occur during a typical simulation and continuously updating the database until no additional compositions are required. Here, we describe an alternative method that is better suited for implementation on large-scale parallel computers. Our method uses the entries of an existing preliminary database to estimate future required chemical compositions. Bulk compositions are determined within boundaries that are defined manually or through principal component analysis in a parameter space consisting of clustered database entries. We have implemented both methods within a massively parallel computational framework while utilizing the Gibbs free energy minimization program Perple_X. Results show that our autonomous approach increases the resolution of the thermodynamic database in compositional regions that are most likely required for geodynamic models of magmatic systems.
    Print ISSN: 0956-540X
    Digitale ISSN: 1365-246X
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2020-05-29
    Beschreibung: Quantifying the hydraulic properties of single fractures is a fundamental requirement to understand fluid flow in fractured reservoirs. For an ideal planar fracture, the effective flow is proportional to the cube of the fracture aperture. In contrast, real fractures are rarely planar, and correcting the cubic law in terms of fracture roughness has therefore been a subject of numerous studies in the past. Several empirical relationships between hydraulic and mechanical aperture have been proposed based on statistical variations of the aperture field. However, often, they exhibit non-unique solutions, attributed to the geometrical variety of naturally occurring fractures. In this study, a non-dimensional fracture roughness quantification scheme is acquired, opposing effective surface area against relative fracture closure. This is used to capture deviations from the cubic law as a function of quantified fracture roughness, here termed hydraulic efficiencies. For that, we combine existing methods to generate synthetic 3-D fracture voxel models. Each fracture consists of two random, 25 cm2 wide self-affine surfaces with prescribed roughness amplitude, scaling exponent, and correlation length, which are separated by varying distances to form fracture configurations that are broadly spread in the newly formed two-parameter space (mean apertures in submillimeter range). First, we performed a percolation analysis on 600 000 synthetic fractures to narrow down the parameter space on which to conduct fluid flow simulations. This revealed that the fractional amount of contact and the percolation probability solely depend on the relative fracture closure. Next, Stokes flow calculations are performed, using a 3-D finite differences code on 6400 fracture models to compute directional permeabilities. The deviations from the cubic law prediction and their statistical variability for equal roughness configurations were quantified. The resulting 2-D solution fields reveal decreasing cubic law accordance down to 1 % for extreme roughness configurations. We show that the non-uniqueness of the results significantly reduces if the correlation length of the aperture field is much smaller than the spatial extent of the fracture. An equation was provided that predicts the average behavior of hydraulic efficiencies and respective fracture permeabilities as a function of their statistical properties. A model to capture fluctuations around that average behavior with respect to their correlation lengths has been proposed. Numerical inaccuracies were quantified with a resolution test, revealing an error of 7 %. By this, we propose a revised parameterization for the permeability of rough single fractures, which takes numerical inaccuracies of the flow calculations into account. We show that this approach is more accurate compared to existing formulations. It can be employed to estimate the permeability of fractures if a measure of fracture roughness is available, and it can readily be incorporated in discrete fracture network modeling approaches.
    Print ISSN: 1869-9510
    Digitale ISSN: 1869-9529
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2020-06-17
    Beschreibung: We apply three-dimensional (3-D) thermo-mechanical numerical simulations of the shortening of the upper crustal region of a passive margin in order to investigate the control of 3-D laterally variable inherited structures on fold-and-thrust belt evolution and associated nappe formation. We consider tectonic inheritance by employing an initial model configuration with basement horst and graben structures having laterally variable geometry and with sedimentary layers having different mechanical strength. We use a visco-plastic rheology with a temperature-dependent flow law and a Drucker–Prager yield criterion. The models show the folding, detachment (shearing off) and horizontal transport of sedimentary units, which resemble structures of fold and thrust nappes. The models further show the stacking of nappes. The detachment of nappe-like structures is controlled by the initial basement and sedimentary layer geometry. Significant horizontal transport is facilitated by weak sedimentary units below these nappes. The initial half-graben geometry has a strong impact on the basement and sediment deformation. Generally, deeper half-grabens generate thicker nappes and stronger deformation of the neighbouring horst, while shallower half-grabens generate thinner nappes and less deformation in the horst. Horizontally continuous strong sediment layers, which are not restricted to initial graben structures, cause detachment (décollement) folding and not overthrusting. The amplitude of the detachment folds is controlled by the underlying graben geometry. A mechanically weaker basement favours the formation of fold nappes, while stronger basement favours thrust sheets. The model configuration is motivated by applying the 3-D model to the Helvetic nappe system of the Central Alps of France and Switzerland. Our model reproduces several first-order features of this nappe system, namely (1) closure of a half-graben and associated formation of the Morcles and Doldenhorn nappes, (2) overthrusting of a nappe resembling the Wildhorn and Glarus nappes, and (3) formation of a nappe pile resembling the Helvetic nappes resting above the Infrahelvetic complex. Furthermore, the finite strain pattern, temperature distribution and timing of the 3-D model is in broad agreement with data from the Helvetic nappe system. Our model, hence, provides a 3-D reconstruction of the first-order tectonic evolution of the Helvetic nappe system. Moreover, we do not apply any strain softening mechanisms. Strain localization, folding and nappe transport are controlled by initial geometrical and mechanical heterogeneities showing the fundamental importance of tectonic inheritance on fold-and-thrust belt evolution.
    Print ISSN: 1869-9510
    Digitale ISSN: 1869-9529
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2019-04-12
    Print ISSN: 1755-1307
    Digitale ISSN: 1755-1315
    Thema: Geographie , Geologie und Paläontologie , Physik
    Publiziert von Institute of Physics
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2019-06-01
    Print ISSN: 2169-9313
    Digitale ISSN: 2169-9356
    Thema: Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2018-04-18
    Print ISSN: 0002-7820
    Digitale ISSN: 1551-2916
    Thema: Maschinenbau , Physik
    Publiziert von Wiley im Namen von American Ceramic Society.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...