ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-07-03
    Description: We mapped the distribution of the 365‐nm albedo of the Venus atmosphere over the years 2006–2014, using images acquired by the Venus Monitoring Camera (VMC) on board Venus Express. We selected all images with a global view of Venus to investigate how the albedo depends on longitude. Bertaux et al. (2016, https://doi.org/10.1002/2015JE004958) reported a peak in albedo around 100° longitude and speculated on an association with the Aphrodite Terra mountains. We show that this peak is most likely an artifact, resulting from long‐term albedo variations coupled with considerable temporal gaps in data sampling over longitude. We also used a subset of images to investigate how the albedo depends on local time, selecting only south pole viewing images of the dayside (local times 7–17 hr). Akatsuki observed mountain‐induced waves in the late afternoon at 283 nm and 10 μm (Fukuhara et al., 2017, https://doi.org/10.1038/ngeo2873). We expect that the presence of such waves may introduce 365‐nm albedo variations with a periodicity of one solar day (116.75 Earth days). We searched for such a periodicity peak at 15:30–16:00 local time and low latitudes but did not find it. In conclusion, we find that temporal albedo variations, both short and long term, dominate any systematic variations with longitude and local time. The nature of VMC dayside observations limits regular data sampling along longitudes, so longitudinal variations, if they exist, are difficult to extract. We conclude that any influence by the Venus surface on 365‐nm albedo is negligible within this data set.
    Description: Plain Language Summary: Recently, it was reported that mountains on the surface of Venus can affect the atmosphere at the altitude of the cloud tops (70 km). For example, the brightness of the clouds (albedo) in images made by the Venus Express spacecraft at ultraviolet wavelengths (365 nm) was suspected to peak over a high mountain, Aphrodite Terra. We searched for such surface effects using the Venus Express images taken at 365 nm over the years 2006–2014. We found that the albedo was strongly variable over this period and that different longitudes were systematically imaged at different times. It is therefore not possible to uncover the influence of mountains on the albedo, and we believe that the reported albedo peak near Aphrodite Terra is most likely not real. Another spacecraft, Akatsuki, observed global‐scale atmospheric waves in the late afternoon that are originated by mountains. We also searched for albedo changes at the same latitude with a period of one solar day (116.75 Earth days) that might be linked with these atmospheric waves but did not find any period above the noise level. We conclude that the influence of mountains on the 365‐nm albedo is too weak to be recognized in Venus Express images.
    Description: Key Points: Temporal variations of the 365‐nm albedo of Venus dominate over any systematic variations along longitude or over local time. We found no systematic influence by mountains on the 365‐nm albedo distribution, in contrast to a previous report.
    Description: EU Horizon 2020 MSCA-IF
    Description: JAXA ITYF
    Description: JPSP International Research Fellow program
    Keywords: 523 ; Venus ; UV ; image analysis ; observations ; clouds
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-21
    Description: The so‐called unknown absorber in the clouds of Venus is an important absorber of solar energy, but its vertical distribution remains poorly quantified. We analyze the 283 and 365 nm phase curves of the disk‐integrated albedo measured by Akatsuki. Based on our models, we find that the unknown absorber can exist either well mixed over the entire upper cloud or within a thin layer. The necessary condition to explain the 365 nm phase curve is that the unknown absorber must absorb efficiently within the cloud scale height immediately below the cloud top. Using this constraint, we attempt to extract the SO2 abundance from the 283 nm phase curve. However, we cannot disentangle the absorption by SO2 and by the unknown absorber. Considering previous SO2 abundance measurements at midinfrared wavelengths, the required absorption coefficient of the unknown absorber at 283 nm must be more than twice that at 365 nm.
