ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (9)
  • Springer  (9)
  • Periodicals Archive Online (PAO)
  • 1990-1994  (9)
  • 1905-1909
  • Computer Science  (9)
Collection
  • Articles  (9)
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biological cybernetics 66 (1992), S. 381-387 
    ISSN: 1432-0770
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Computer Science , Physics
    Notes: Abstract We present a scheme for systematically reducing the number of differential equations required for biophysically realistic neuron models. The techniques are general, are designed to be applicable to a large set of such models and retain in the reduced system as high a degree of fidelity to the original system as possible. As examples, we provide reductions of the Hodgkin-Huxley system and the A-current model of Connor et al. (1977).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biological cybernetics 68 (1993), S. 209-214 
    ISSN: 1432-0770
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Computer Science , Physics
    Notes: Abstract We investigate spike initiation and propagation in a model axon that has a slow regenerative conductance as well as the usual Hodgkin-Huxley type sodium and potassium conductances. We study the role of slow conductance in producing repetitive firing, compute the dispersion relation for an axon with an additional slow conductance, and show that under appropriate conditions such an axon can produce a traveling zone of secondary spike initiation. This study illustrates some of the complex dynamics shown by excitable membranes with fast and slow conductances.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biological cybernetics 70 (1994), S. 397-405 
    ISSN: 1432-0770
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Computer Science , Physics
    Notes: Abstract. An important step in visual processing is the segregation of objects in a visual scene from one another and from the embedding background. According to current theories of visual neuroscience, the different features of a particular object are represented by cells which are spatially distributed across multiple visual areas in the brain. The segregation of an object therefore requires the unique identification and integration of the pertaining cells which have to be “bound” into one assembly coding for the object in question. Several authors have suggested that such a binding of cells could be achieved by the selective synchronization of temporally structured responses of the neurons activated by features of the same stimulus. This concept has recently gained support by the observation of stimulus-dependent oscillatory activity in the visual system of the cat, pigeon and monkey. Furthermore, experimental evidence has been found for the formation and segregation of synchronously active cell assemblies representing different stimuli in the visual field. In this study, we investigate temporally structured activity in networks with single and multiple feature domains. As a first step, we examine the formation and segregation of cell assemblies by synchronizing and desynchronizing connections within a single feature module. We then demonstrate that distributed assemblies can be appropriately bound in a network comprising three modules selective for stimulus disparity, orientation and colour, respectively. In this context, we address the principal problem of segregating assemblies representing spatially overlapping stimuli in a distributed architecture. Using synchronizing as well as desynchronizing mechanisms, our simulations demonstrate that the binding problem can be solved by temporally correlated responses of cells which are distributed across multiple feature modules.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biological cybernetics 70 (1994), S. 397-405 
    ISSN: 1432-0770
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Computer Science , Physics
    Notes: Abstract An important step in visual processing is the segregation of objects in a visual scene from one another and from the embedding background. According to current theories of visual neuroscience, the different features of a particular object are represented by cells which are spatially distributed across multiple visual areas in the brain. The segregation of an object therefore requires the unique identification and integration of the pertaining cells which have to be “bound” into one assembly coding for the object in question. Several authors have suggested that such a binding of cells could be achieved by the selective synchronization of temporally structured responses of the neurons activated by features of the same stimulus. This concept has recently gained support by the observation of stimulus-dependent oscillatory activity in the visual system of the cat, pigeon and monkey. Furthermore, experimental evidence has been found for the formation and segregation of synchronously active cell assemblies representing different stimuli in the visual field. In this study, we investigate temporally structured activity in networks with single and multiple feature domains. As a first step, we examine the formation and segregation of cell assemblies by synchronizing and desynchronizing connections within a single feature module. We then demonstrate that distributed assemblies can be appropriately bound in a network comprising three modules selective for stimulus disparity, orientation and colour, respectively. In this context, we address the principal problem of segregating assemblies representing spatially overlapping stimuli in a distributed architecture. Using synchronizing as well as desynchronizing mechanisms, our simulations demonstrate that the binding problem can be solved by temporally correlated responses of cells which are distributed across multiple feature modules.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of intelligent and robotic systems 7 (1993), S. 233-254 
    ISSN: 1573-0409
    Keywords: Quadratic half-plane ; positive quadratic space ; model and parameter mismatch ; constraint analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The stability of the PUMA-560 robot manipulator is investigated under model mismatch using PD and PID controllers. Craig's quadratic half-plane constraint analysis is applied, and conditions are found in terms of calculated position and velocity error upper bounds to guarantee the stability of the robot arm under PD control. The theory is extended to guarantee stability under PID control using the modified positive quadratic space constraint analysis. Dynamic model mismatch is assumed to result from incomplete knowledge of the link masses, centers of mass and radii of gyration. The results indicate stability regions under different percentages of individual and combined parameter mismatch in the model.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1993-01-01
    Print ISSN: 0340-1200
    Electronic ISSN: 1432-0770
    Topics: Biology , Computer Science , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1994-03-01
    Print ISSN: 0340-1200
    Electronic ISSN: 1432-0770
    Topics: Biology , Computer Science , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1992-03-01
    Print ISSN: 0340-1200
    Electronic ISSN: 1432-0770
    Topics: Biology , Computer Science , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1994-02-01
    Print ISSN: 0340-1200
    Electronic ISSN: 1432-0770
    Topics: Biology , Computer Science , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...