ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (25)
  • Springer  (25)
  • 1995-1999  (4)
  • 1990-1994  (21)
  • 1905-1909
  • Physics  (25)
Collection
  • Articles  (25)
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biological cybernetics 66 (1992), S. 381-387 
    ISSN: 1432-0770
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Computer Science , Physics
    Notes: Abstract We present a scheme for systematically reducing the number of differential equations required for biophysically realistic neuron models. The techniques are general, are designed to be applicable to a large set of such models and retain in the reduced system as high a degree of fidelity to the original system as possible. As examples, we provide reductions of the Hodgkin-Huxley system and the A-current model of Connor et al. (1977).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biological cybernetics 68 (1993), S. 209-214 
    ISSN: 1432-0770
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Computer Science , Physics
    Notes: Abstract We investigate spike initiation and propagation in a model axon that has a slow regenerative conductance as well as the usual Hodgkin-Huxley type sodium and potassium conductances. We study the role of slow conductance in producing repetitive firing, compute the dispersion relation for an axon with an additional slow conductance, and show that under appropriate conditions such an axon can produce a traveling zone of secondary spike initiation. This study illustrates some of the complex dynamics shown by excitable membranes with fast and slow conductances.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biological cybernetics 70 (1994), S. 397-405 
    ISSN: 1432-0770
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Computer Science , Physics
    Notes: Abstract. An important step in visual processing is the segregation of objects in a visual scene from one another and from the embedding background. According to current theories of visual neuroscience, the different features of a particular object are represented by cells which are spatially distributed across multiple visual areas in the brain. The segregation of an object therefore requires the unique identification and integration of the pertaining cells which have to be “bound” into one assembly coding for the object in question. Several authors have suggested that such a binding of cells could be achieved by the selective synchronization of temporally structured responses of the neurons activated by features of the same stimulus. This concept has recently gained support by the observation of stimulus-dependent oscillatory activity in the visual system of the cat, pigeon and monkey. Furthermore, experimental evidence has been found for the formation and segregation of synchronously active cell assemblies representing different stimuli in the visual field. In this study, we investigate temporally structured activity in networks with single and multiple feature domains. As a first step, we examine the formation and segregation of cell assemblies by synchronizing and desynchronizing connections within a single feature module. We then demonstrate that distributed assemblies can be appropriately bound in a network comprising three modules selective for stimulus disparity, orientation and colour, respectively. In this context, we address the principal problem of segregating assemblies representing spatially overlapping stimuli in a distributed architecture. Using synchronizing as well as desynchronizing mechanisms, our simulations demonstrate that the binding problem can be solved by temporally correlated responses of cells which are distributed across multiple feature modules.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 54 (1992), S. 293-299 
    ISSN: 1432-0630
    Keywords: 68.55 ; 73.60F ; 78.65J ; 81.15E
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Stoichiometric polycrystalline In2Se3 thin films have been grown by elemental evaporation on both glass and quartz substrates. The compositions are examined by DAN fluorimetry and X-ray photoelectron spectroscopy (XPS). Structure of the films are characterized by X-ray diffraction. The structure of this α-form of thin films have been determined to be hexagonal. Optimization of the preparative conditions employed for elemental evaporation, helped in preparing monophasic films by the suppression of other phases to a very minor extent. Influence of annealing conditions on the stoichiometry of the films are investigated in detail.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Biological cybernetics 70 (1994), S. 397-405 
    ISSN: 1432-0770
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Computer Science , Physics
    Notes: Abstract An important step in visual processing is the segregation of objects in a visual scene from one another and from the embedding background. According to current theories of visual neuroscience, the different features of a particular object are represented by cells which are spatially distributed across multiple visual areas in the brain. The segregation of an object therefore requires the unique identification and integration of the pertaining cells which have to be “bound” into one assembly coding for the object in question. Several authors have suggested that such a binding of cells could be achieved by the selective synchronization of temporally structured responses of the neurons activated by features of the same stimulus. This concept has recently gained support by the observation of stimulus-dependent oscillatory activity in the visual system of the cat, pigeon and monkey. Furthermore, experimental evidence has been found for the formation and segregation of synchronously active cell assemblies representing different stimuli in the visual field. In this study, we investigate temporally structured activity in networks with single and multiple feature domains. As a first step, we examine the formation and segregation of cell assemblies by synchronizing and desynchronizing connections within a single feature module. We then demonstrate that distributed assemblies can be appropriately bound in a network comprising three modules selective for stimulus disparity, orientation and colour, respectively. In this context, we address the principal problem of segregating assemblies representing spatially overlapping stimuli in a distributed architecture. Using synchronizing as well as desynchronizing mechanisms, our simulations demonstrate that the binding problem can be solved by temporally correlated responses of cells which are distributed across multiple feature modules.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and computational fluid dynamics 7 (1995), S. 427-428 
    ISSN: 1432-2250
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and computational fluid dynamics 2 (1991), S. 253-254 
    ISSN: 1432-2250
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and computational fluid dynamics 7 (1995), S. 425-425 
    ISSN: 1432-2250
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and computational fluid dynamics 2 (1991), S. 251-252 
    ISSN: 1432-2250
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and computational fluid dynamics 5 (1993), S. 139-139 
    ISSN: 1432-2250
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...