    Description: Plain Language Summary: There is an unknown absorber in the clouds of Venus. It absorbs solar energy effectively at ultraviolet (UV) and blue wavelengths, but its vertical location, either above or below the cloud top level (about 70 km altitude), remains unclear. This uncertainty affects our understanding of the vertical deposition of solar energy in the atmosphere. We investigate the vertical distribution of the unknown absorber using the dependence of the full‐disk brightness on the scattering direction (the Sun‐Venus‐spacecraft angle) at 365 nm, with data from JAXA's Akatsuki spacecraft over 3 years. We find that the unknown absorber could exist in the entire cloud, or as a thin layer near but below the cloud top. Using these constraints on the vertical distribution of the unknown absorber, we analyze the 283 nm full‐disk brightness. At this shorter wavelength, the SO2 gas and the unknown absorber are both effective absorbers. We attempt to quantify the SO2 abundance, and find that the brightness dependence on the scattering direction alone is insufficient to separate the contribution from the two absorbers at 283 nm. Further analysis with spectral phase curve observations will better define the SO2 abundance.
    Description: Key Points: The vertical distribution of the unknown absorber is investigated with the aid of full‐disk phase curves at wavelengths of 283 and 365 nm First time the 283 nm full‐disk brightness phase curve of Venus is analyzed over a broad phase angle range The unknown absorber must result in sufficient absorption within the cloud scale height immediately below the cloud top
    Description: EC, H2020, H2020 Priority Excellent Science, H2020 Marie Skłodowska‐Curie Actions (MSCA) http://dx.doi.org/10.13039/100010665
    Keywords: 523 ; atmosphere ; phase curve ; simulation ; UV image ; Venus
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-19
    Description: Thermal ion energy distribution functions and local electric and magnetic fields were directly measured for the first time in the ionospheric E region. Measured ion distribution functions were fitted to shifted Maxwellian distributions, and their resulting ion drift velocities were compared with E x B/B-squared velocities from the double-probe electric field observations. The results show that the ion drift direction rotates with respect to the local electric field direction and that the ratio of the magnitudes of the ion velocity to the E x B/B-squared velocity decreases with decreasing altitudes. Using these observations, the quiet time ion-neutral collison frequencies and neutral wind velocities were estimated and found to be consistent with theoretical estimates. However, significant discrepancies between observations and theory are found in the disturbed E region near auroral particle precipitation regions. These data indicate that the auroral atmosphere is significantly perturbed due to Joule as well as particle heating effects.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 96; 9761-977
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-03-22
    Description: Propellant feed systems for ion engines, cesium hydride system
    Keywords: PHYSICS, PLASMA
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-16
    Description: The paper investigates two unusual types of ion cyclotron whistlers that were found in the low-latitude topside ionosphere by analyzing ISIS VLF electric-field data received at Kashima, Japan. One type is characterized by an asymptotic frequency equal to one half the local proton gyrofrequency; the asymptotic frequency of the other type corresponds to the minimum proton gyrofrequency along the geomagnetic field line passing through the satellite. The observations are compared with theoretical spectrograms of the ion cyclotron whistlers computed for appropriate model distributions of electrons and ions in the topside ionosphere. It is found that the whistlers with the asymptotic frequency of one half the local proton gyrofrequency are deuteron whistlers and that the other whistlers are due to the transequatorial propagation of proton or deuteron whistlers originating in the southern hemisphere.
    Keywords: GEOPHYSICS
    Type: Planetary and Space Science; 24; Apr. 197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-17
    Description: The high latitude limit of transequatorial deuteron whistlers is found to occur at latitudes where B(m) = B/2, in which B is the local magnetic field at the satellite and B(m) is the minimum magnetic field on the field line through the satellite. The high latitude limit of transequatorial proton whistlers, often extends to the latitude where B(m) = B/4 in the autumn and winter. Transequatorial deuteron whistlers have a constant time interval for an echo train. The damping rate of the cyclotron resonant interaction with rare deuteron is large enough to generate deuteron whistlers. Ray tracing results for nonducted propagation of transequatorial deuteron whistlers show that rays are guided by the geomagnetic field within one degree in invariant latitude for several bounces between the two hemispheres.
    Keywords: GEOPHYSICS
    Type: Journal of Atmospheric and Terrestrial Physics; 42; May 1980
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-19
    Description: Several ion whistlers were observed by the polar orbiting satellites, Isis, during geomagnetic storms associated with large solar flares in 1982. It seems that the proton density ratio to the total ions deduced from the crossover frequency of the transequatorial ion whistlers observed at geomagnetic low latitudes during the main phase of the geomagnetic storm on July 14, 1982 was lower than the usual density ratio. An anomalous pattern seen on the time-compressed dynamic spectra of the ion whistlers on September 6, 1982 may suggest the existence of effects by the component He(3+) in a quite small amount.
    Keywords: GEOPHYSICS
    Type: Radio Research Laboratory, Journal (ISSN 0033-8001); 33; 181-202
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-27
    Description: The principal effect of thermal and optical treatments in an ionic solid is to alter the lattice defect equilibrium, including the concentration and arrangement of ion vacancies, impurities, impurity-vacancy associates, and assorted electrons and holes which may be associated with such defects. This paper examines the relationship between these defects and thermoluminescence in the case of lithium fluoride at and above room temperature. The discussion focuses on lattice defect equilibrium, thermoluminescent trapping centers, the relationship between recombination and luminescence, the supralinearity and sensitization of the dosimetry grade of LiF and activation energy parameters.
    Keywords: SOLID-STATE PHYSICS
    Type: - Applied Research; 29; 1975
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Future changes in the stratospheric circulation could have an important impact on northern winter tropospheric climate change, given that sea level pressure (SLP) responds not only to tropospheric circulation variations but also to vertically coherent variations in troposphere-stratosphere circulation. Here we assess northern winter stratospheric change and its potential to influence surface climate change in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) multimodel ensemble. In the stratosphere at high latitudes, an easterly change in zonally averaged zonal wind is found for the majority of the CMIP5 models, under the Representative Concentration Pathway 8.5 scenario. Comparable results are also found in the 1% CO2 increase per year projections, indicating that the stratospheric easterly change is common feature in future climate projections. This stratospheric wind change, however, shows a significant spread among the models. By using linear regression, we quantify the impact of tropical upper troposphere warming, polar amplification, and the stratospheric wind change on SLP. We find that the intermodel spread in stratospheric wind change contributes substantially to the intermodel spread in Arctic SLP change. The role of the stratosphere in determining part of the spread in SLP change is supported by the fact that the SLP change lags the stratospheric zonally averaged wind change. Taken together, these findings provide further support for the importance of simulating the coupling between the stratosphere and the troposphere, to narrow the uncertainty in the future projection of tropospheric circulation changes.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN17064 , Journal of Geophysical Research: Amospheres; 119; 13; 7979–7998
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Ozone changes and associated climate impacts in the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations are analyzed over the historical (1960-2005) and future (2006-2100) period under four Representative Concentration Pathways (RCP). In contrast to CMIP3, where half of the models prescribed constant stratospheric ozone, CMIP5 models all consider past ozone depletion and future ozone recovery. Multimodel mean climatologies and long-term changes in total and tropospheric column ozone calculated from CMIP5 models with either interactive or prescribed ozone are in reasonable agreement with observations. However, some large deviations from observations exist for individual models with interactive chemistry, and these models are excluded in the projections. Stratospheric ozone projections forced with a single halogen, but four greenhouse gas (GHG) scenarios show largest differences in the northern midlatitudes and in the Arctic in spring (approximately 20 and 40 Dobson units (DU) by 2100, respectively). By 2050, these differences are much smaller and negligible over Antarctica in austral spring. Differences in future tropospheric column ozone are mainly caused by differences in methane concentrations and stratospheric input, leading to approximately 10DU increases compared to 2000 in RCP 8.5. Large variations in stratospheric ozone particularly in CMIP5 models with interactive chemistry drive correspondingly large variations in lower stratospheric temperature trends. The results also illustrate that future Southern Hemisphere summertime circulation changes are controlled by both the ozone recovery rate and the rate of GHG increases, emphasizing the importance of simulating and taking into account ozone forcings when examining future climate projections.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN9138 , Journal of Geophysical Research: Atmospheres; 118; 10; 5029–5060
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...